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Abstract. Lean is an increasingly popular proof assistant based on
dependent type theory. Despite its success, it still lacks important au-
tomation features present in more seasoned proof assistants, such as the
Sledgehammer tactic in Isabelle/HOL. A key aspect of Sledgehammer is
the use of proof-producing SMT solvers to prove a translated proof goal
and the reconstruction of the resulting proof into valid justifications for
the original goal. We present LEAN-SMT, a tactic providing this function-
ality in Lean. We detail how the tactic converts Lean goals into SMT
problems and, more importantly, how it reconstructs SMT proofs into
native Lean proofs. We evaluate the tactic on established benchmarks
used to evaluate Sledgehammer’s SMT integration, with promising re-
sults. We also evaluate LEAN-SMT as a standalone proof checker for proofs
of SMT-LIB problems. We show that LEAN-SMT offers a smaller trusted
core without sacrificing too much performance.

1 Introduction

Proof assistants, also known as interactive theorem provers (ITPs), allow users
to write mechanized proofs of statements written in a formal language, whose
validity can be verified by a small, trusted kernel. They help users construct
trustworthy, formal, machine-checkable proofs of theorems, and have been in-
creasingly used to mechanize proofs of various mathematical results [18, 19].
This process has significantly accelerated in recent years with the adoption of
the Lean 4 proof assistant [28] by leading members of the mathematical com-
munity [12, 14, 37]. Proof assistants are also commonly used in certain areas
of computer science to model and formally verify systems, thanks to the high
expressiveness of their underlying language and logic [23,29].

The trustworthiness of proof assistants relies on the kernel correctly verify-
ing every proof step. For this reason, ITP kernels are designed to be simple
and small, implementing just straightforward logical operations from the logical
framework underlying the proof assistant. This means that, in principle, each
proof step must be explicitly formulated by the user, with the consequence that
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a naive use of ITPs may require a prodigious amount of expertise and effort. A
major challenge, then, is the extension of the kernel with trustworthy facilities
for automating the writing of mechanized proofs as much as possible, thereby
reducing the burden on users.” Automation is generally achieved via tactics,
proof-producing algorithms, traditionally written in a special-purpose language,
that discharge proof obligations for certain classes of subgoals, often by simulat-
ing common proof techniques, such as case analysis or induction.

An alternative is to use external automatic theorem provers (ATPs) to solve
subgoals when possible. Tools such as HOLYHammer [22], MizAR [21], Sledge-
hammer [26], and Why3 [10], provide a one-click connection from proof assis-
tants to first-order provers and have led to considerable improvements in proof-
assistant automation [9]. Sledgehammer, a particularly successful tactic in Is-
abelle/HOL [30], includes an integration with proof-producing SMT solvers |8,
30]. Sledgehammer translates certain proof goals into SMT-LIB [6], a standard
format for SMT problems, and sends them to a supported SMT solver. The
proof returned by the solver is reconstructed by essentially reproducing each
step within the proof assistant. The integration of SMT solvers in Sledgeham-
mer has been especially useful for proof goals arising from formal verification
efforts carried out in Isabelle/HOL [8]. We conjecture that any tactic in Lean
with the same ambition and expected impact as Sledgehammer will require a
similar level of SMT solver integration.

In this paper, we present LEAN-SMT,° which provides an initial implementa-
tion of a similar integration in Lean and can be seen as a stepping stone towards
a full Sledgehammer-like tactic for Lean. LEAN-SMT operates by translating Lean
proof goals expressible in the first-order logic fragment of dependent type theory
(Section 3.2) into SMT problems, leveraging SMT theories to model correspond-
ing elements from Lean, such as uninterpreted functions, propositional equality,
first-order quantifiers, and arithmetic operators. To bridge the gap between this
restricted fragment and the goals that arise in practice in Lean formalizations,
we rely on LEAN-AUTO, a tactic developed by Qian et al. [34], to reduce Lean
proof goals to first-order logic, together with dedicated preprocessing in LEAN-
SMT itself to express them in the language of selected SMT theories (Section 3.1).
LEAN-SMT currently supports the state-of-the-art proof-producing SMT solver
Ccveh [3]. cveh’s extensive proof production capabilities [4] and strong perfor-
mance on the fragment of interest make it well suited for such an integration.
cveh’s proofs are reconstructed into native Lean proofs (Section 3.3) by using
either a Lean theorem, a Lean tactic, or a formally verified Lean program.

