Formalization of a Proof Calculus for Incremental
Linearization for Satisfiability Modulo Nonlinear
Arithmetic and Transcendental Functions

Tomaz Mascarenhas®
Universidade Federal de Minas Gerais
Belo Horizonte, Brazil
tomgm1502@gmail.com

Andrew Reynolds
The University of Iowa
Iowa City, USA
andrew.j.reynolds@gmail.com

Harun Khan*
Stanford University
Stanford, USA
harun19@stanford.edu

Haniel Barbosa
Universidade Federal de Minas Gerais
Belo Horizonte, Brazil
hbarbosa@dcc.ufmg.br

Abdalrhman Mohamed
Stanford University
Stanford, USA
abdal@stanford.edu

Clark Barrett
Stanford University
Stanford, USA
barrettc@stanford.edu

Cesare Tinelli
The University of Iowa
Iowa City, USA
cesare-tinelli@uiowa.edu

Abstract

Determining the satisfiability of formulas involving nonlin-
ear real arithmetic and transcendental functions is necessary
in many applications, such as formally verifying dynamic
systems. Doing this automatically generally requires costly
and intricate methods, which limits their applicability. In
the context of SMT solving, Incremental Linearization was
introduced recently to facilitate reasoning on this domain,
via an incomplete but easy to implement and highly effective
approach. The approach, based on abstraction-refinement
via an incremental axiomatization of the nonlinear and tran-
scendental operators, is currently implemented in the SMT
solvers MATHSAT and cvc5. The cve5 implementation is also
proof-producing. This paper presents two contributions: a
formalization in the Lean proof assistant of the proof calcu-
lus employed by cvc5, and an extension of the LEAN-sMT [12]
plugin to reconstruct the proofs produced by cvc5 using this
proof calculus. These contributions ensure the soundness of
the proof calculus, making the underlying algorithm more
trustworthy. Moreover, they allow users to check cvc5 results
obtained via incremental linearization, as well as improve
Lean’s automation for problems in nonlinear arithmetic. We
discuss how we modeled the rules in the proof assistant and

“Tomaz Mascarenhas and Harun Khan contributed equally to this work.

Please use nonacm option or ACM Engage class to enable CC li-

censes BY

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

CPP °26, January 12-13, 2026, Rennes, France

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2341-4/2026/01
https://doi.org/10.1145/3779031.3779111

the challenges encountered while formalizing them, as well
as the issues in reconstructing proofs involving these rules
in Lean, and how we solved them.

Keywords: SMT solvers, Lean, Transcendental functions,
Proof generation

ACM Reference Format:

Tomaz Mascarenhas, Harun Khan, Abdalrhman Mohamed, Andrew
Reynolds, Haniel Barbosa, Clark Barrett, and Cesare Tinelli. 2026.
Formalization of a Proof Calculus for Incremental Linearization
for Satisfiability Modulo Nonlinear Arithmetic and Transcendental
Functions. In Proceedings of the 15th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP °26), January 12—
13, 2026, Rennes, France. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1 145/3779031.3779111

1 Introduction

SMT solvers are crucial reasoning engines for reasoning
about the correctness and security of safety-critical applica-
tions. However, their complexity can lead to implementation
errors, raising concerns about their trustworthiness. To mit-
igate this problem, proof-producing SMT solvers, such as
cve5 [1], generate machine-checkable certificates [2], allow-
ing for the independent verification of results. While SMT
solvers routinely reason over a wide range of theories, it is a
significant challenge to extend them to reason in nonlinear
real arithmetic (NRA) since state-of-the-art complete solvers
for the satisfiability of NRA formulas exhibit a doubly ex-
ponential worst-case time complexity [6]. Adding transcen-
dental functions such as the exponential and sine functions
increases the complexity of the satisfiability problem to the
point of undecidability [14]. Despite these challenges, given
the prevalence of constraints from the theory of non-linear
arithmetic with transcendental functions (NTA) in various

https://orcid.org/0000-0003-2747-8349
https://orcid.org/0000-0003-3379-5631
https://orcid.org/0000-0003-1414-7073
https://orcid.org/0000-0002-3529-8682
https://orcid.org/0000-0003-0188-2300
https://orcid.org/0000-0002-9522-3084
https://orcid.org/0000-0002-6726-775X
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3779031.3779111
https://doi.org/10.1145/3779031.3779111
https://doi.org/10.1145/3779031.3779111

CPP ’26, January 12-13, 2026, Rennes, France

engineering disciplines, including dynamic systems, digital
signal processing, and motion planning, being able to reason
about them is highly desirable.

The SMT solver cvc5 handles NTA via an incremental lin-
earization method introduced by Cimatti et al. [3], which
approximates transcendental functions using linear polyno-
mials. The technique can also be used for NRA, providing an
alternative to complete techniques [9]. Although incremen-
tal linearization does not guarantee termination, it offers
a scalable alternative when exact solutions are not strictly
necessary. The approach uses an abstraction refinement loop
over abstractions of the input formula obtained by treating
nonlinear operations and transcendental functions as unin-
terpreted. The abstractions are refined with the incremental
addition, through a lemma-on-demand mechanism, of linear
constraints that express increasingly tighter upper and lower
bounds on those functions. In practice, this works well since
proving properties in nonlinear systems can typically be han-
dled by constructing a piecewise-linear invariant. Also, many
systems are only nonlinear in a small part of their domain;
hence, reasoning over them can be effectively handled by lin-
ear approximations. Moreover, the incremental linearization
is performed on demand, tightening the envelope around a
transcendental function only as necessary. This makes the
approach less costly, if more brittle, than exact NRA and NTA
reasoning.

The original proof calculus for incremental linearization 3],
initially implemented in the MathSAT solver [4], provides
a theoretical foundation for reasoning about nonlinear and
transcendental arithmetic. The cve5 implementation intro-
duces variations to the original proof rules that enable a
better integration in cvc5 and accommodate internal opti-
mizations. In this work, we formalize the cvc5 variant of
the proof calculus. This involves formalizing and proving
within the Lean Theorem Prover [7] all NRA and NTA proof
rules used by cvc5 in terms of Lean’s native datatypes, thus
verifying the soundness of the proof calculus. Since there are
fewer NRA rules, this paper primarily focuses on NTA rules.
All of our work on this formalization is publicly available in
a git repository.!

The formalization effort was motivated by the observation
that, while conceptually straightforward and easy to imple-
ment in principle, incremental linearization is actually tricky
to get right in practice. This point was already recognized
and discussed by the original authors in a later paper [8] that
provides more details on how to generate sound lineariza-
tion lemmas for transcendental functions. But it was also
confirmed during our formalization in Lean, as we identified
implementation errors and mistakes and missing hypothe-
ses in the documentation of several proof rules in the cvc5

https://github.com/ufmg-smite/lean-smt/tree/3c6b049/Smt/Reconstruct/
Real/TransFns.

Khan, Mascarenhas, Mohamed, Reynolds, Barbosa, Barrett and Tinelli

calculus, highlighting the usefulness of a mechanized formal-
ization.? The formalization relies heavily on mathlib, the
mathematical library for Lean, which provides a rich set of
mathematical structures and theorems [11]. Some of cvc5’s
proof rules can be formulated as applications of theorems
already in mathlib. Other rules must instead be formalized
through Lean tactics due to their intricate nature. A third
set of rules all involve bounding transcendental functions
using Taylor polynomials. Proving those sound turned out
to be the most challenging task of our formalization work
as it required developing a new theory in Lean to bridge the
gap between mathlib and those rules.

The second contribution we present here is an extension
of LEAN-sMT [12], a hammer-like tool for Lean, with the
rules in this calculus. The tactic works by proof reconstruc-
tion, where proofs from cvc5 are reconstructed step-by-step
in Lean. This requires every proof rule and rewrite rule used
by cvc5 to be formally verified in Lean to ensure the correct
Lean theorem is applied at each step. LEAN-sMT already had
the capability of reconstructing proofs in several theories,
including uninterpreted functions and linear arithmetic. By
leveraging our formalization, now it can also reconstruct
proofs for problems in NRA and NTA solved via incremental
linearization. This has two major benefits: the first is that we
can confirm that we have proved the correct theorems in our
formalization. If this were not the case, then we would see a
mismatch between the proposition expected for a proof step
and the statement of our theorem, making the reconstruction
fail. We have seen this error happening and corrected our
theorems, which are now succesfully being applied in the
reconstruction. The second one is enhancing automation in
Lean itself for reasoning over the theories we are supporting.
As far as we know, the only tactics that support nonlinear
arithmetic in Lean are nlinarith and grind, and both of
them only do linear solving enhanced with elementary lem-
mas about multiplication and there are no tactics directly
supporting transcendental functions. Thus, our extension of
LEAN-SMT can potentially improve Lean’s usability.

Related Work. To the best of our knowledge, this is the
first work that provides a method for certifying results ob-
tained via incremental linearization. Other approaches for
nonlinear arithmetic have been formally verified: Mahboubi
et al. [10] implemented Tarski’s original quantifier elimi-
nation procedure [16] and proved the soundness of their
Rocq [5] implementation. This constituted the first fully
formalized complete method for nonlinear real arithmetic.
While complete, Tarski’s method is notoriously inefficient
and therefore unsuitable for use in practical SMT solving.
More recently, Scharager et al. [15] developed a formally
verified implementation of the quadratic virtual substitution
method [17] in Isabelle/HOL [13], providing an efficient and

2Going forward, we plan to work with the cvc5 team to address the issues
discovered in the cvc5 proof rules.

https://github.com/ufmg-smite/lean-smt/tree/3c6b049/Smt/Reconstruct/Real/TransFns
https://github.com/ufmg-smite/lean-smt/tree/3c6b049/Smt/Reconstruct/Real/TransFns

Formalization of a Proof Calculus for Incremental Linearization...

complete decision procedure for formulas whose polynomial
degrees are at most 2. These developments take a different
approach from ours: they verify the implementation of the
method directly within the proof assistant and establish its
correctness once and for all. This avoids the need to re-check
certificates each time the procedure runs, but it also freezes
the implementation, as any change or optimization in the
algorithm requires reproving its correctness. In contrast, our
work certifies the output of an external solver through proof
reconstruction, enabling trusted reasoning while allowing
the SMT solver to evolve independently.

