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Abstract. There are several paradigms for integrating interactive and
automated theorem provers, combining the convenience of powerful au-
tomation with strong soundness guarantees. We introduce a new ap-
proach for reconstructing proofs found by SMT solvers which we intend
to be complementary with existing techniques. Rather than verifying or
replaying a full proof produced by the SMT solver, or at the other ex-
treme, rediscovering the solver’s proof from just the set of premises it
uses, we explore an approach which helps guide an interactive theorem
prover’s internal automation by leveraging derived facts during solving,
which we call hints. This makes it possible to extract more information
from the SMT solver’s proof without the cost of retaining a dependency
on the SMT solver itself. We implement a tactic in the Lean proof assis-
tant, called querysmt, which leverages hints from the cvc5 SMT solver
to improve existing Lean automation. We evaluate querysmt’s perfor-
mance on relevant Lean benchmarks, compare it to other tools available
in Lean relating to SMT solving, and show that the hints generated by
cvc5 produce a clear improvement in existing automation’s performance.
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1 Introduction

When it comes to formal verification, interactive and automatic theorem provers
(ITPs or proof assistants, and ATPs, respectively) have complementary strengths.
Proof assistants offer powerful languages for expressing arbitrary mathematical
statements and the ability to verify claims down to domain-specific axioms and
the rules of the underlying logical foundation, but doing so often requires consid-
erable effort. Automatic provers offer push-button verification but often fail to
scale to complex verification tasks and do not provide the same strong guarantees
as interactive theorem provers. Proof assistants like Isabelle/HOL [9,10,20,32],
Rocq [1,17], and Lean [13,24,26] aim for the best of both worlds by translating
goals in a proof assistant to the language of a powerful external prover and then
using information from the external prover to reconstruct a proof of the original
result that is checked within the ITP. The challenge, then, is to bridge the gap
and establish appropriate communication between the two.

There are several existing paradigms for effectively communicating between
ATPs and proof assistants. Their approaches to reconstructing ATP proofs vary.
One approach, often used for superposition theorem provers such as E [34],
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Vampire [19] and Zipperposition [33], is to supply a large number of premises
to the ATP, use the ATP’s proof to identify a minimal subset of necessary
premises, and then supply just those premises to internal ITP automation such
as metis [18]. This has the benefit of entirely removing the call to the exter-
nal prover, but has the possibility of failure because it ultimately depends on
internal automation independently discovering a proof.

SMT solvers [7], which combine generic first-order reasoning with theory-
specific decision procedures, generally warrant reconstruction methods which
more closely follow the external solver’s original proof. Isabelle/HOL relies on
internal tactics to replay each step in the certificates from the SMT solvers
it supports (z3 [25], veriT [12], and cvc5 [3]). SMTCoq uses the SMT solver
veriT, which can produce detailed certificates, and checks its certificates via a
formally verified procedure within Rocq. lean-smt uses a mixtures of these two
approaches, but mostly proof replay, to reconstruct certificates from cvc5.

Our goal in this paper is to explore an alternative approach to proof recon-
struction. Instead of reconstructing the SMT solver’s proof exactly, retaining a
dependency on it, or discarding all information about the solver’s proof except
the set of premises used, our approach uses the SMT solver’s proof to help guide
ITP automation by providing hints.

We develop a Lean tactic, called querysmt, which uses lean-auto [29] to
export problems from Lean’s dependent type theory to the language of an SMT
solver. We then instrument cvc5 to report the preprocessing and theory reason-
ing performed while solving the translated problem. This is used by querysmt to
insert, in the Lean source file, a self-contained proof script for the goal, with Lean
formulations of the theory-specific facts formalized as subgoals. The proof script
uses grind, a built-in Lean tactic inspired by SMT solvers, to supply proofs of
those subgoals, and uses a proof-producing superposition prover, duper [15], to
prove the original goal using those facts. The result is a structured proof that
users can inspect, modify, and simplify, if they wish. Notably, the proof does not
depend on calling an SMT solver anymore. As in Isabelle’s Sledgehammer when
not using the smt tactic, the call to the external prover disappears.

We believe this approach has complementary strengths to others. SMT solvers
are notoriously unstable; small changes in context, even as minor as renaming
variables, can cause proofs to break, as well as different solver versions running
on the same problem [35]. Therefore, eliminating the SMT call in favor of a mod-
ular source-code proof results in a more stable artifact. Additionally, we consider
it a benefit that users can inspect and modify the resulting proof script. Powerful
automation may be good at finding a proof, but it rarely yields the nicest one.