We evaluate LEAN-SMT (Section 4) on proof goals from a standard benchmark
set used to evaluate Sledgehammer, showing that LEAN-SMT performs compara-
bly with Sledgehammer’s SMT integration. We also evaluate it as a verified proof
checker for SMT proofs. Although, as expected, LEAN-SMT is less performant

5 In mathematics, the cost of mechanizing a proof is currently estimated to be ~ 20x
the original cost of writing the proof [37]. Using ITPs to formally verify large systems
is well known to be very costly, in the range of multiple person-years [23].

S LEAN-SMT is available online at https://github.com/ufmg-smite/lean-smt
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than standalone, unverified SMT proof checkers, its performance is generally
within an order of magnitude of theirs. Additionally, it offers comparable perfor-
mance to SMTCoq [16], a similarly verified checker for Rocq, while supporting
a larger logical fragment.

2 Related Work

While our main inspiration for LEAN-SMT has been the SMT integration in
Sledgehammer, there are other ways in which Sledgehammer leverages the power
of automatic theorem provers. Sledgehammer includes a premise selection mod-
ule, which filters lemmas from Isabelle’s libraries that are potentially useful for
proving the goal. These lemmas are added to the problem to be sent to the
solver. An alternative strategy to directly reconstructing a proof returned by
the SMT solver is to simply identify the input lemmas actually used in the proof
and pass them, together with the original goal, to metis [20], a proof-producing
superposition-based theorem prover written as an Isabelle tactic. While there is
no equivalent for Sledgehammer in Lean, there is a growing ecosystem of tools
that eventually can be combined into a comparable tool. Recently Aesop [25], a
tableaux-based prover, and Duper [13] which is, like metis, a superposition-based
prover, were introduced as proof-producing Lean tactics. No equivalent for the
premise selection mechanism is readily available in Lean yet, although there has
been initial work in this direction [32].

Another integration between a proof assistant and SMT solvers is offered by
SMTCoq [16], a plug-in for the Rocq proof assistant [7]. It supports proof recon-
struction for the SMT solvers veriT [11] and CVC4 [5], but rather than replaying
each individual proof step within Rocq, as Sledgehammer and LEAN-SMT do, it
applies a formally verified checker that, if successful, confirms the original proof
goal as a theorem. This approach relies heavily on the efficiency of the proof
assistant itself, since the proof checker runs within the proof assistant and may
have to analyze and simplify huge proof terms. The Rocq proof assistant is de-
signed to be very fast at this; on the other hand, Lean is not [2]. Moreover,
the verified checker approach can be rather rigid, since any modification to the
supported proof format requires the checker’s correctness theorem to be proven
again. This can require a significant effort, even for tools with a highly modular
architecture like SMT-Coq. In contrast, in the proof replay approach, one needs
to change the reconstruction tactic by modifying the step corresponding to the
changed element of the format. These observations motivated our decision to use
proof replay in LEAN-SMT. The decision has been crucial for its development so
far since cvch’s proof calculus and infrastructure are still evolving [4,24,31].

3 System Overview

Figure 1 depicts the LEAN-SMT architecture, which takes as input a Lean goal,
whose type is represented as the formula F', and generates a proof for it by solving
a corresponding unsatisfiability problem in SMT and reconstructing its proof into
a Lean proof for F'. The arrows illustrate the tactic’s pipeline, through which the
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Fig. 1: Architecture of the LEAN-SMT tactic.

input formula is simplified, translated into an SMT query, and sent to ¢cvch. The
solver’s proof is then reconstructed as a proof in Lean for the input formula. The
light green boxes represent the proofs used during the reconstruction stage, which
correspond directly to the formulas (light blue) processed during the translation
stage. The dashed lines emphasize this correspondence.