Outline. In Section 2, we describe the mathematical back-
ground that underlies the proof rules. In Section 3 and Sec-
tion 4 we explain how we formalized and proved their sound-
ness in Lean. During this process, we identified and proved
additional theorems, which we contributed to mathlib,? par-
ticularly for rules bounding the exponential and sine func-
tions using Taylor polynomials. In Section 5 we give more
details on how proof reconstruction works in LEAN-sMT and
present some of the challenges we had to solve in order to
extend it with our work. Finally, Section 6 summarizes our
work and discusses future directions.

2 Background

In this section we introduce the main mathematical concepts
involved in our formalization. We also give a brief intro-
duction to how they are modeled in mathlib. We focus on
two transcendental functions: the sine (sin) function and
the natural exponential function e* (exp). All of the other
transcendental functions supported by cvc5 are handled via
well-known reductions to one of these two functions; thus,
we will not discuss them further here.

2.1 Real Numbers

As transcendental functions, both exp and sin can produce ir-
rational numbers for rational inputs. Also, more importantly,
the incremental linearization algorithm is fundamentally
based on approximating these functions by their Taylor se-
ries, which requires a setting where limits are well-defined.
Since rational numbers alone do not form a complete space,
we need a rigorous representation of real numbers to prop-
erly state the proof rules.

There are multiple ways to construct the real numbers
formally. Inmath1ib,? they are defined as equivalence classes
of Cauchy sequences of rational numbers. This particular
choice has the upside of facilitating formal manipulations.
More precisely, a sequence a : N — Q is called a Cauchy
sequence if its terms become arbitrarily closer to each other
as the index increases. That is, a is Cauchy if:

Ve >0.3i e N.Vj > i.]a(i) —a(j)| <e
3https://github.com/leanprover-community/mathlib4/pull/22790.

4https://github.com/leanprover-community/mathlib4/blob/bump/v4.17.0/
Mathlib/Data/Real/Basic.lean.

CPP ’26, January 12-13, 2026, Rennes, France

It is known that the set of limits of all Cauchy sequences
corresponds to the set of real numbers. However, multiple
Cauchy sequences may converge to the same limit. For ex-
ample, the sequences a(i) = % and b(i) = 0 both converge to
0. This gives rise to a natural equivalence relations between
Cauchy sequences where two sequences a and b are equiva-
lent (a ~ b) if their difference converges to zero. Formally:

a=b = Ve>0.3ieN.Vj>ila(j)-b(j)| <e
The set R of all real numbers can be then defined as the

quotient of all Cauchy sequences with respect to this equiv-
alence relation.

2.2 The number =

The transcendental number 7, which has a variety of im-
portant properties, is closely related to our objectives since
it defines the points where the sin function vanishes and
where its concavity changes.

Recall that cos(%) = 0. In mathlib, the intermediate value
theorem is used to prove that there is a real number in the
real interval [1, 2] whose cosine is equal to 0. It is also proved
that there is a unique number with this property. 7 is then
defined as the double of that number. Notice that this is not
a constructive definition, meaning that it does not directly
provide a way to compute, even approximately, the real value
of 7. This is an obstacle as the incremental linearization algo-
rithm relies on increasingly more accurate approximations
of 7 to compute bounds for sin. Luckily, mathlib comprises
results bounding 7 with up to 20 decimal digits of precision,
obtained by indirect methods. This means that we can cor-
rectly reconstruct any result that requires bounding 7 with
up to this level of precision. There are methods for getting
arbitrary precision but they are exceedingly slow beyond 20
decimal digits. In any case, this is not a limitation for our
framework because cvc5 currently supports only up to 10
decimal digits of x.

2.3 Exponential and Sine

The two transcendental functions handled by incremental
linearization are sin and exp. To formally define them, we
first define the exponential function exp, over the complex
numbers via its power series:

exp.(z) = Z T
k=0

We can define the complex version of sin (which can also be
derived from the trigonometric definition of sin using Euler’s
formula) in terms of exp,:

sing(z) := (exp.(—z * i) — exp (z * i)) * %

When the argument is real, both exp, and sin, are them-
selves real numbers. Therefore, the real functions exp and sin
can be defined simply by restricting the complex functions
to real inputs:

exp(x) := exp, (x)

https://github.com/leanprover-community/mathlib4/pull/22790
https://github.com/leanprover-community/mathlib4/blob/bump/v4.17.0/Mathlib/Data/Real/Basic.lean
https://github.com/leanprover-community/mathlib4/blob/bump/v4.17.0/Mathlib/Data/Real/Basic.lean

CPP ’26, January 12-13, 2026, Rennes, France

sin(x) := sin¢(x)

where x is a real number and Re is the function that maps a
complex number to its real component.

2.4 Derivatives

Incremental linearization relies on expansions into Taylor
polynomials, which in turn rely deeply on the notion of
derivative. We recall that the (first) derivative of a real-valued
function f : R — R is a partial function f) : R — R that,
when defined at point p, measures f’s instantaneous rate of
change at that point, that is, the slope of the tangent line to
f’s graph at p. For all x € R, (V) (x) is defined informally as
the following limit

. x+h)—f(x
O () = lmy g LIS

If that limit exists at a point x we say that x is differentiable
at x. The second derivative f?) of f is the first derivative
of f(1). More generally, the (n + 1) derivative of f is the
derivative of (™.

The exponential function exp is differentiable everywhere
and is equal to its derivative: exp" (x) = exp(x) for all
x € R. The sin function is also differentiable everywhere
and its derivatives satisfy the follow properties for all x € R:

sin!(x) = cos(x)
sin?(x) = — sin(x)
sin®(x) = — cos(x)

sin*(x) = sin(x)

In mathlib, the notion of derivative is provided as a spe-
cial case of a much broader notion, that of a Frechet’s de-
rivative, which applies to functions from and to infinite-
dimensional spaces. However, the library contains all theo-
rems about derivatives that we need for our formalization
purposes.

2.5 Taylor Polynomials

As mentioned, the derivative of a one-variable function f
differentiable at a point a is the slope of the tangent of f
at a. It is known that this tangent line is the best possible
linear approximation for f around g, in the sense that it is
the unique linear function L such that the following equation
holds:

[O-L@) _

limy ., = —
This concept is generalized by the Taylor polynomial of a
function around a point.
Given a point a € R, a natural number d and a function f :
R — R d times differentiable at a, its d-th Taylor polynomial

Pr,q4 at a is given by the following formula:
d

(k)
Pra = > LD g

!
pare k!

If a is equal to 0, this is known as the Maclaurin polynomial

of f.

Khan, Mascarenhas, Mohamed, Reynolds, Barbosa, Barrett and Tinelli

The Taylor polynomial of degree d gives the best possible
approximation for f around the point a among all polyno-
mials of degree d or less (the tangent line is a special case).
This result is made even more powerful by Taylor’s theorem,
which describes the error between the approximation and
the actual function. In particular, Taylor’s theorem with the
Lagrange form of the remainder gives the following formula
for the error f(x) — Pr4(x) when x < a, assuming f is of
class C? on the interval [x,a] and f(%) is differentiable on
the interval (x, a):

3’ € [x,a]. f(x) = Pra(x) = fH () * (x =)™ s iy

For point x > a, the same result applies but x” will be in
the interval [a, x]. The limitation of this formula is that it
depends on x’, and we don’t know its exact value, only an
interval bounding it. Assuming that f(%*!) is continuous, we
can take the value of x” in [x, a] that maximizes the formula
and derive an upper bound (and a lower bound) for f in
this interval. This is a very powerful tool for approximating
complicated but differentiable functions, and it lies at the
core of the incremental linearization algorithm.

Mathlib contains all these results exactly as stated above
but only for the case where a < x. However, both cases are
necessary for proving cvc5’s rules. In Section 4 we show the
steps we took to extend the library to include both cases.

2.6 Convexity

A function f : R — R is convex (resp. concave) in an interval
[, r] if, for any two points x; and x;, in [[, r], the graph of
f is below (resp. above) the secant line between the points
(x1, f(x1)) and (xz, f(x2)) in the Cartesian plane. One way
to formally state this is as follows. To start, we can describe
the line segment between (x1, f(x1)) and (x2, f(x2)) as (tx1+
(1= 1t)xg,tf(x1) + (1 — t) f(x2)), where t ranges from 0 to 1.
For a given ¢ € [0, 1], the projection of this segment onto the
x-axis is tx1 + (1 —t)xz. Thus, the condition for convexity can
be expressed as the next inequality. Concavity is expressed
similarly but with >.

fltxr+ (1= t)xy) < tf (1) + (1= 1) f(x2)

If f is twice differentiable in [/, r], then the condition for
f being convex (resp., concave) in [I, r] is equivalent to its
second derivative being nonnegative (resp., nonpositive) in
[Lr].