We demonstrate the method with arithmetic and inductive types, two of
the most important and common theories in Lean and other proof assistants,
though our approach is not specific to these. We evaluate the approach on rele-
vant benchmark problems from Lean’s Init, Batteries, and Mathlib [16] libraries,
and compare it to other SMT-related tools available in Lean. We show that al-
though proof reconstruction does not always succeed, incorporating SMT hints
significantly improves internal automation’s chances of successful reconstruction.
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Our contributions are as follows:

– We augment cvc5 with the ability to record data that will be useful for proof
reconstruction and report it back to Lean.

– We develop a method of translating statements about natural numbers to
SMT queries on the integers.

– We augment our back-end reconstruction, duper [15], to implement a set of
support strategy [30], improving its ability to incorporate SMT hints.

– We evaluate querysmt’s performance on Lean benchmarks, showing that
querysmt compares favorably to existing SMT-related Lean automation
and that SMT hints produce a clear improvement in duper’s performance.

2 querysmt Overview

To demonstrate and evaluate our approach, we develop querysmt, a Lean tactic
which utilizes hints from the cvc5 SMT solver to suggest a self-contained proof
script. The overall structure of querysmt is given in Figure 1.

Fig. 1. Overview of the querysmt tactic. Blue boxes indicate Lean stages. Yellow
boxes indicate SMT stages. Stages in the green area directly transform the Lean goal
and must be replayed in the final suggested proof script. Stages in the purple area
do not transform the goal and therefore do not need to be replayed. Red dotted lines
indicate information transfer between stages.

querysmt consists of five primary components: preprocessing, translation,
hint generation, hint interpretation, and proof reconstruction. Preprocessing
transforms the goal into a form that reduces the likelihood of cvc5 producing
hints that can’t be interpreted or proven. Translation from Lean’s dependent
type theory [2] to the many-sorted first-order logic used by SMT solvers [5] is
handled by lean-auto [29], with extensions made to lean-auto’s SMT-LIB
translation described in Section 4. Hint generation consists of recording facts
generated over the course of cvc5’s proof search and identifying an unsat core
from the given goal and set of premises provided by premise selection. Hint
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interpretation involves translating cvc5’s generated hints into usable Lean ex-
pressions. Finally, proof reconstruction accepts cvc5’s unsat core and the output
of hint interpretation and uses them to suggest a self-contained proof script that
the user can examine and modify.

example (f : Int → Int) (h1 : ∀ x y, f x = f y → x = y)
(h2 : ∃ x, ∀ y, f x ≤ f y) : ∃ x, ∀ y, x ̸= y → f x < f y := by
apply @Classical.byContradiction
intro negGoal
skolemizeAll
have smtLemma0 : (∀ (_i_0 : Int), f sk0 ≤ f _i_0) →

∀ (_i_0 : Int), ¬f sk0 + -Int.ofNat 1 * f _i_0 ≥ Int.ofNat 1 :=
by grind

have smtLemma1 :
(∀ (_i : Int),

have _let_1 := sk1 _i;
¬(¬_i = _let_1 → f _i < f _let_1)) →

∀ (BOUND_VARIABLE_4962 : Int), f BOUND_VARIABLE_4962 +
-Int.ofNat 1 * f (sk1 BOUND_VARIABLE_4962) ≥ Int.ofNat 0 :=
by grind

have smtLemma2 :
have _let_1 := f (sk1 sk0);
have _let_2 := f sk0;
have _let_3 := _let_2 + -Int.ofNat 1 * _let_1;
(¬_let_3 ≥ Int.ofNat 0 ∨ _let_2 = _let_1) ∨
_let_3 ≥ Int.ofNat 1 := by grind

duper [h1, h2, negGoal, smtLemma0, smtLemma1, smtLemma2] []

Fig. 2. A proof script suggested by querysmt. In this example, the skolemizeAll call
produces (sk0 : Int) and (sk1 : Int → Int) from h2 and negGoal respectively.

Figure 2 contains an example of a proof script suggested by querysmt.
The first three lines reproduce querysmt’s preprocessing and Skolemization,
the have statements that follow are Lean translations of hints recommended by
cvc5, and the final line is a call to duper which uses the recommended hints to
complete the overall goal. As of Lean version v4.22.0, neither grind nor duper
can prove this example alone, as duper cannot verify the hints output by cvc5
and grind cannot complete the overall proof even with cvc5’s hints. But by
using grind to reconstruct cvc5’s theory reasoning and duper to reconstruct
cvc5’s logical reasoning, querysmt is able to complete the proof.