The preprocessor module converts the initial input F' into an intermediate
form F’, simplifying or restructuring the input to make it more suitable for
translation into an SMT query. During this phase, a preprocessing proof is gen-
erated, capturing the transformations applied. The translator module generates
a formula in SMT-LIB format whose unsatisfiability corresponds to the validity
of F'. The formula is passed to the cvch solver which produces a proof for it if
it determines it to be unsatisfiable. The proof is expressed in the Cooperating
Proof Calculus (CPC).” The tactic interfaces with cvc5 through Lean’s Foreign
Function Interface (FFI) and the solver’s Lean API, which we added to the solver
to facilitate the integration. The reconstructor module translates the CPC proof
into a Lean proof of F’, mapping the CPC proof structure to corresponding
Lean constructs and ensuring logical equivalence. The postprocessor combines
the preprocessing proof and the reconstruction proof into a single Lean proof for
the original formula F; which is then checked by Lean’s kernel.

3.1 Preprocessing Original Lean Goal

Lean’s type system, rooted in dependent type theory (DTT) [1], is far more
expressive than the many-sorted first-order logic (FOL) [17] used by SMT solvers.
To bridge this gap, we employ proof-producing preprocessing steps that simplify
Lean goals into a form more amenable to translation into SMT-LIB.

" See https://cve5.github.io/docs/cves-1.2.1/proofs /output _cpc.html. A complete
list of the proof rules in CPC can be found at https://cvch.github.io/docs/cve5-1.
2.1/api/cpp/enums/proofrule.html. The semantics of the rules is also defined in the
Eunoia logical framework, described in the user manual of the Ethos proof checker:
https://github.com/cve5/ethos/blob/main /user manual.md.
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We first use LEAN-AUTO® to reduce the goal to FOL. LEAN-AUTO normalizes
universe levels, monomorphizes definitions, adds lemmas related to inductive
types, and replaces type class instances by their corresponding values. All of
these transformations are implemented in Lean and are proof producing, so
their soundness is guaranteed by Lean’s kernel. However, they are inherently
incomplete, given the expressivity gap between DTT and FOL.

The preprocessing applied by LEAN-AUTO is not specific to SMT solvers, so
while the resulting goal is in FOL, it is not aligned with the SMT-LIB standard.
We apply a further preprocessing step so that certain Lean types and constructs
(e.g., Prop, Nat, Rat, and Iff) that don’t have direct counterparts in SMT-LIB
can be transformed into types and constructs that do.

Ezample 1. Consider the following Lean goal, which asserts the uniqueness of
the identity element in a group:
F VY (G: Type u) [Group G] (e : G), (VW (a : G, e xa=2a) <>e=1

This goal cannot be directly translated into SMT-LIB due to the presence of the
type class Group and the logical operator «+. During preprocessing, the goal is
transformed and expanded to:

G: Type u
inst: Group G
ee’: G

op: G - G — G

inv: G — G

one_mul: V (a : G), ope a=a
inv_mul_cancel: V (a : G), op (inv a) a = e
mul_assoc: V (abc : G),

op (op ab) c =op a (op b c)

F (VY (a:G), (ope’”a=a))=(’=e)

Here, LEAN-AUTO replaces the type class Group with explicit assumptions about
the group operations (e.g., associativity, identity, and inverse axioms), and LEAN-
SMT’s preprocessing transforms the bidirectional logical operator < into a suit-
able equality comparison. These transformations make the goal compatible with
SMT-LIB’s logic while preserving its original meaning.

3.2 Translation to SMT-LIB

After preprocessing, translating Lean goals into SMT-LIB is relatively straight-
forward, as the fragments mostly overlap. However, one key challenge stems
from differing assumptions about sorts: SMT-LIB assumes sorts are non-empty,
while Lean allows types to be empty. This discrepancy can make the translation
unsound. The reconstruction stage ensures soundness by failing if a proof step
depends on a type being non-empty and Lean cannot establish that the type is
an instance of the type class of non-empty types. As long as the instances are
found, this discrepancy between the logic systems is successfully addressed.