Once again, the definition of convexity in mathlib is
broader as it refers to any function whose domain and codo-
main satisfy certain algebraic properties — which are satis-
fied by R. Nevertheless, the general definition does reduce
to the one above for functions from R to R.

Formalization of a Proof Calculus for Incremental Linearization...

3 Basic Rules

In this section and in the next one, we describe the main rules
in cve5’s proof calculus® for the incremental linearization
algorithm and present our formalization of them in Lean.
The calculus is used by cvc5 to produce proof certificates for
unsatisfiable sets of NRA and NTA formulas.

The calculus contains 22 rules that range from basic prop-
erties of the sin and exp functions to bounds given by their
Taylor polynomials. Table 1 gives a comprehensive list of
these rules. The calculus also contains a number of rules for
reducing formulas containing transcendental functions to
equisatisfiable formulas whose transcendental functions are
exclusively sin and exp. We will not describe these reduction
rules here since they are pretty standard (e.g., replacing oc-
currences of cos(t) with sin(z+7%), occurrences of log(t) with
a fresh variable [subject to the global constraint exp(l) = t,
and so on).

Instead, we start with a description of the rules® MULT_
TANGENT, MULT_SIGN, TRANS_SINE_SHIFT and TRANS_PI in
this section, and rules TRANS_EXP_APPROX_BELOW, TRANS_
EXP_APPROX_ABOVE_POS, TRANS_SINE_APPROX_BELOW_NEG
and TRANS_SINE_APPROX_BELOW_POQS in the next.

We present the statements of the rules in the same format
used in cve5’s documentation, that is, for a rule with conclu-

sion ¥, premises V1, - - - , ¥, parameters t, - - - , t, and side
condition C, we write:
Yuo P |t ot
. " ifC
Yy

Premises and conclusions are formulas, as usual in proof
systems. A parameter can be a variable or more complex
term/formula that occurs in the premises or the conclusion.
A side condition is an (effectively verifiable) condition over
the parameters.

The incremental linearization method works by abstract-
ing nonlinear multiplication and transcendental functions as
uninterpreted functions in the original set of formulas, solv-
ing the resulting problem with a solver for the theory of lin-
ear real arithmetic with uninterpreted functions (UFLRA) and
then, if a model (i.e., a solution) is found, checking whether it
satisfies the original set. If it does not, that is, if it is a spurious
model, new formulas, or refinement lemmas are generated
and added to the abstracted set that hold in NTA but are
falsified by the model, effectively ruling it out. This process
repeats until a genuine model is found or the abstracted set
with the added lemmas is unsatisfiable in UFLRA.

3See https://cve5.github.io/docs/cvce5-1.3.1/proofs/output_cpc.html. A com-
plete list of the proof rules in the calculus can be found at https://cvc5.
github.io/docs/cve5-1.3.1/api/cpp/enums/proofrule.html. The semantics of
the rules is also defined in the Eunoia logical framework, described in the
user manual of the Ethos proof checker: https://github.com/cvc5/ethos/
blob/main/user_manual.md.

®For readability we omit the prefix ARITH_ from the original rule names.

CPP ’26, January 12-13, 2026, Rennes, France

The subsections are dedicated to discussing the challenges
we encountered in formalizing in Lean the proof rules used
in the refinement process and how we addressed them.

3.1 Non-linear monomials

If a model is spurious due to an inconsistency between the ab-
stracted multiplication function and the real one, the method
relies on a series of properties about multiplication, such as
associativity, commutativity, monotonicity and so on (see [3,
Fig. 4] for a full list), to produce a refinement lemma falsi-
fied by the model. We will not go into details here on how
this is done, but depending on how exactly the model is in-
consistent with the properties of multiplication, a particular
quantifier-free instantiation of one or more of these lemmas
is added to the formula.” The versions of these lemmas used
by cve5 have corresponding rules in its proof calculus. We
have proven the soundness of these rules in NTA, which
guarantees that the addition of refinement lemmas about
multiplication will only rule out spurious models. We discuss
a number of these proof rules next.

3.2 Bounding Multiplication By The Tangent Plane

First, we consider the rules that bound the multiplication of
two variables by its tangent plane (i.e., the rules in the “Tan-
gent plane” category in [3, Fig. 4]). At each point (a, b, ab) in
the Cartesian space, the graph of the function f(x,y) = xy
has a tangent plane described by the expression z = bx +
ay — ab. The graph of f is above that plane when x — a has
the same sign as y — b, and it is below otherwise. This is
captured by the following pair of rules, with no premises,
from cvc5’s proof calculus:®

-|xyab
xy<bx+ay—-abeo (x<aAy=2b)V(x=any<Dh))

-|xyab
xy2bx+ay—ab o (x<aAy<b)V(x>aAy=Db))

The following snippet shows how we encoded their sound-
ness in Lean:

theorem arithMulTangentLower {a : Type}
[LinearOrderedField a] (x y a b : a) :
X*y<b*xt+ta*xy-axbeo (x<aAy
b) V. (x 2 a Ay <bhb))

\%

theorem arithMulTangentUpper {a : Type}
[LinearOrderedField a] (x y a b : a) :
xX*xy>bxx+ta*xy-a*beo (x<aAy
b) V. (x 2 a Ay =b))

IN

"Due to internal optimizations, the version of the linearization method
implemented in cvc5 uses slightly different versions of these lemmas, but
the idea is the same.

8Reference: MULT_TANGENT in cve5’s documentation.

https://cvc5.github.io/docs/cvc5-1.3.1/proofs/output_cpc.html
https://cvc5.github.io/docs/cvc5-1.3.1/api/cpp/enums/proofrule.html
https://cvc5.github.io/docs/cvc5-1.3.1/api/cpp/enums/proofrule.html
https://github.com/cvc5/ethos/blob/main/user_manual.md
https://github.com/cvc5/ethos/blob/main/user_manual.md
https://cvc5.github.io/docs/cvc5-1.2.1/api/cpp/enums/proofrule.html

CPP ’26, January 12-13, 2026, Rennes, France

Instead of directly using reals, we proved a polymorphic
version of the lemma that can be applied to any structure
that satisfies the axioms of a Linear Ordered Field.

Both proofs are very similar so we focus on the first. For
the right-to-left direction of the double implication we do
case analysis on the disjunction; in both cases the theorem
follows from nonlinear arithmetic reasoning, which can be
handled by the nlinarith tactic in Lean. This tactic is a very
light-weight extension over the original 1inarith tactic and
handles only a few problems in nonlinear arithmetic. Luckily,
it is powerful enough to prove our goal. For the left-to-right
direction, we consider the relationship between x — a and 0
and between y — b and 0. Since each of these differences can
be positive, negative, or zero, this results in 9 possible cases.
Two of these are invalid: bothx —a < 0 Ay —b < 0 and
x—a>0Ay—>b > 0,are contradictory with our hypothesis.
We used again nlinarith to derive this contradiction. In the
remaining seven cases, the conclusion follows directly from
the assumptions established through case analysis, making
the proof straightforward.

3.3 Sign of monomials

Next we consider the proof rules under the “Zero” category

in [3, Fig. 4]. It is not hard to prove them in Lean as stated.

However, cvc5 uses a more general version of the rules that
determines the sign of xy based on the sign of x and y. Instead
of considering only binary applications of multiplication, it
considers the signs of monomials with an arbitrary number
of variables. The precise statement of the equivalent rule in
cves’ is the following:

| fisro s fiom .
(AN Afr) om0 if C

where the side condition C requires that each f; have the
form x; >« 0 (>« being one of <, > or #) and m be of the form
xflez e x]’:k, for some natural numbers p;. Also required is
that any variable x; whose corresponding parameter f; has
the form x; # 0 have an even exponent. The operator on
the conclusion is either < or > based on the parity of the
exponents and the hypothesis f;. This side condition would
be quite complicated to state as a Lean theorem. Instead, we
implemented a tactic, arithMulSign, for handling the entire
rule. The tactic takes as input a list of variables that form
the target monomial, the polarity of the hypothesis (whether
each x; is greater than, lesser than or not equal to 0) and the
exponents of the variable. Here is an example of how the
tactic can be used:

example (abc:Real) : a>0 > b<0 —>c>0—
a*2*xb*"3%c*3<0:=
by arithMulSign [a,b,c], [1,-1,11, [2,3,3]

9Reference: MULT_SIGN in cvc5’s documentation.

Khan, Mascarenhas, Mohamed, Reynolds, Barbosa, Barrett and Tinelli

To implement the tactic, we first proved theorems relating
the parity of the exponent and the sign of the input with the
sign of the result of the exponentiation:

variable {k :
theorem powNegOdd

Nat} {r : Real}

:r<@ —->0dk —>r k<o
:r<@ —->Evenk >r k>0
r+0 — Evenk »r *k>0
- r k>0

theorem powNegEven
theorem nonZeroEvenPow :
theorem powPos :r>0

Then we proved the following set of results, relating the
sign of two variables with the sign of their product:

variable {a b : Real}

theorem combineSigns; : a > 0@ — b >0 —> b *a >0
theorem combineSignsy; : a > @ - b <@ — b *a<?o
theorem combineSignss : a <@ —» b >0 —> b *xa<o
theorem combineSigns; : a <@ - b <0 —> b *xa>0

The implementation of arithMulSign essentially com-
bines these two sets of results, selecting the correct sequence
of theorems to apply depending on the context in which it
was invoked.

The tactic itself cannot be used as an artifact to formalize
the calculus. We claim, however, that the theorems used in
the backend of the tactic form a theory that ensures the
soundness of the proof rule. Moreover, the tactic can be used
for proof reconstruction, as discussed in Section 5.