On a first pass, the proof script in Figure 2 is not very easy to read. querysmt
does some work for the user by filtering the set of suggested hints to only include
those necessary for duper’s final proof,3 but even so, the individual hints can
still be unnecessarily verbose. In this example, the hypotheses in smtLemma0’s
and smtLemma1’s implications directly match the statements of h2 and negGoal

3 In the example from Figure 2, cvc5 generates 8 hints initially, but querysmt is able
to filter them down to 3 for the final proof script.
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after the modifications made by skolemizeAll, making the hypotheses redun-
dant. The proof script can be made significantly more readable by removing
these hypotheses and making some other minor changes, such as renaming
BOUND_VARIABLE_4962 as z, performing zeta-reduction to remove unnecessary
let expressions, and simplifying expressions of the form -Int.ofNat 1 * e to
-e. A simplified version of Figure 2’s proof script is shown in Figure 3. querysmt
does not currently have a postprocessing module to perform such simplifications
automatically, but this would be worth exploring as future work.

example (f : Int → Int) (h1 : ∀ x y, f x = f y → x = y)
(h2 : ∃ x, ∀ y, f x ≤ f y) : ∃ x, ∀ y, x ̸= y → f x < f y := by
apply @Classical.byContradiction
intro negGoal
skolemizeAll
have smtLemma0 : ∀ (_i_0 : Int), ¬f sk0 - f _i_0 ≥ 1 := by grind
have smtLemma1 : ∀ (z : Int), f z - f (sk1 z) ≥ 0 := by grind
have smtLemma2 :

(¬f sk0 - f (sk1 sk0) ≥ 0 ∨ f sk0 = f (sk1 sk0)) ∨
f sk0 - f (sk1 sk0) ≥ 1 := by grind

duper [h1, h2, negGoal, smtLemma0, smtLemma1, smtLemma2] []

Fig. 3. A simplified version of the proof script shown in Figure 2.

3 Preprocessing

Preprocessing takes a Lean goal of the form Γ ⊢ p : Prop and transforms it into
a goal of the form Γ ′ ⊢ False : Prop where all hypotheses in Γ ′ are Skolemized
and Γ ′ entails Γ and ¬p. This transformation is necessary for two reasons.

First, the hints that cvc5 generates may depend on the falsity of the initial
target p. When this occurs, the generated hints are not entailed by Γ , meaning
that any proof automation that attempts to derive the hint from Γ is doomed
to fail. By preprocessing the goal into a state where the local context Γ ′ entails
both Γ and ¬p, querysmt ensures that when it comes time to prove the hints
provided by cvc5, all pertinent information is accessible in the local context.

Second, the hints that cvc5 generates may include constants that do not ap-
pear in the original SMT-LIB problem produced by lean-auto. This occurs
when cvc5 internally Skolemizes existential quantifiers, generating constants
of the form @QUANTIFIERS_SKOLEMIZE_X.4 While it is possible to recover the
meaning of these constants by following the chain of inferences that were taken
to reach cvc5’s Skolemization inferences, this approach essentially amounts to
partial proof replay, which goes against the intention of querysmt’s design.

4 As defined in https://cvc5.github.io/docs/cvc5-1.3.1/skolem-ids.html, this
constant corresponds to a term resulting from Skolemization, which could be defined
e.g. via Hilbert’s choice operator if the Skolemized quantifier were given as well.
However, this is only done when proofs are generated.

https://cvc5.github.io/docs/cvc5-1.3.1/skolem-ids.html


6 J. Clune et al.

To avoid this issue, querysmt handles Skolemization in Lean prior to calling
lean-auto’s translation procedure. We define a tactic called skolemizeAll
which iterates through every hypothesis in the local context and attempts to
remove existential quantifiers and negated universal quantifiers, replacing them
with fresh free variables. When no Skolemization is necessary because neither
the original context Γ nor the negated target ¬p contain existential quantifiers
or negated universal quantifiers, querysmt notes that skolemizeAll has no
impact on the goal state and omits it from the final proof script suggestion.

We note that because Lean’s dependent type theory includes empty types,
skolemizeAll may fail in cases where it is unable to verify type inhabitation. For
example, Skolemizing the hypothesis h : (∃x : α, P x)∨True requires generating
a free variable y : α and replacing h with h′ : P y ∨ True. However, h alone
does not entail that α is inhabited. Unless α is already known to be inhabited,
skolemizeAll cannot soundly add y : α to the local context. Consequently, there
are some theorems that querysmt is fundamentally unable to tackle due to the
presence of empty types or possibly empty polymorphic types. This limitation
is inherent to approaches translating from Lean’s logic to SMT-LIB, and also
affects e.g. lean-smt [24, Sec. 3.2], where proof replay may fail when the solver
relied on the non-emptiness of a type and that cannot be established by Lean.