8 https://github.com/leanprover-community /lean-auto
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Ezample 2. Continuing from our previous example, the preprocessed goal is
translated into SMT-LIB as follows:

(declare-sort G 0)

(declare-const e G)

(declare-const |e’| G)

(declare-fun op (G G) G)

(declare-fun inv (G) G)

(assert (forall ((a G)) (= (op e a) a)))

(assert (forall ((a G)) (= (op (inv a) a) e)))

(assert (forall ((a G) (b G) (c G)) (= (op (op a b) ¢) (op a (op b ¢)))))
(assert (distinct (forall ((a G)) (= (op le’l a) a) (= le’| e))))
(check-sat)

Note that the translation is sound in this example because any group G is guar-
anteed to be non-empty due to the existence of the identity element e.

3.3 c¢vchH’s Proof Format and Reconstruction

When cvch establishes that an SMT query is unsatisfiable, it can optionally
generate a proof in the CPC format that accurately mirrors its internal reasoning.
In CPC, each proof rule can be represented as follows:

it C
(4

where @1, ..., @, are the premises, t1,...,t, are the arguments provided to the
proof rule, and C (which is optional) denotes a decidable side-condition. The
proof format currently specifies over 662 proof rules in various domains, includ-
ing arithmetic, strings, quantifiers, and higher-order logic. LEAN-SMT supports
around 200 of these proof rules, which currently amounts to approximately 30%
of cvch’s proof rules. We prioritized this subset because it suffices to support
the most common proof goals in Lean.” The remaining rules are required for
less common reasoning steps used by specific theory solvers. To reconstruct the
cveb proofs in Lean, LEAN-SMT processes the CPC proof step by step, translat-
ing each proof step into an equivalent one in Lean. After LEAN-SMT completes
proof reconstruction, the entire proof is submitted to the Lean kernel for veri-
fication. In cases where a proof step cannot be reconstructed, it is presented to
the user as a subgoal to be proved manually, ensuring that the reconstruction
process remains sound. Note that since the logic of SMT-LIB is classical, certain
parts of the proof rely heavily on the axiom of choice. Below we detail each of
the reconstruction techniques we apply.

Reconstruction via theorems. Proof rules without side conditions generally cor-
respond directly to theorems in Lean. We proved an extensive library of such
theorems, which cover 163 proof rules, to use for proof reconstruction.

9 For comparison, it corresponds to the same logical fragment supported initially by
Sledgehammer and SMTCoq.
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Ezample 3. Consider the ARITH_MULT_TANGENT proof rule from CPC.

*|a:,y,a,b,a if T
1 =
(xy < tplane) = ((x <aAy>b)V (x> aAy <Db)) 7
- b
|x7y7a7 70 ifo_:J_

(xy < tplane) = ((x <aAy <b)V(x>aAy>Db))

where z,y are real terms, a,b are real constants, o € {T, L} and tplane :=
b-x+a-y—a-bis the tangent plane of x - y at (a,b). Formalizing this proof
rule into a Lean theorem is straightforward:

theorem arithMulTangentLowerEq :
(x*y<bxx+a*xy-ax*xb
theorem arithMulTangentUpperEq :
x*y<bxx+a*xy-a*b)=((xx<aNny<bVxx>aAy>Dhb)

(x<aAy>2D)V x>aAy<Db)

There are several CPC rules, however, which are more complex and require
careful consideration in order to correctly capture their semantics when stating
the corresponding Lean theorems.