3.4 Shifting sine

The incremental linearization algorithm relies heavily on
the convexity of the transcendental functions in order to
compute bounds for them. Determining the convexity of exp
at a given point is trivial, since it is always convex (i.e., its
second derivative is positive). For sin, the question is more
complicated since the sign of its second derivative depends
on the exact value of 7. One may be able to do it with an
approximation of 7, but if we are too far away from the origin
of the real line we would have to multiply our approximation
by some constant, increasing the error.

The linearization method deals with this issue by replacing
the argument in each occurrence of sin by a fresh variable
constrained to be in the range [—, 7]. A constraint is added
to ensure that applying sin to the fresh variable has the same
result as applying sin to the original argument. This step
is formalized in cvc5’s calculus using the following proof
rule:!°

| x
JyeR Is€eZ - <y < Asin(x) =sin(y) Ax =y +2xs

We model the rule with the following theorem:

theorem arithTransSineShift : V (x :
Real) (s : Int),

Real) , 3 (y :

10Reference: TRANS_SINE_SHIFT in cve5’s documentation.

https://cvc5.github.io/docs/cvc5-1.2.1/api/cpp/enums/proofrule.html
https://cvc5.github.io/docs/cvc5-1.2.1/api/cpp/enums/proofrule.html

Formalization of a Proof Calculus for Incremental Linearization...

-Real.pi <y Ay < Real.pi A Real.sin x =
Real.sin y A’y = x + 2 * Real.pi * s

The proof of the theorem goes as follows: Let s = [%%
and y = x — 2zs. Then:

e The second conjunct (sin(x) = sin(y)) is a conse-
quence of an existing result in mathlib, which is named
sin_sub_int_mul_two_pi and ensures that adding
an integer multiple of 27 to the argument of sin does
not change its output.

The third conjunct essentially states that x = x —2zs+
2ms, which can be proven with mathlib’s theorem
sub_add_cancel.

The first conjunct consists of two statements: —7 <

x — 2[5 2] and x — 27[%] < 7. The second one
can be proven by first reorganizing the inequality to
2 < [*%7] and then applying an existing lemma in
mathlib that ensures a < [a] for any real a. The first
statement can be reorganized to [%-2] < £ Note
that [a] < a + 1, for any real a. We use this fact to
transform the inequality to £% + 1 < £Z. Now, the
left side can be proven to be equal to the right one, and

we can close the goal by invoking the reflexivity of <.

3.5 Bounding 7

In the process of obtaining bounds for the sin function, the in-
cremental linearization method computes increasingly more
accurate lower and upper bounds for 7. Its correctness de-
pends on these bounds being valid. Generating these bounds
corresponds to applications of the following rule:
L
I<mAm<u ifC
where C requires [and u to be concrete constants that are
valid lower and upper bounds for 7. Applying this rule then
requires inspecting that the parameters [and u are instan-
tiated by concrete values which are respectively below and
above 7. We model the rule in Lean as a tactic that inspects
the values received for [and u and succeeds if and only if
they are valid bounds for 7.

The implementation of the tactic relies on mathlib theo-
rems that bound 7 above and below with an error smaller
than 10~2°, Specifically, the tactic tries to apply norm_num,
a powerful tactic for normalizing numerical expressions, to
prove that its first input is smaller than mathlib’s lower
bound on 7 and its second input is greater than the upper
bound. If this fails, the tactic throws an error. Otherwise,
it applies transitivity to yield a proof that its two inputs
correctly bound 7.

Currently, if the arguments passed to our tactic are within
the range [7—10"%, 7+1072°], the tactic will, incorrectly, fail,
making our method incomplete with respect to the rules. We
leave as future work the extension of the techniques imple-
mented in mathlib to compute bounds for 7 with arbitrary
precision.

CPP ’26, January 12-13, 2026, Rennes, France

4 Bounding Transcendental Functions
With Taylor Polynomials

In this section, we describe our formalization of seven proof
rules in cvc5’s calculus that bound transcendental functions
with Taylor polynomials. Although mathlib includes a col-
lection of theorems on Taylor polynomials, we needed to
generalize and extend that collection to bridge the gap be-
tween the theorems and the proof rules. First, we present
the foundation for the formalization of these rules.

4.1 Preliminaries

The main result that we use and build upon is Taylor’s theo-
rem with the Lagrange form of the remainder. The theorem
applies to every (proper) real interval [x, x] and function
f:R — R that is in C" on [xo, x] and whose n'" derivative
is differentiable on (xo, x). It states that:

Laae)) (1) (o
f(x>_(z £)) IV AGRICO PR
=0

(n+1)!

for some x” € (xo, x). With properly defined auxiliary func-
tions, the theorem can be expressed in Lean as follows.

theorem taylor_mean_remainder_lagrange {f : R — R}
{x xo : R} {n : N}

(hx : x9 < x) (hf : ContDiffOn R n f (Icc xg¢ X))

(hf' : DifferentiableOn R (iteratedDerivWithin n f
(Icc xp x)) (Ioo xg X)) :

I x'" : R) (L : x" €Ioo xyg x), fx-
taylorWithinEval f n (Icc x¢ X) Xo X =
iteratedDerivWithin (n + 1) f (Icc xp x) x' *

(x = %) *(n+ 1)/ (n+ 1!

The assumption xy < x presents a barrier for the formal-
ization of some of the cvc5 proof rules. For example, one of
the rules bounds the exponential function from above on
[I,u] "R~ by a Taylor polynomial centered at zero with even
degree (i.e. xo = 0 and x < 0 holds). Hence, the first step
in our formalization was to extend this theorem to the case
where xy > x.

There are two approaches to this task. We can adjust the
proof of the theorem for xy > x or we can apply the current
theorem to f(—x) and prove theorems to handle the negative
sign. The first approach is straightforward but results in code
duplication. The second approach is more complex since it
requires formalizing several theorems to pushing negations
into derivatives and power series. Nevertheless, we chose the
latter as it builds a more comprehensive and useful theory.
A summary of our approach follows below.

We want to prove that, given a function f and points x
and xo with x < xo and where f satisfies the derivability con-
ditions in [x, x¢], there is an x” € (x, x;) such that Equation 1
holds. First, applying taylor_mean_remainder_lagrange
to the function g(x) := f(—x) using the points —xp and —x

CPP ’26, January 12-13, 2026, Rennes, France

gives us

gl (=) (n+1) (7
o) - (ZO LU G - x)f) — L -y
z
®

for some x’ € (—xp, —x). Simplifying the equation using

gD (=x) = (=1)'fD (=x) yields

Fx) - (Z m(’“ - xo)j) LD
2.
')

(n+1)!
which is the identity we wanted to prove for x < x;. The
argument involves many algebraic transformations mainly
pushing negations into derivatives and sums. We highlight
some important auxiliary lemmas used in the following sec-
tion:

1. taylorWithinEval_neg: We show that the n-th Taylor
polynomial of f centered at x, evaluated at x is equal
to the n-th Taylor polynomial of g centered at —x,
evaluated at —x. We first rewrite g as f(—1 * x) and
then apply a mathlib theorem that rewrites (V) (=1xx)
as (=1)'f (=1 # x) for the term of degree i in the
sum. Since the Taylor polynomial is centered at —xg
and evaluated at —x we get another factor of (—1)’
from the term ((—x) — (=xo))’. After several algebraic
manipulations, the result follows. One important point
to keep in mind is that Taylor polynomials in mathlib
are always associated with a specific subset S of the
reals where the function is n-times differentiable. To
facilitate the proof, we state this theorem with S being
the entire real line for both polynomials.

2. taylorWithinEval_eq: Notice that in the statement of
the theorem taylor_mean_remainder_lagrange the Tay-
lor polynomial has S = [xg, x]. The result we wish to
prove also associates g with the same interval. How-
ever, to use the previous result, we need to extend the
associated set S of g to the whole real line. For that, we
prove taylorWithinEval_eq stating (taylorWithinEval
f nS xp) = (taylorWithinEval f n Set.univ x¢).In
other words, if f is infinitely differentiable everywhere
(which is satisfied by our functions of interest, sin and
exp), then the n-th Taylor polynomial of f centered at
xo evaluated at x with S = [xy, x] is equal to the n-th
Taylor polynomial of f centered at x, evaluated at x
with S = R.

The second generalization we made involves secants and
convexity. Notably, the four proof rules bounding the ex-
ponential and sine functions by their Taylor polynomials
from above all follow the same structure. For example, one
rule'! bounds exp from above with the secant of the Taylor
polynomial centered at zero (which we denote as p), where
the secant g(x) is defined as the line passing through the

Rule TRANS_EXP_APPROX_ABOVE_NEG in cvc5’s documentation.

Khan, Mascarenhas, Mohamed, Reynolds, Barbosa, Barrett and Tinelli

points (1, p(l)) and (u, p(u)), and where I, u are given real
values with [< u:

9(x) := (x=D+p).

Taking x = I, the secant is equal to p(I), and hence, the rule
simply bounds exp(I) by p(I). We need to at least recover this
as a special case when proving the rule. In fact, it is sufficient
to show only the special case because the extension to the
general case is simply a consequence of convexity. Hence,
as part of our preliminary theory-building we formalize this
in the following theorems.