4 Translation to SMT-LIB

4.1 lean-auto

For translation to the many-sorted first-order logic of SMT-LIB, we rely on
lean-auto [29]. lean-auto normalizes universe levels, monomorphizes defini-
tions, handles definitional equalities, and broadly takes care of the many features
that make Lean’s type theory complex. When targeting SMT-LIB, lean-auto
attempts to translate Lean types to their closest SMT-LIB analogues. For exam-
ple, Lean’s Prop and Bool types are both translated to SMT-LIB’s Bool sort,
and Lean’s Int and Nat types are both translated to SMT-LIB’s Int sort. This
ensures that the translation takes full advantage of SMT solvers’ theories, but
sometimes creates complications for interpreting the SMT hints (see Section 6).

lean-auto primarily translates essentially higher-order problems in Lean to
monomorphic higher-order logic, but also can translate essentially first-order
problems in Lean to first-order logic for the purpose of targeting SMT-LIB
[15,29]. Although the most recent version of the SMT-LIB standard (Version
2.7) defines an SMT-LIB logic which extends beyond the many-sorted first-order
logic adopted by the previous version [6], this SMT-LIB logic is not specifically
targeted by lean-auto. When the upcoming Version 3 of the SMT-LIB stan-
dard is released with a higher-order base logic, we expect it will be fruitful to
modify lean-auto so that it uses its primary translation procedure even when
targeting SMT-LIB. This would expand the fragment of Lean that can be effec-
tively translated to SMT-LIB, but is beyond the scope of this paper.
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4.2 Translating Natural Numbers

Unlike the translation procedures used by SMTCoq [1] or Isabelle’s Sledgeham-
mer [22,23,27,28], lean-auto does not adopt an encoding-based approach to
translating natural numbers. Instead, lean-auto directly translates Lean terms
of type Nat to SMT-LIB terms of sort Int along with assertions of the form
(assert (>= n 0)). Although this approach is sufficient for many common
use cases, it is incomplete and can lead to unsound translations when natu-
ral numbers are embedded in larger structures or inductive types. For example,
lean-auto is able to soundly translate example (n : Nat) : 0 ≤ n := . . . into
an unsatisfiable SMT-LIB problem, but the SMT-LIB problem generated from
example (x : Nat × Nat) : 0 ≤ x.fst := . . . is satisfiable because lean-auto
fails to assert that both projections of x must be nonnegative.

We extend lean-auto’s procedure by preserving the direct translation from
Lean Nat terms to SMT-LIB Int terms while expanding the set of circumstances
in which nonnegativity assertions are made. For every Lean type α which appears
in the problem, we define an SMT-LIB predicate wfα : α̂ → Bool where α̂ is the
SMT-LIB sort corresponding to α. This predicate is meant to encode the fact
that the SMT-LIB term it applies to is well-formed, meaning it satisfies all of
the nonnegativity constraints imposed by the Nat type on the Lean term from
which it was derived. As a concrete example, if α = Nat× Int, then wfα asserts
that the first projection of the term it applies to is nonnegative.

Definition 1. The predicate wfα x is defined inductively on α as follows:

– If α = Nat then:
• wfα x = (>= x 0)

– If α = α1 → α2 then:
• wfα x = (forall ((y α̂1)) (=> (wfα1

y) (wfα2
(x y))))

– If α is a structure5 with projections p1 : α → α1, . . . pn : α → αn then:

• wfα x =
n∧

i=1

wfαi
(p̂i x)

– If α is an inductive datatype with constructors (c1 : β1,1 → . . . → β1,m1 →
α), . . . (cn : βn,1 → . . . βn,mn → α) and is translated to a datatype with
constructors ĉ1, . . . ĉn and selectors si,j : α̂ → ˆβi,j then:

• wfα x =
n∧

i=1

(=> (x is ĉi) (
mi∧
j=1

wfβi,j
(si,j x)))

– Otherwise:
• wfα x = True

5 In Lean’s type theory, all structures are inductive datatypes, meaning there is no need
to distinguish between them [2]. Definition 1’s treatment of structures is logically
equivalent to its treatment of inductive datatypes with one constructor, so it would
be straightforward to eliminate the distinction. We nonetheless distinguish between
them because only structures are guaranteed to have projections already defined in
Lean. This has consequences for hint interpretation, which are discussed in Section 6.
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To ensure that the semantics of the SMT-LIB problem coincide with the
semantics of the original Lean goal, wf constraints are inserted such that al-
most all terms which appear in the SMT-LIB problem are provably well-formed.
Whenever an SMT-LIB function or constant is declared, an assertion is added to
guarantee that it is well-formed. Additionally, whenever an SMT-LIB formula is
translated from a Lean proposition, the translation of quantifiers is modified to
assert the well-formedness of the introduced variable. Universal quantification
over α is translated to (forall ((x α̂)) (=> (wfα x) (. . .))) and existential
quantification over α is translated to (exists ((x α̂)) (and (wfα x) (. . .))).