Ezample 4. Consider for example the RESOLUTION proof rule:

Cl CQ | pol7 L

5
where C7, Cy are disjunctions, L is a disjunct occurring positively (respectively,
negatively) in C and negatively (resp., positively) in Cs if pol is the Boolean con-
stant true (resp., false). The result C' is a disjunction consisting of the disjuncts
from Cy minus L (resp., ~L) and the disjuncts from Cy minus —L (resp., L) if
pol is true (resp., false). Moreover, C is a flat disjunction of disjuncts from C}
and Cy as opposed to a nested disjunction, reflecting cvc5h’s treatment of logical
disjunction as a variadic operator. To capture the semantics of this rule precisely
in Lean, where logical disjunction is expressed by a binary operator, one needs
to carefully reason about the associativity and commutativity of that operator.
We encapsulate the semantics in a Lean theorem as follows:

theorem orN_resolution (hps : orN ps) (hgs : orN gs)
(hi : i < ps.length) (hj : j < gs.length)
(hij : ps[il = —qgs[jl) :
orN (ps.eraseldx i ++ gs.eraseldx j)

The premises, hps : orN ps and hgs : orN gs, are disjunctions but are built
with the orN function, which takes a List of literals, each represented as a Prop.
This formulation avoids representing ps and gs as, for example, inductively de-
fined instances of Prop instead of List or encoding the literals as Bool instead of
Prop. Using List also permits leveraging general theorems about List that we
proved for eliminating tedious corner cases that would otherwise arise in a Prop
implementation. Additionally, the choice to encode Boolean literals as Prop is a
deliberate choice due to the type-theoretic foundations of Lean.
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Reconstruction via tactics. Some proof rules without side conditions require
the application of multiple lemmas or more complex reasoning. We implement
specialized tactics to encapsulate these steps. This streamlines the reconstruction
process by automating repetitive or intricate reasoning steps. We cover 37 proof
rules this way, which required implementing a library with around 400 theorems.

Example 5. A proof rule that is very general, making it hard to state and prove
as a theorem, is the ARITH_SUM_UB proof rule:

Nizy @i > bi | ai, b;
Z?:l a; D* Z?:l bi

where q; can be either <, < or =, and <* is either <, if at least one of the < is
<, or <, otherwise. Moreover, while each pair of variables a; and b; always have
the same type, it is possible that different pairs have different types, some being
integers and some being reals. It is possible to encode this proof rule as a single
theorem in Lean, but the statement of the theorem would be quite intricate,
due to the necessity of lifting the integer variables to reals and of combining
the inequalities statically. Also, it is likely that this would make it very hard
to prove. In this case, it is easier to write a tactic that considers the different
cases of the rule and applies an appropriate, simpler theorem for each case.
The implementation of this tactic requires 9 variations of the following general
theorem:

sumBoundsThm {« : Type} [LinearOrderedRing o] {a b c d : a} :
a<b —+>c<d—-a+c<b+d

Each variation corresponds to one possible combination of the inequality sym-
bols in the hypothesis. The relation symbol in the conclusion is adapted accord-
ingly in each theorem. Since the proof rule accepts mixing of integer and real
variables, we need a variation of each one of those 9 theorems for each com-
bination of the types of the variables. Instead of stating all the combinations
explicitly, which would result in a total of 36 theorems and a long branch in the
implementation of the tactic, we state only one polymorphic version of each, as
indicated by the type parameter « in theorem sumBoundsThm. Obviously, the
theorem does not hold for just any type «. In fact, it cannot even be stated
if there are no comparison or addition operators defined over . We solve this
issue by adding a restriction, stating that « satisfies the axioms of a Linear Or-
dered Ring (a class of types that contains both Int and Real defined in Lean’s
mathlib library). With this restriction, we can prove each of the 36 theorems.
The full tactic can be seen in the appendix of a longer version of this paper [27].

Reconstruction via reflection. For proof rules involving complex side conditions
or computations such as arithmetic simplifications, we encode the side condition
into a reflective decision procedure, which we have formally verified in Lean. The
proof rule is then translated into a theorem with the side condition as an addi-
tional premise. Applications of such rules are verified by the Lean kernel using
definitional equality. We cover 5 proof rules this way. We reused one program
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from Lean’s library, ac_rf1, which applies associative and commutative proper-
ties of addition and multiplication to normalize arithmetic expressions; and we
implemented a new program, poly_norm, which normalizes polynomials up to
associativity, commutativity, and distributivity by expanding polynomials.