P() P()

1. le_of_Convexon: If f is convex on some set S, then for
all A € [0,1] and x,z € S with x < z, f(Ax + (1 -
AMz) < Af(x) + (1 — A)f(z). Similar theorems exist
in mathlib. However, we need this particular form.
In fact, the proof simply uses the following mathlib
theorem followed by algebraic manipulations using
the linarith tactic.

theorem ConvexOn.secant_mono_aux2 (hf :
ConvexOn _ s f) (hx : x € S)
(hz : z€S) (hxy : x<y) (hyz : y<2z):
fy-fx) /7 (y-x)<(fz-Ffx)/ (z-x)

2. le_convex_of_le: If f is convex on some set S, and
Lt,u € Swithl <t < u, and f is bounded above by
some function p at [and u, then

ro < 2022y,

This is the main result where we go from an upper
bound on f at / and u to an upper bound on f over
the whole interval [[, u]. The proof proceeds by rewrit-
ing the right-hand side of the inequality in the form
of le_of_ConvexOn. First, we consider the trivial case
when [= u, which reduces to our assumption f(I) <
p(1). Next, we define C := Ii;_ll Then through algebraic
manipulations we get exactly le_of_ConvexOn. What
is left to show is that 0 < C < 1, which holds because
t is in between [and u.

3. ge_concave_of_ge: If f is concave on some set S, and
I,t,u € Swithl <t < u, and f is bounded below by
some function p at [and u, then

f = POZPW oy,

We need this version to prove a rule bounding sin
from below on the positive real numbers '? since sin
is concave in the region [0,], and we use a shifting
argument to restrict to this region. The proof applies
our lemma above le_of_ConvexOn to —f since —f is
convex and proceeds analogously.

12Rule TRANS_SINE_APPROX_BELOW_POS in cvc5’s documentation.

https://cvc5.github.io/docs/cvc5-1.2.1/api/cpp/enums/proofrule.html
https://cvc5.github.io/docs/cvc5-1.2.1/api/cpp/enums/proofrule.html

Formalization of a Proof Calculus for Incremental Linearization...

4.2 Formalizing cvc5’s proof rules for bounding exp

We used our theory to formalize seven proof rules from cvc5,
three for exp and four for sin, that bound those functions
from above and below using Taylor polynomials. For brevity,
we discuss only four representative cases demonstrating the
main ideas behind the formalization.'®

4.2.1 TRANS_EXP_APPROX_BELOW. This rule bounds exp(t)
from below on the entire number line using its Taylor poly-
nomial centered at zero (i.e., the Maclaurin polynomial) with
an odd degree d. Formally, it states the following:
—|dect
t > ¢ — exp(t) = maclaurin(exp,d, c)

We formalize this rule by proving two theorems, one for
the positive reals and the other for the negative reals.

theorem arithTransExpApproxBelowPos (d n
Y (L :d=2xn+1) (hx : @ <t) :
Real.exp t > taylorWithinEval Real.exp d Set.univ
0t

:N) (t : R

theorem arithTransExpApproxBelowNeg (d n
Y (h:d=2%n+1) (hx : t <0) :
Real.exp t > taylorWithinEval Real.exp d Set.univ
0t

:N) (t : R

We handle two separate cases. For positive ¢, we rewrite
the difference exp(t) — p(t) as the remainder term using
taylor_mean_remainder_lagrange. Then we have to show
that exp(@*1 (t,) #t9*1 /(d+1)! is positive for some t; € (0, t).
This holds because the derivative of exp is itself, and exp
is always positive. For negative t, we use our generaliza-
tion taylor_mean_remainder_lagrange' (i.e. the version with
x < xp) and we are left with showing that exp(@*!) (t;) =
t%*1/(d + 1)! is positive for some t; € (t,0). This is true be-
cause exp is its own derivative and is always positive, and
d + 1 is even, implying tf“ is also positive. We also give a
straightforward proof for the case where t = 0, and combine
all three theorems in a final theorem without any assump-
tion on #’s sign. With the appropriate theory in place, the
proof is a straightforward application of several theorems,
demonstrating the power of abstraction in theorem proving.

4.2.2 TRANS_EXP_APPROX_ABOVE_POS. Let p be the Taylor
polynomial of exp centered at zero with degree d. Let p* () :=
p(t)/(1 = t%1/(d + 1)!). Then exp(t) is bounded above by
the secant between (I, p*(1)) and (u, p*(u)) forl <t < uand
t positive under the assumption that t**' < (d + 1)!. This
assumption holds for d sufficiently large since (d + 1)! >

d+1
A/ d%l > t%!, Formally we encapsulate

-|dt,Lu
(t 1At <u)— exp(t) < secant-pos(exp,l,u,t)

13The formalizations of the remaining rules are similar and can be found in
the appendix.

CPP ’26, January 12-13, 2026, Rennes, France

in the following theorem:

theorem arithTransExpApproxAbovePos (1 u t

cl<tAt<u)

(hl : @ <1) (hd : u*(d+1) < Nat.factorial (d+1)) :

letr : N>R — R := fun d => (fun t =>
(=t~ (d+1)/(d+1) 1))

letp: N>R —> R := fund =
((taylorWithinEval Real.exp d Set.univ @) / (r
d))

Real.exp t < ((pd1l-pdu /7 @A -uw)*(t-1)
+pdl

: R) (ht

The main challenge is that the secant is divided by (1 —
t*1/(d + 1)!). Using le_convex_of_le it suffices to show
exp(t) < p*(t) for t > 0 and t%*! < (d + 1)!. However, Tay-
lor’s theorem gives us a bound on the difference exp(#) —p(t)
instead of exp(t) — p*(t). We rewrite

exp(t) - p* (1) pu)

= exp(t) = @@
exp(t)—p(D)—exp(t) iy,
= EIoE
(d+1)!
and then apply the bound to the first part of the numerator.
We then obtain

1

d+1 d+1 d+1

exp ™ () oy — () (i (exp(x) — exp() cpy
_ d+1 \ - pd+1
1—t4+1/(d + 1) 1- oy

which is smaller than or equal to 0, since x” € (0,¢) and
1- % > 0. The proof uses some algebraic manipulations
coupled with the fact that the derivative of exp is itself, which
we proved earlier as iteratedDeriv_exp.

When proving this rule we encountered a few issues with
cve5. First, it was using a wrong formula for p*(t), namely
p(t)(1+t%1/(d+1)!). Besides that, it was also producing in-
stantiations of the rule with negative [, which is not supposed
to happen. There were also mistakes in the documentation,
which was missing the side condition t¥*! < (d +1)!, crucial
in our proof since otherwise we would divide by a nonposi-
tive number. Lastly, the documentation restricts d to be even,
which is unnecessary. We notified the cvc5 developers of
these inaccuracies, which were acknowledged and promptly

fixed.

4.2.3 TRANS_SINE_APPROX_BELOW_NEG. This rule
bounds sin from below on the non-positive reals using its
Taylor polynomial centered at zero minus an error term:
—|d,tclbub
(¢ 21b At <ub) — sin(t) > lower(sin, c)

The documentation of the rule counts Taylor polynomials
differently (since even terms are zero in the Maclaurin se-
ries of sine) whereas our Lean definitions define d as the
degree of the Taylor polynomial. The rule’s documenta-
tion and code were unclear, particularly the definition of
lower(sin, ¢). After refining multiple candidate statements,
we arrived at the following definition: lower(sin, c) is the

CPP ’26, January 12-13, 2026, Rennes, France

Taylor polynomial of sin evaluated at ¢ minus ¢%*'/(d + 1)!
where ¢ = argmin, ., ;) sinx. We proved the following
theorem first before reasoning about c. We have validated
that the theorem correctly captures the rule by successfully
reconstructing proofs generated by cvc5, as discussed in
Section 5.

theorem arithTransSineApproxBelowNeg_self

(dk : Nat) (hd : d =2xk + 1) (hx : x £ 0) :
let p : R —» R := taylorWithinEval Real.sin d
Set.univ @

px-x*(d+1)/(d+ 1).factorial < sin x

We proceed analogously to TRANS_EXP_APPROX_BELOW’s proof
from Subsection 4.2.1. However, in this case, we use the the-
orem taylor_mean_remainder_lagrange to rewrite the differ-
ence sin(x) — p(x) as the remainder term. Hence we have
to show that sin(®*V (x") % x%*1/(d + 1)! + x¥1/(d + 1)! is
non-negative for x” € (x, 0). It suffices to show the deriva-
tives of sin are at least —1 (since d + 1 is even) which is true
because sin and cos are bounded by —1 and 1 (a theorem in
mathlib). To handle derivatives of sin we proved a general
theorem encapsulating the periodicity modulo 4 which we
present below.

theorem iteratedDeriv_sin_cos (n : Nat) :

(iteratedDeriv n sin =

if n % 4 = @ then sin else

if n % 4 =1 then cos else

if n % 4 = 2 then -sin else -cos) A
(iteratedDeriv n cos =

if n % 4 = @ then cos else

if n % 4 =1 then -sin else

if n % 4 = 2 then -cos else sin)

:= by induction' n with n ih

- simp [iteratedDeriv]

- simp [ih.1, ih.2, iteratedDeriv_succ']
Nat.mod_1t n (show 4 > @ by decide)
interval_cases hn : n % 4

<;> simp [hn, Nat.add_mod]

<;> ext

<;> simp [iteratedDeriv_neg, ih]

have :=

Notice that the theorem statement is long and, in fact, even
lists the derivatives of cos. This is a deliberate inductive
strategy, in which we state a sufficiently general statement
for a powerful induction hypothesis that allows us to prove
the inductive step with ease. In fact, the proof is quite short,
as displayed above, and uses automation to handle all cases
simultaneously.