We note that this approach to translating natural numbers appears to co-
incide with Trakt’s methodology for handling partial embeddings on problems
that do not involve inductive datatypes [11]. Our approach diverges from Trakt’s
when inductive datatypes are involved because Trakt is intended to provide pre-
processing transformations that are independent of the targeted backend while
we explicitly aim to take advantage of SMT solvers’ built-in datatype support.

Theorem 1. All terms except datatype selectors6 which appear in an SMT-LIB
problem generated by our procedure are provably well-formed.

Proof (sketch). Let t : α̂ be some term which appears in the generated SMT-LIB
problem. The proof proceeds by induction on t. Here, we show one nontrivial
case. For a proof sketch which covers more cases, see Appendix A of the extended
version of this paper [14].

– If t is an application of of the form (t1 t2), then the Lean term corresponding
to t1 has type β → α and the Lean term corresponding to t2 has type β.7
By the inductive hypothesis, t2 is well-formed and t1 is either well-formed
or a selector function.
• If t1 is well-formed, then from the definition of well-formedness on func-

tions, wfβ→α t1 = (forall ((y β̂)) (=> (wfβ y) (wfα (t1 y)))).
From this and wfβ t2, it follows that wfα (t1 t2) as desired.

• If t1 is a selector function, then β is a structure or inductive datatype
and t1 has some associated constructor ĉ. From the definition of well-
formedness on structures and inductive datatypes, wfβ t2 entails (=> (t2
is ĉ) (wfα (t1 t2))). lean-auto’s translation procedure guarantees
that if (t1 t2) appears in the generated SMT-LIB problem, then t2
satisfies the tester for t1’s constructor, meaning (t2 is ĉ) holds. From
this and the implication entailed by wfβ t2, it follows that wfα (t1 t2).

6 Theorem 1 does not assert that datatype selectors are well-formed because in general
they aren’t. When a selector is passed a well-formed datatype built from the wrong
constructor, the resulting application’s output is only constrained by its sort (see
remark 20 of the SMT-LIB standard [6]). Therefore, the output may fail to satisfy
the nonnegativity constraints required by well-formedness.

7 We can infer the form of the Lean term corresponding to t because Lean-auto’s
monomorphization procedure preserves term structures during translation.
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5 Hint Generation

We have instrumented the cvc5 SMT solver to report hints for external tools
(such as querysmt) based on logical consequences derived during proof search
from the input formula and the theories supported by the solver.

The hints are collected from the internal proof produced by cvc5 [4], which
is then discarded. We consider three kinds of hints: preprocessing lemmas, theory
lemmas, and rewrite steps. We consider them because they each contain theory
reasoning performed by the solver while proving the given goal. We restrict
ourselves to hints that were useful to the solver, i.e., they were used in the final
proof. A useful by-product of the search for hints is to also collect an unsat core
of the input, i.e., the elements of the input that were present in the proof.

Preprocessing is a key element of SMT solving where an input formula is sim-
plified according to a series of preprocessing passes, each potentially modifying
the input, be it by replacing the formula with a simplified version or generating
new formulas entailed by it. The hints collected are entailments between the in-
put formula and the preprocessed ones. An example of a key preprocessing step
performed by cvc5 is the inference and application of a substitution over part of
the input to eliminate terms that are definable by others, as per the rest of the
input (e.g. if the input contains the equality x = 5, a substitution corresponding
to x 7→ 5 is applied to the rest of the input to remove x [4, Sect. 5.1]).

Theory lemmas are valid disjunctions of literals from one or more theories.
They generally correspond to explanations of why a given assignment of truth
values to literals is inconsistent (e.g. assigning True to both a = b and f(a) ̸=
f(b)), and allow the pruning of search space relative to that wrong assignment.

Finally, we also collect intermediate theory reasoning steps applied during
preprocessing and during theory lemma generation that correspond to rewrite
steps. These are important because they encapsulate key theory reasoning that
would be difficult to gauge from just the preprocessing or theory lemmas them-
selves. An example is how cvc5 reduces all arithmetic terms to sums of mono-
mials. Since the hints will contain only the fully reduced terms, including the in-
termediate rewrite steps increases the information made available to querysmt.