Ezample 6. Consider the example:

example (x y : Int) (z : Real)
1*M(x+y)xz/4=1/(2%2) x (z* Ty + Tx % 2) := by poly_norm

Proving the correctness of poly_norm required proving around 70 theorems,
amounting to 620 lines of Lean code. We define a monomial as an ordered list of
natural numbers representing variable indices, so that equality of two monomials
is immediate. Polynomials are defined as lists of monomials, and theorems about
monomials generalize to polynomials using induction. We define denote, which
essentially evaluates polynomial expressions. Using lemmas we proved about
lists and the objects we defined, we prove a theorem pushing denote into each
operator.

theorem denote_mul {p q : Polynomial} :
(p.mul q).denote ctx = p.denote ctx * g.denote ctx

Proving similar theorems for each operator (addition, multiplication, division by
a constant, and negation) yields a correctness theorem.

theorem denote_eq_from_toPoly_eq {e; ez : RealExpr}
e;.toPoly = ez.toPoly — ej;.denote ictx rctx = ez.denote ictx rctx

Since variables are represented as natural numbers, the premise of the theorem
does not contain actual variables. Therefore, Lean can establish the premise
through definitional equality. Moreover, the premise is decidable, allowing us to
compile it into machine code for enhanced performance. In our experiments, this
approach achieved speedups of up to 25x on very large arithmetic expressions
compared to using definitional equality.

4 Evaluation and Results

The LEAN-SMT tactic is mainly designed to prove Lean goals provided by users,
but can also act as a proof checker for CPC proofs in supported fragments. We
evaluate it'" in these scenarios with two sets of benchmarks: a set of 5000 SMT-
LIB benchmarks generated by Sledgehammer from Isabelle/HOL, taken from
Seventeen Provers Under the Hammer [15]; and a set of 24,817 unsatisfiable
SMT-LIB benchmarks used in SMT-COMP 2024'' that fit the supported frag-
ments of LEAN-sMT: UF, IDL, RDL, LIA, LRA, LIRA, and their quantifier-free
subfragments. The Sledgehammer benchmarks allow us to assess LEAN-SMT’s
performance in both mathematics and formal verification domains and include

10" All benchmarks were executed on a cluster with nodes equipped with 48 AMD Ryzen
9 7950X processors running at 4.50GHz and 128GB of RAM each.
" https://smt-comp.github.io/2024/
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Fig.2: (a) shows the performance of LEAN-SMT on Sledgehammer benchmarks,
while (b) compares proof checking performance of LEAN-SMT with Ethos.

lemmas selected by Sledgehammer with its premise selection mechanism. The
problems in SMT-COMP are used together with proof-producing SMT solvers
to generate proofs that are passed on to a set of proof checkers, including LEAN-
SMT.

4.1 Isabelle Sledgehammer Benchmarks

We chose these benchmarks over other options (e.g., Lean’s MathLib) due to
Lean’s lack of a premise selection mechanism, which is crucial for reducing
false positives (i.e., goals found to be invalid by the SMT solver due to missing
premises). These benchmarks also stress test solvers, as they contain many (up to
512) lemmas. We compare the performance of LEAN-SMT against Sledgehammer
with the veriT back end, which supports similar proof reconstruction techniques,
and Duper. We do not include CVC4 as a back end for Sledgehammer because
its proof production is unstable and does not provide sufficient detail for reli-
able reconstruction. The results in Figure 2a show that LEAN-SMT effectively
solves a large variety of Sledgehammer benchmarks, underscoring its potential
for integration into general-purpose proof environments. LEAN-SMT outperforms
veriT+Sledgehammer mainly because ¢vch outperforms veriT on this set of
benchmarks. LEAN-SMT takes less than a second to replay proofs for 98% of the
benchmarks, with the remaining 2% taking less than 5 seconds. Sledgehammer,
by comparison, is faster at reconstructing shorter proofs, but does not scale as
well for larger proofs.