Finally, we prove the main theorem that encapsulates the
rule.

theorem arithTransSineApproxBelowNeg

(dk : N) (hd : d=2%k + 1)
(hl : -7 < 1b) (hu : ub < @)
(hx1 : 1b < x) (hx2 : x < ub)

10

Khan, Mascarenhas, Mohamed, Reynolds, Barbosa, Barrett and Tinelli

if -7/2 < 1b then 1b

else if - m/2 < ub then - x/2

else ub) :

taylorWithinEval Real.sin d Set.univ @ ¢ - ¢ * (d +
1) / (d + 1).factorial < sin x

(he : ¢ =

We have -7 < [b and ub < 0 since the sine function is
periodic as we showed in Subsection 3.4 and the solver uses
the periodicity to restrict us to either [—, 0] or [0, z]. The
proof follows by applying the previous theorem to the left-
hand side leaving to prove sin ¢ < sin x. We case-split on c,
and use a theorem from mathlib that sin is monotonically
increasing in [—/2, /2], and sin /2 = 1 and the linarith
tactic.

4.2.4 TRANS_SINE_APPROX_BELOW_POS. This rule
bounds sin from below on the positive reals.

—|d,t,lb,ub,l,u
(t = 1b At <ub) — sin(t) > secant*(sin, L u, t)

where Ib, ub are symbolic lower and upper bounds on t and
I, u are evaluated lower and upper bounds on t and secant”
is defined below. We formalize this rule as the following
theorem where we stipulate 0 < I < t < u < 7 since
the linearization procedure stays within the same convexity
region of sin.

theorem arithTransSineApproxBelowPos (d : Nat) (1 u
t : R)
(ht : 1 <t At<u) (b1 :0<1) (hu:u<m:
letp: R —> R :=

fun t => taylorWithinEval Real.sin d Set.univ @
t-(t*d+1)/ (d+ 1).factorial)
(pl-puwy/A-uw)*x(t-1)+pl<sint

Applying ge_concave_of_ge it suffices to show sint >
p(t) for 0 < ¢t. Let p*(t) be the Taylor Polynomial of degree
d. We rewrite the difference sint — p*(t) as the remainder
term using taylor_mean_remainder_lagrange' leaving the er-
ror term as is. Then we have to show that sin‘®*? () *
tH*1/(d + 1)! + t%1/(d + 1)! is nonnegative for t; € (0,1).
This is true because the derivatives of sin are always be-
tween 1 and —1. So we split (d + 1)%4 into four cases using
iteratedDeriv_sin_cos and handle each case simultaneously
using linarith.

Our theorem is more general than the cvc5 rule since we
do not require d to be odd. We are able to prove the theorem
for all d using an automated framework using linarith
that demonstrates the power of theorem proving. Moreover,
using this framework we can easily check whether the other
theorems can be generalized. If we delete the hypothesis on
the parity of d we give simp the fact that the derivatives of sin
are always between 1 and —1, powers of negative numbers
are negative if and only if d + 1 is odd, and we use linarith.
If all cases succeed then we did not need the hypothesis in
the first place.

Formalization of a Proof Calculus for Incremental Linearization...

5 Proof Reconstruction

In this section we describe how proof reconstruction works
in LEAN-sMT and the challenges in extending the tool with
our specific set of rules, as well as our solutions and their
current limitations. Finally we present a set of test cases we
used to validate proof reconstruction with our formalized
proof calculus.

Given either a problem in SMT-LIB or a Lean goal, LEAN-
SMT is capable of invoking cvc5 on the former or in a trans-
lation of the latter. If the solver succeeds in proving the
problem unsatisfiable, the resulting proof is translated into
Lean’s language and checked with its kernel. This is done
via a process known as proof replay: each proof rule in cvc5’s
proof is sequentially translated into either the application
of a previously proved theorem or the invocation of a tac-
tic, which is then checked by Lean’s kernel and added as a
lemma to the context of the proof, if succesful. If a rule has
a side condition, the corresponding theorem will have an
extra hypothesis matching it. LEAN-sMT will then try to find
automatically a proof for this hypothesis (via other prede-
fined tactics) in order to apply the theorem. The replay of
the subsequent steps will rely on this lemma, which means
that it is very likely that the whole process will fail if the
statement of a theorem is not matching cvc5’s expectations.
After all the steps are processed, the tool checks whether the
conclusion derived in the end matches the original goal.

Challenges in the reconstruction. As we pointed out in
Sections 3 and 4, during the process of extending LEAN-SMT
to use our formalization we realized that we had misinter-
preted the documentation of several rules, as the output of
cve5 did not match what was expected by our theorems. In
order to refine the statements, we had to investigate cvc5’s
code base and run multiple tests observing its output. After
solving these issues, the next main difficulty was the non-
computable nature of several elements used in the rules. First,
the definition of the Maclaurin polynomial from mathlib
does not allow computing the value of the polynomial at
a specific point. This is a deliberate design decision, as it
facilitates manipulating the polynomial in proofs. Therefore
when one of the proof rules has e.g. a conclusion of the form
f(t) = maclaurin(f,d, c), the rest of the proof will require
that the right-hand side is actually the corresponding ratio-
nal number and not the unevaluated function application.
We solved this issue by defining a computable version of
these polynomials and proving that both definitions evalu-
ate to the same number at every point. For instance, for the
exponential the definition and the theorem are the following:

def expTaylor (d :
match d with
| @ =>1
| d+ 1=
expTaylor d x + (x * (d + 1)) / (d + 1).factorial

Nat) (x : Real) : Real :=

11

CPP ’26, January 12-13, 2026, Rennes, France

theorem expEmbedding (d : Nat) (x : Real) :
taylorWithinEval Real.exp d Set.univ @ x =
expTaylor d x

This was not hard to prove, given all the facts we had
already proven to formalize the calculus.

A second noncomputability issue is related to the real
numbers. Multiple rules have side conditions of the form
| < r, where [and r are real numbers. It is known that it is
not possible to decide this kind of comparison in general [14].
Nevertheless, for most of the rules it is guaranteed that both [
and r will be rational numbers, so we can automate the proof
for their side conditions with tactics like norm_num. Some
rules require proving that a parameter is greater than —r or
smaller than 7. We could automate the proof of such goals
by leveraging the tactic that does linear reasoning in Lean
extended with lemmas bounding 7 up to 20 decimal places.
This, like the issue described in Section 3.5, will not work
for parameters arbitrarily close to 7, and we leave as future
work to extend this technique to find proofs for arbitrary
parameters.

5.1 Validating the Formalization

For these tests, we used the version of cvc5 updated with
our corrections, which is the one in the main fork with hash
d509acd and we used as a basis the commit db6a7ca of the
main fork of LEAN-sMT. We tested the reconstruction in
benchmarks coming from the original incremental lineariza-
tion paper [3]. Our goal was to find at least one goal that
exercised each one of the proof rules in the calculus. For all
the problems we considered, all the steps corresponding to
rules in this calculus were successfully reconstructed. We
could not use SMT-LIB problems, since NTA is not an official
SMT-LIB theory, and thus it does not contain any problems
compatible with it. Since some rules were not used by cvc5
in any of the problems in the benchmark, we also crafted a
few simple problems that exercise them. Table 1 presents the
full set of proof rules and indicates a problem in the supple-
mentary material using the rule (as well as other rules from
CPC, a proof format designed to faithfully represent cvc5’s
internal reasoning) that is reconstructed via LEAN-smT.'*
Figure 2 presents an example of a problem in NTA and
Figure 3 shows an excerpt of the proof produced by cvc5
in the CPC format that certifies its unsatisfiability. Note the
application of the rule TRANS_EXP_ZERO in step @p12, which
is used to conclude the refutation in step @p14. This is the
key step in the proof, as this rule states that the only num-
ber whose exponential is equal to 1 is 0, whereas the rest of

4We could not find a problem for which cvc5 used TRANS_SINE_SYMMETRY
since there is a rewriting rule for sin that seems to subsume it.

CPP ’26, January 12-13, 2026, Rennes, France

Proof rule Problem
TRANS_EXP_APPROX_BELOW E1.smt2
TRANS_EXP_APPROX_ABOVE_POS E2.smt2
TRANS_EXP_APPROX_ABOVE_NEG E3.smt2
TRANS_SINE_APPROX_BELOW_POS | E4.smt2
TRANS_SINE_APPROX_BELOW_NEG | E5.smt2
TRANS_SINE_APPROX_ABOVE_POS | E5.smt2
TRANS_SINE_APPROX_ABOVE_NEG | E6.smt2
TRANS_EXP_NEG E7.smt2
TRANS_EXP_POSITIVITY E8.smt2
TRANS_EXP_SUPERLIN E9.smt2
TRANS_EXP_ZERO E10.smt2
TRANS_PI E11.smt2
TRANS_SINE_BOUNDS Ell.smt2
TRANS_SINE_SHIFT E11.smt2
TRANS_SINE_SYMMETRY! -

TRANS_SINE_TANGENT_PI E12.smt2
TRANS_SINE_TANGENT_ZERO E11.smt2
MULT_SIGN E13.smt2
MULT_TANGENT E14.smt2
MULT_POS E13.smt2
MULT_NEG E13.smt2
MULT_ABS_COMPARISON E15.smt2

Figure 1. Problems validating each rule

(set-logic ALL)
(declare-const t Real)
(assert (not (= t 0)))
(assert (= (exp t) 1))
(check-sat)

Figure 2. Example of problem in NTA

(declare-const t Real)

(assume @p1 (not (= t (to_real 0))))
(assume @p2 (= (exp t) (to_real 1)))

(step @3 (= (to_real 0) @/1)
:rule evaluate
:args ((to_real 0)))

(step @12 (= (=t 0/1) (= (exp t) 1/1))

:rule arith_trans_exp_zero
:args (t))

(step @14 false
:rule chain_resolution
:premises (@p13 @pl11 @p7)

rargs ((@list false true) (@list (= (exp t) 1/1)

(=t0e/1))

Figure 3. Example of proof using TRANS_EXP_ZERO

12

Khan, Mascarenhas, Mohamed, Reynolds, Barbosa, Barrett and Tinelli

the steps 1° are merely applying basic logic rules to trans-
form this fact into the negation of the problem. This proof
is reconstructed by LEAN-sMT by replaying each step, and
in particular step @p12 is replayed by applying the theorem
arithTransExpZeroEq in our formalization with type V (t
: R), (t =0) = (Real.exp t = 1).