While the proof contains other elements (besides the justification themselves
for those hints), such as the resolution reasoning performed by a SAT solver on
the Boolean structure of the formula and its connection with the hints, we do
not consider them because this logical reasoning can be performed by duper.

Normalization of AC operators. Internally cvc5, as most SMT solvers, represent
associative operators not as binary but as n-ary operators, so it is common to ap-
ply a “flattening” simplification so that terms such as (* (* x1 x2) x3) and (*
x2 (* x3 x1))) are represented as the same term (* xi xj xk). Not only are
applications of the operator flattened, but arguments are rearranged according
to a canonical order. This normalization is useful for solving, but it complicates
proof reconstruction in systems not representing AC operators in a normalized
form. Since hints generated by cvc5 refer to the normalized version of a term,
and this normalization is not present in the hints (it would only be present in a
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proper proof), the applicability of the hints by querysmt can be limited unless
querysmt can infer the relation between original terms and their normalized
versions. A potential solution is to integrate facts pertaining to AC reasoning in
querysmt’s proof reconstruction, but this has the disadvantage that the extra
facts may lead to proof instability and loss of performance. querysmt does not
make use of such facts by default, but has an option to enable their inclusion.
We discuss the impact of this option in Appendix B of the extended version of
this paper [14].

6 Hint Interpretation

For the most part, interpreting cvc5’s SMT-LIB hints and translating them into
Lean expressions is straightforward. At each stage of lean-auto’s translation
pipeline, lean-auto creates mappings from terms and types in the source lan-
guage to terms and types in the target language. This is to ensure that when the
same term or type appears multiple times in the source problem, each instance of
said term or type is translated in the same way. We modified lean-auto’s trans-
lation procedure to make each of these mappings reversible, allowing querysmt
to translate SMT-LIB symbols and identifiers by simply passing them to the
composition of lean-auto’s reversed mappings. Although this is sufficient in
most cases, there are two complications which merit further discussion.

Non-injectivity. lean-auto’s mapping from Lean types to SMT-LIB sorts is
not injective. lean-auto translates Lean’s Prop and Bool types to the same
SMT-LIB Bool sort, and as discussed in Section 4, it also translates Lean’s Int
and Nat types into the same SMT-LIB Int sort. Consequently, it is possible for
cvc5’s hints to contain applications which typecheck according to SMT-LIB’s
semantics but fail to typecheck when naively translated into Lean. For example,
if the original Lean goal contains n : Nat and x : Int, cvc5 may create a hint
which involves subtracting n̂ from x̂, an operation that is unproblematic in SMT-
LIB but would fail to typecheck when translated back into Lean.

querysmt’s approach to interpreting such hints consists of defaulting to Prop
and Int interpretations of SMT-LIB’s Bool and Int sorts, inserting coercions
as needed. There is only one circumstance in which expressions must be coerced
to Bool or Nat, namely, when supplying an argument to a function that takes
Bool or Nat inputs. To give a concrete example, if f : Nat → Nat, n : Nat, and
m : Nat, then the SMT-LIB hint (< n̂ (f̂ (- n̂ m̂))) would be translated to
Int.ofNat n < Int.ofNat (f (Int.ofNat n− Int.ofNat m).natAbs). This is
more verbose than the seemingly more natural translation n < f (n −m), but
a faithful interpretation of cvc5’s hints requires that all built-in mathematical
operations occur on integers rather than naturals.8

8 This is particularly relevant when subtraction is involved, as the semantics of sub-
traction on the naturals differs from the semantics of subtraction on the integers.
For example, the SMT-LIB term (+ (- x y) y) always evaluates to x, but the Lean
expression (x− y) + y is equal to Nat.max x y if x and y have type Nat.
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Note that in the previous example, f is not supplied with the (possibly nega-
tive) result of subtracting Int.ofNatm from Int.ofNat n. Instead, f is supplied
with the absolute value of said result. This coercion is needed to make the Lean
expression typecheck, but one might reasonably question whether it compro-
mises the faithfulness of the hint’s interpretation. To answer this concern, we
observe a subtle consequence of Theorem 1.

Corollary 1. Let P be the SMT-LIB problem obtained by using lean-auto to
translate a Lean goal, let f : Nat → α be a Lean function in said goal, and let f̂
be the the SMT-LIB translation of f in P . For any SMT-LIB formula F , if F
is entailed by P , then F [(f̂ ◦ abs)/f̂ ] is also entailed by P .