4.2 SMT-COMP Benchmarks

We evaluate LEAN-SMT on the selected SMT-COMP benchmarks against the
proof checkers Ethos'? v0.1.0 and SMTCoq v2.2. Ethos is a proof checker im-
plemented in C++ for the Eunoia logical framework, in which CPC has been
formalized. SMTCoq is a proof checker in OCaml extracted from a formally

12 https://github.com/cveh /ethos/
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Fig. 3: Figure (a) shows the performance of LEAN-SMT on supported SMT-LIB
fragments, while Figure (b) shows the performance on the quantifier-free subset.

verified Rocq program, and supports proofs in a subset of the Alethe proof for-
mat [35]. It can check proofs produced by versions of the veriT SMT solver up
to 2016. Since the different approaches use different SMT solvers, our evaluation
includes both proof-checking and SMT solving times. All benchmarks were run
with a standard 20-minute timeout.

Note that both LEAN-SMT and SMTCoq are highly trustworthy, since they
both rely on small kernels. However, SMTCoq’s code extraction mechanism,
which extracts OCaml code from verified Rocq code, has to be trusted as well.
The trusted base for Ethos, besides its kernel, also includes the Eunoia signature
formalizing CPC. Moreover, its kernel includes native support for arithmetic
(via GMP) and arrays for efficiency, while Lean’s kernel only natively supports
arithmetic.

Supported SMT-LIB Benchmarks Figure 3a compares the cumulative solving
and checking times for all SMT-LIB benchmarks. Out of the 21,769'% bench-
marks for which proofs can be generated'* by cvc5, LEAN-SMT successfully
verified 16, 583 proofs (76%), despite relying solely on the Lean kernel for sound-
ness. Ethos verifies 98% of the proofs. Figure 2b compares the performance of
LEAN-SMT to Ethos on proof checking times. LEAN-SMT stays within an order
of magnitude of Ethos for most benchmarks. One reason for Ethos’ superior
performance is the lack of specialized support for arrays in Lean’s kernel. This
difference could be mitigated by switching to a more efficient array representa-
tion in Lean.

Quantifier-Free Fragment Figure 3b focuses on the quantifier-free subset of SM'T-
LIB benchmarks, where SMTCoq’s verified approach shines in terms of speed.
However, SMTCoq falls short in the total number of proofs verified, primarily
because, due to its fully verified architecture, it has not kept pace with the rapidly

13 This number is for cvc5 +LEAN-SMT; for cved +Ethos, 21,660 proofs are produced.
The difference is due to the overhead of proof printing and piping for the latter
combo, while in the former, the proof is passed directly via the API to LEAN-SMT.

14 On occasion, cveb will produce proofs containing holes. Both Ethos and LEAN-SMT
verify every non-hole proof step.
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evolving features of modern SMT solvers. In contrast, LEAN-SMT benefits from
the flexibility of proof replay, which has allowed us to adapt it more easily to
updates in ¢vcbh’s proof production capabilities, resulting in broader coverage
with respect to SMTCoq.

Overall, LEAN-SMT balances flexibility and performance, achieving promising
results for a proof checker deeply integrated into Lean. While it trails Ethos in
raw speed, its ability to verify a wide range of benchmarks with a small trusted
base makes it an attractive option for checking SMT proofs in critical domains.

5 Conclusion

LEAN-SMT, a trustworthy integration of the cvch SMT solver into the Lean
4 proof assistant, is a significant step toward building a Lean hammer that
enhances automation and verifies proofs generated by cvc5. LEAN-SMT shows
promising results when compared to the state-of-the-art proof checker Ethos,
both in terms of performance and effectiveness. It is already being used by other
Lean-based projects [33] and is capable of verifying a diverse range of SMT-LIB
benchmarks. Future work includes creating a dedicated Lean benchmark set for
more targeted evaluation and expanding LEAN-SMT to support additional SMT-
LIB theories, such as bit-vectors, floats, datatypes, and strings. We also plan
to extend its proof coverage beyond the current 200 rules and incorporate more
preprocessing steps to boost performance. Finally, we plan to improve integration
with LEAN-AUTO to support higher-order logic and extend support for common
Lean datatypes (e.g., tuples, structures, and modular arithmetic). Our ultimate
objective is to develop a Lean hammer that brings unprecedented automation
and verification capabilities to Lean.
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