There are currently two issues with the reconstruction
that fall outside the scope of this work. The first one is that,
in some proofs cvc5 can introduce steps with mixed integer-
real arithmetic, i.e., expressions that mix integer and real
values or variables. In this case, cvc5 should to add a casting
step, turning all integer variables into real ones. Unfortu-
nately, in some cases it currently fails to do so. When this
happens, LEAN-sMT will receive a typing error while trying
to reconstruct the expression, leaving a hole in the proof.
Additionally, the incremental linearization solver in cvc5
currently performs a reasoning step that is not justified in
the proof, which also leaves a hole in the proof assistant.
Almost any non trivial proof produced by cvc5 contains an
instance of the first issue, whereas the second issue happens
in about half the problems. Therefore, both of them need
to be addressed in the solver so that LEAN-sMT augmented
with our formalization can be reliably used to reconstruct
proofs found via incremental linearization. Nevertheless, this
does not diminish the fact that we successfully validated the
correspondence between the theorems stated in the formal-
ization and the cvc5 proof calculus, as reconstruction of the
corresponding steps succeeds for the examples in Figure 2.
As future work, we plan to collaborate with the cvc5 team
to resolve these issues and support larger problems.

6 Conclusion

We presented a formalization in the Lean theorem prover of
the proof calculus used by cvc5 for incremental linearization
in NRA and NTA. Our formalization ensures the soundness of
the proof rules employed by cvc5 for reasoning about nonlin-
ear arithmetic and transcendental functions. This effort not
only increases the trustworthiness of the underlying method
but also allows for the reconstruction of cvc5 proofs in Lean,
which we have implemented as an extension of the LEAN-
sMT plugin and evaluated on a series of benchmark. Overall
we expect this work to enable higher reliability in safety-
critical applications depending on nonlinear arithmetic and
transcendental functions.

During the formalization process, we identified errors and
missing hypotheses in the documentation of several cvc5
proof rules, which were shared with the cvc5 team. These
findings highlight the importance of formal verification in
identifying subtle issues that may otherwise go unnoticed.
In the process, we also opened pull requests to mathlib to

1>Most of them are not shown here. See Figure 4 in the appendix for the
complete proof.

Formalization of a Proof Calculus for Incremental Linearization...

contribute generalizations and extensions of Taylor’s theo-
rem and convexity results, enriching its library for broader
use.

Acknowledgments

The authors would like to thank the anonymous referees for
their comments and helpful suggestions.

This work was partially supported by a gift from Amazon
Web Services, the Stanford Center for Automated Reasoning,
the Coordenacéo de Aperfeicoamento de Pessoal de Nivel
Superior - Brasil (CAPES) - Finance Code 001, and the De-
fense Advanced Research Projects Agency (DARPA) under
contract FA8750-24-2-1001 (https://www.darpa.mil/research/
programs/pipelined-reasoning-of-verifiers-enabling-robust-
systems). Any opinions, findings, and conclusions or recom-
mendations expressed here are those of the authors and do
not necessarily reflect the views of DARPA.

References

[1] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,
Aina Niemetz, Andres Notzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A
Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems, Dana Fisman and Grigore

Rosu (Eds.). Springer International Publishing, Cham, 415-442.

Haniel Barbosa, Andrew Reynolds, Gereon Kremer, Hanna Lachnitt,

Aina Niemetz, Andres No6tzli, Alex Ozdemir, Mathias Preiner, Arjun

Viswanathan, Scott Viteri, Yoni Zohar, Cesare Tinelli, and Clark Barrett.

2022. Flexible Proof Production in an Industrial-Strength SMT Solver.

In Automated Reasoning, Jasmin Blanchette, Laura Kovacs, and Dirk

Pattinson (Eds.). Springer International Publishing, Cham, 15-35.

[3] Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco Roveri, and

Roberto Sebastiani. 2018. Incremental Linearization for Satisfiability

and Verification Modulo Nonlinear Arithmetic and Transcendental

Functions. ACM Trans. Comput. Log. 19, 3 (2018), 19:1-19:52. https:

//doi.org/10.1145/3230639

Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto

Sebastiani. 2013. The MathSAT5 SMT Solver. In Proceedings of TACAS

(LNCS, Vol. 7795), Nir Piterman and Scott Smolka (Eds.). Springer.

[5] The Coq Development Team. 2021. The Coq Proof Assistant Reference
Manual - version 8.19.0. Technical Report. INRIA. https://hal.science/
hal-04523844

[6] James H. Davenport and Joos Heintz. 1988. Real quantifier elimination
is doubly exponential. Journal of Symbolic Computation 5, 1 (1988),
29-35. https://doi.org/10.1016/S0747-7171(88)80004-X

[7] Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem
Prover and Programming Language (Lecture Notes in Computer Science,
Vol. 12699), André Platzer and Geoff Sutcliffe (Eds.). Springer, 625-635.
https://doi.org/10.1007/978-3-030-79876-5_37

[8] Ahmed Irfan, Alessandro Cimatti, Alberto Griggio, Marco Roveri, and
Roberto Sebastiani. 2019. Lemmas for Satisfiability Modulo Transcen-
dental Functions via Incremental Linearization. In Proceedings of the
4th SC-Square Workshop co-located with the SIAM Conference on Ap-
plied Algebraic Geometry, SC-square@SIAM AG 2019, Bern, Switzerland,
10th July 2019 (CEUR Workshop Proceedings, Vol. 2460), John Abbott
and Alberto Griggio (Eds.). CEUR-WS.org. http://ceur-ws.org/Vol-
2460/paper8.pdf

[9] Gereon Kremer, Andrew Reynolds, Clark W. Barrett, and Cesare Tinelli.
2022. Cooperating Techniques for Solving Nonlinear Real Arithmetic

—
oo
—

—
S
=

13

CPP ’26, January 12-13, 2026, Rennes, France

in the cve5 SMT Solver (System Description). In International Joint Con-
ference on Automated Reasoning (IJCAR) (Lecture Notes in Computer Sci-
ence, Vol. 13385), Jasmin Blanchette, Laura Kovacs, and Dirk Pattinson
(Eds.). Springer, 95-105. https://doi.org/10.1007/978-3-031-10769-6_7
Assia Mahboubi and Cyril Cohen. 2012. Formal proofs in real alge-
braic geometry: from ordered fields to quantifier elimination. Logical
Methods in Computer Science Volume 8, Issue 1 (Feb. 2012). https:
//doi.org/10.2168/Imcs-8(1:2)2012

The mathlib Community. 2020. The Lean mathematical library. In
Proceedings of the 9th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January
20-21, 2020, Jasmin Blanchette and Catalin Hritcu (Eds.). ACM, 367-381.
https://doi.org/10.1145/3372885.3373824

Abdalrhman Mohamed, Tomaz Mascarenhas, Harun Khan, Haniel
Barbosa, Andrew Reynolds, Yicheng Qian, Cesare Tinelli, and Clark
Barrett. 2025. LEAN-SMT: An SMT tactic for discharging proof goals
in Lean. In Computer Aided Verification - 37th International Conference,
CAV 2025, Zagreb, Croatia, July 21-25, 2025, Proceedings (Lecture Notes
in Computer Science), Ruzica Piskac and Zvonimir Rakamaric (Eds.).
Springer.

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. 2002. Is-
abelle/HOL: a proof assistant for higher-order logic. Springer-Verlag,
Berlin, Heidelberg.

Daniel Richardson. 1968. Some Undecidable Problems Involving El-
ementary Functions of a Real Variable. J. Symb. Log. 33, 4 (1968),
514-520. https://doi.org/10.2307/2271358

Matias Scharager, Katherine Cordwell, Stefan Mitsch, and André
Platzer. 2021. Verified Quadratic Virtual Substitution for Real Arithmetic.
Springer International Publishing, 200-217. https://doi.org/10.1007/
978-3-030-90870-6_11

Alfred Tarski. 1998. A Decision Method for Elementary Algebra and
Geometry. In Quantifier Elimination and Cylindrical Algebraic De-
composition, Bob F. Caviness and Jeremy R. Johnson (Eds.). Springer
Vienna, Vienna, 24—-84.

V. Weispfenning. 1997. Quantifier Elimination for Real Algebra —
the Quadratic Case and Beyond. Applicable Algebra in Engineering,
Communication and Computing 8, 2 (1997), 85-101. https://doi.org/10.
1007/s002000050055

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

A Appendix

We present our formalization of the remaining three proof
rules we omitted in Section 4.