Proof (sketch). From Theorem 1, wherever (f̂ t) appears in the problem gener-
ated by lean-auto, the term t is well-formed. Therefore, any nontrivial asser-
tions about the output of f̂ which can be derived from the generated problem are
conditioned on f̂ ’s input being nonnegative. Since the output of f̂ on negative
inputs is unconstrained, any derivable fact about f̂ also applies to all functions
which agree with f̂ on nonnegative inputs. f̂ ◦abs agrees with f̂ on nonnegative
inputs, so any fact that can be derived about f̂ also applies to f̂ ◦ abs.

Non-surjectivity. There are two ways SMT-LIB terms without direct Lean equiv-
alents may appear in cvc5’s hints. First, during the course of cvc5’s proof search,
cvc5 may apply Skolemization rules to generate constants which lack direct
analogues among the expressions that appear in the input goal. This issue is
mitigated by the preprocessing discussed in Section 3.

The second way SMT-LIB terms without direct Lean equivalents may ap-
pear in cvc5’s hints relates to the translation of inductive datatypes. In Lean, a
constructor’s arguments can be accessed via pattern matching or by invoking a
recursor that every inductive type is automatically equipped with. But in SMT-
LIB, constructors’ arguments are accessed via selector functions whose symbols
are given as part of the datatype’s declaration. In the special case that the in-
ductive datatype being translated is also a structure, these selector functions can
be identified with the projection functions that come with all Lean structures.
But when the inductive datatype being translated is not a structure, there is no
guarantee that Lean has ready-made analogues for SMT-LIB’s selector functions.

In order to interpret hints which refer to selector functions, querysmt adds
fresh functions to the local context along with proofs that they satisfy the prop-
erty that characterizes SMT-LIB’s selector functions. The functions themselves
are constructed from the inductive datatype’s recursor, and the proofs they are
paired with assert that if the function is passed the correct constructor, then the
resulting application returns the appropriate argument of said constructor.

Figure 4 provides an example showcasing the construction on a goal with lists.
When given the wrong constructor, the function returns default, an arbitrary
element of the appropriate type which is only accessible if said type is Inhabited.
If typeclass inference cannot prove that the type is Inhabited, then it instead
uses sorry, leaving the proof of type inhabitation as a subgoal for the user.
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example {α : Type} [Inhabited α] (x y : α) : [x] = [y] ↔ x = y := by
apply @Classical.byContradiction
intro negGoal
obtain ⟨_List.cons_sel0, _List.cons_sel0Fact⟩ :

∃ (_List.cons_sel0 : List α → α),
∀ (arg0 : α) (arg1 : List α),

_List.cons_sel0 (arg0 :: arg1) = arg0 := by
apply

Exists.intro (List.rec (motive := fun (_ : List α) => α)
default fun (arg0 : α) (arg1 : List α) (_ : α) => arg0)

intros
rfl

duper [negGoal, _List.cons_sel0Fact] []

Fig. 4. A proof script suggested by querysmt showcasing how Lean analogues for
SMT-LIB’s selector functions are constructed. Only one of the selector functions for lists
is reproduced in the proof script because the other selector function (which retrieves
the tail of a nonempty list) is not needed for the proof duper finds.

7 Proof Reconstruction

The primary goal of querysmt’s proof reconstruction is not to produce a com-
plete proof term for the given goal. Instead, the goal of querysmt’s proof re-
construction is to suggest a self-contained proof script for the user to examine
and potentially modify. All proof scripts suggested by querysmt consist of:

1. A tactic sequence designed to reproduce the effects of querysmt’s prepro-
cessing and Skolemization, described in Section 3.

2. A sequence of obtain statements which create functions satisfying the prop-
erties of SMT-LIB’s selectors. The construction of these functions is de-
scribed in Section 6.

3. A sequence of have statements which assert hints output by cvc5. These
have statements are proven with grind, a built-in Lean tactic.

4. A final call to duper [15], a superposition theorem prover intended to re-
construct the logical component of cvc5’s top-level proof.

To minimize the suggested proof script, some sections are omitted if deemed
unnecessary. As mentioned in Section 3, skolemizeAll is only added to the
suggested proof script if Skolemization will change the goal. Additionally, the
sequence of obtain and have statements from steps 2 and 3 are minimized by
only including those that are necessary for the proof duper finds in step 4.

querysmt’s ability to perform this minimization, and therefore suggest a
usable proof script, depends on duper successfully finding a proof. Although
duper has been shown to be effective in solving problems previously minimized
by other superposition theorem provers [15], its performance degrades signifi-
cantly when given too many unnecessary or irrelevant premises, and it lacks the
theory-specific knowledge leveraged by SMT solvers.
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To increase duper’s effectiveness in reconstructing the logical component of
cvc5’s proofs, we augment its given clause procedure to implement a variant of
the set of support strategy used by Vampire [30]. This set of support strategy is
designed to enable reasoning about theory axioms while mitigating the negative
impact of their explosive properties. Facts that are included in duper’s set of
support are treated normally, but facts that are excluded from duper’s set of
support are only considered when they can be applied to facts in the set of
support. The core idea is to limit theory axioms’ explosive behavior by only
applying them to facts that directly relate to the original goal.