A.1 TRANS_EXP_APPROX_ABOVE_NEG
Let p be the Taylor polynomial of exp centered at zero with
even degree d. This rule bounds exp(t) from above by the
secant between (I, p(l)) and (u,p(u)) for] <t < uandt
negative.
—|dt,Lu
(t >INt <u) — exp(t) < secant(exp,,u,t)

Our theorem states the following.

theorem arithTransExpApproxAboveNeg (d k : Nat) (hd
:d=2xk) (lut:R)
(ht : 1 <t At<

u) (hu : u<0) :

let p: R — R := taylorWithinEval Real.exp d
Set.univ @

Real.exp t < ((pl-pu) /7 (1 -u)*x(t-1)+p
1

https://www.darpa.mil/research/programs/pipelined-reasoning-of-verifiers-enabling-robust-systems
https://www.darpa.mil/research/programs/pipelined-reasoning-of-verifiers-enabling-robust-systems
https://www.darpa.mil/research/programs/pipelined-reasoning-of-verifiers-enabling-robust-systems
https://doi.org/10.1145/3230639
https://doi.org/10.1145/3230639
https://hal.science/hal-04523844
https://hal.science/hal-04523844
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1007/978-3-030-79876-5_37
http://ceur-ws.org/Vol-2460/paper8.pdf
http://ceur-ws.org/Vol-2460/paper8.pdf
https://doi.org/10.1007/978-3-031-10769-6_7
https://doi.org/10.2168/lmcs-8(1:2)2012
https://doi.org/10.2168/lmcs-8(1:2)2012
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.2307/2271358
https://doi.org/10.1007/978-3-030-90870-6_11
https://doi.org/10.1007/978-3-030-90870-6_11
https://doi.org/10.1007/s002000050055
https://doi.org/10.1007/s002000050055

CPP ’26, January 12-13, 2026, Rennes, France

Recall by le_convex_of_le, it suffices to show exp(t) <
p(t) for t < 0. We rewrite the difference exp(t) — p(t) as the
remainder term using taylor_mean_remainder_lagrange'. H-
ence we have to show that exp @) (1)) * t%1/(d + 1)! is
negative for some t; € (t,0). This is true because the deriva-
tive of exp is itself, exp is always positive, and d + 1 is odd
so t%*1 is negative. Then we are done by simply applying
le_convex_of_le as we now satisfy the hypothesis.

A.2 TRANS_SINE_APPROX_ABOVE_NEG

Let p be the Taylor polynomial of sin centered at zero with
odd degree d. This rule bounds sin from above by the secant
between (L, p(l)) and (u,p(u)) for —r <1 <t <u <0
analogous to TRANS_EXP_APPROX_ABOVE_NEG. It states
—|d,t,Ibub,l,u
(t >1b At <ub) — sin(t) < secant(sin, [, u, t)

where b, ub are symbolic lower and upper bounds on ¢ and
I, u are evaluated lower and upper bounds on t. We formalize
this rule as the following theorem where we stipulate —z <
I <t < u < 0 since the linearization procedure stays within

the same convexity region of sin.

theorem arithTransSineApproxAboveNeg (d k : Nat)
(hd : d = 2%k + 1)
(ht : 1 <tAt<u) (hu:u<o) (hl @ -1 <

1
let p: R —» R :=
fun x => taylorWithinEval Real.sin d Set.univ

0t+ (t”r(d+1))/ (d+1).factorial

Real.sin t < ((pl-pu) /7 (1 -u) *x(t-1)+

pl

The proof is very similar to

TRANS_EXP_APPROX_ABOVE_NEG. Applying
le_convex_of_le it suffices to show sint < p(t) for -z <
t < 0. Let p*(¢) be the Taylor Polynomial of degree d. We
rewrite the difference sint — p*(t) as the remainder term
using taylor_mean_remainder_lagrange’ leaving the error
term as is. Then we have to show that sin(@*V (¢;) = t9+1/ (d +
1)! — t%*1/(d + 1)! is nonpositive for some t; € (t,0). This is
true because the derivatives of sin is always between —1 and
1 and t9*! is positive.

A.3 TRANS_SINE_APPROX_ABOVE_POS

The strategy is similar to TRANS_SINE_APPROX_BELOW_NEG.
The rule bounds sin from above on the non-negative reals
using its Taylor polynomial centered at zero,

—|dtclbub
(t > 1b At <ub) — sin(t) < upper(sin,c)

The rule’s documentation and code were unclear, particu-
larly the definition of upper(sin, c¢) as discussed earlier. Af-
ter refining multiple candidate statements, we arrived at
the following definition: upper(sin, ¢) is the Taylor poly-
nomial of sin evaluated at ¢ plus ¢?*'/(d + 1)! where ¢ =

14

Khan, Mascarenhas, Mohamed, Reynolds, Barbosa, Barrett and Tinelli

argmin, .y) Sin x. We proved the following theorem first
before reasoning about c. All in all, the theorem is the correct
encapsulation since we can successfully reconstruct some
examples using it.

theorem arithTransSineApproxAbovePos_self
(dk : Nat) (hd : d =2xk + 1) (hx : @ < x) :
sin x < taylorWithinEval Real.sin d Set.univ @ x +
x * (d+ 1)/(d + 1).factorial

Since we already proved an analogous theorem, we do
not have to duplicate code. Instead, we use a slick strategy
using the odd properties of sin, its Taylor polynomial, and
arithTransSineApproxBelowNeg_self. We first prove the fol-
lowing theorem:

theorem taylorSin_neg (x :
let p: R - R
Set.univ @
P (=) =-px
The proof involves pushing the negation into each co-
efficient of the Taylor polynomial and using the fact that
the even terms are zero, which we formalized separately.
For the main proof, we simply replace x with —x and use
the odd properties of sin and its Taylor polynomial. Then
we obtain arithTransSineApproxBelowNeg_self for t := —x
which satisfies the assumption ¢ < 0. The proof is merely
two lines using this strategy which is a powerful example of
how our strategy of using odd properties generalized to this
case yielding less code duplication and more maintainable
code in the long run.
Finally, we prove the main theorem that encapsulates the
rule.

Real):
:= taylorWithinEval Real.sin d

theorem arithTransSineApproxBelowNeg

(dk : N) (hd : d=2xk + 1)
(hl : @ < 1b) (hu : ub <)
(hx1 : 1b < x) (hx2 : x < ub)
(he : ¢ = if ub < /2 then ub

else if 1b < m#/2 then =x/2
else 1b) :
sin x < taylorWithinEval Real.sin d Set.univ @ c +
c*(d+ 1)/ (d+ 1).factorial

We have 0 < Ib and ub < 7 since the sine function is peri-
odic as we showed in Subsection 3.4 and the solver uses the
periodicity to restrict us to either [—, 0] or [0, xr]. The proof
follows by applying the previous theorem to the right-hand
side yielding sinx < sinc. We case-split on ¢, and use a the-
orem from mathlib that sin is monotonically increasing in
[-7/2,7/2], sin/2 = 1 and the linarith tactic.

Formalization of a Proof Calculus for Incremental Linearization... CPP ’26, January 12-13, 2026, Rennes, France
B Full Version of Proof in Figure 3 Received 2025-09-13; accepted 2025-11-13

(declare-const t Real)
(assume @1 (not (= t (to_real 9))))
(assume @p2 (= (exp t) (to_real 1)))
(step @3 (= (to_real 0) 0/1)
:rule evaluate
:args ((to_real 0)))
(step @p4 (= t t)
:rule refl
;args (t))
(step @5 (= (=t (to_real @)) (=t @/1))
:rule cong
:premises (@p4 @p3)
:args ((= t (to_real 0))))
(step @6 (= (not (=t (to_real @))) (not (= t 0/1)))
:rule cong
:premises (@p5)
:args ((not (= t (to_real 0)))))
(step @7 (not (=t @/1))
:rule eqg_resolve
:premises (@p1 @p6))
(step @8 (= (to_real 1) 1/1)
:rule evaluate
:args ((to_real 1)))
(step @p9 (= (exp t) (exp t))
:rule refl
:args ((exp t)))
(step @pl10
(= (= (exp t) (to_real 1)) (= (exp t) 1/1))
:rule cong
:premises (@p9 @p8)
:args ((= (exp t) (to_real 1))))
(step @11 (= (exp t) 1/1)
:rule eq_resolve
:premises (@p2 @p10@))
(step @12 (= (=t 0/1) (= (exp t) 1/1))
:rule arith_trans_exp_zero
:args (t))
(step @13 (or (=t @/1) (not (= (exp t) 1/1)))
:rule equiv_elim2
:premises (@p12))
(step @14 false
:rule chain_resolution
:premises (@p13 @pl11 @p7)
:args ((@list false true) (@list (= (exp t) 1/1)
(=t /1))

Figure 4. Full Version of Proof in Figure 3

15

	Abstract
	1 Introduction
	2 Background
	2.1 Real Numbers
	2.2 The number
	2.3 Exponential and Sine
	2.4 Derivatives
	2.5 Taylor Polynomials
	2.6 Convexity

	3 Basic Rules
	3.1 Non-linear monomials
	3.2 Bounding Multiplication By The Tangent Plane
	3.3 Sign of monomials
	3.4 Shifting sine
	3.5 Bounding

	4 Bounding Transcendental Functions With Taylor Polynomials
	4.1 Preliminaries
	4.2 Formalizing cvc5's proof rules for bounding

	5 Proof Reconstruction
	5.1 Validating the Formalization

	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 TRANS_EXP_APPROX_ABOVE_NEG
	A.2 TRANS_SINE_APPROX_ABOVE_NEG
	A.3 TRANS_SINE_APPROX_ABOVE_POS

	B Full Version of Proof in Figure 3