We initially implemented this set of support strategy to exclude cvc5’s hints
from the set of support, thinking that cvc5’s hints might behave similarly to
more general theory axioms. However, experiments described in Appendix B of
the extended version of this paper revealed that this was actually detrimental to
performance [14]. Instead, the set of support strategy is used to exclude a small
set of theory lemmas detailing properties of integers and natural numbers that
cvc5’s hints aren’t expected to capture [14, Appendix C].

8 Evaluation

We evaluate querysmt and existing tools on 9,904 theorems related to integers,
natural numbers, and lists taken from Lean’s Init, Batteries, and Mathlib [16]
libraries. Our evaluation focuses on these domains in particular, rather than
randomly selected theorems, because we specifically seek to evaluate whether
querysmt benefits from cvc5’s domain-specific knowledge. Int theorems are
chosen to test querysmt’s ability to benefit from hints related to SMT-LIB’s
LIA logic. Nat theorems are chosen to test whether querysmt can make use
of these hints even when it requires encoding Nat goals into Int problems and
inferring facts about natural numbers from hints about integers. List theorems
are chosen as a proxy for testing querysmt’s ability to make use of SMT solvers’
built-in support for reasoning about algebraic datatypes.

8.1 Methodology

We perform all experiments on version leanprover/lean4:v4.22.0 of Lean.
The 9,904 theorems used as benchmark problems are obtained by scraping user-
defined theorems from Init.Data.X, Batteries.Data.X, and Mathlib.Data.X,
where X is any file prefixed with Int, Nat, or List. A constant is considered a
user-defined theorem if it is marked as a theorem, has an explicit declaration in
source code, and is not a projection function. All experiments are performed on
an Amazon EC2 ami-04f167a56786e4b09 instance with 4 virtual CPUs and 16
GiB memory. Each theorem is given a wall clock timeout of 30 seconds and the
default Lean heartbeat limit of 200,000. The short timeout is used to reflect the
expectation of proof assistant users of having quick results from tactics.

For premise selection, we approximate an ideal premise selector by inspecting
the existing proofs of the benchmark theorems and extracting the set of premises
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P used to prove them. We also gather the set of constants C that are not theorems
which appear in rw or simp calls of tactic proofs. These constants are used
to indicate to the relevant automation that said constant should be unfolded,
enabling the automation to invoke definitional equalities not otherwise captured
by P. Both querysmt and the tools we compare with benefit from receiving
these constants, so in the experiments, all tools are given P ∪ C as input.

Our testing script implements the following procedure:

1. Identify the (theorem, tool) pair to be tested.
2. Create a temporary Lean file which imports the benchmark theorem’s orig-

inal file as well as any files needed to run the tool being evaluated.
3. In the temporary Lean file, define alias fakeThm := originalThm.
4. Compile the temporary Lean file and extract the ConstantInfo associated

with fakeThm along with the environment immediately prior to executing
the alias command.

5. In the environment extracted from the previous step, create a fresh metavari-
able whose type is determined by the extracted ConstantInfo and attempt
to instantiate this metavariable with the tool being tested.9

We note that the environment in which the tools are run does not perfectly
match the original proof’s environment. It is infeasible to exactly mimic this
environment because among the tools being evaluated, only grind (which is built
into Lean and requires no special imports) would be callable. The differences
between the original environments and the environments used in our experiments
are largely benign, but in Section 8.2 we discuss one circumstance where the
difference in environments is more impactful.

8.2 Results

Tool Comparison We compare querysmt’s performance against other tools
available in Lean which either interface with external SMT solvers or implement
techniques used by SMT solvers. Descriptions of these tools are included in
Figure 5 and their respective performances are shown in Table 1.

In all categories, querysmt performs noticeably better with SMT hints than
without. On Int and Nat benchmarks, querysmt only outperforms grind with
these hints. The impact of hints on querysmt’s performance appears to be more
significant on Int and Nat benchmarks than on List benchmarks, and not coin-
cidentally, lean-auto + cvc5 solves a much smaller fraction of List theorems
9 The tool is considered to have succeeded if the variable is instantiated, regardless

of whether the instantiation contains sorry. When lean-auto + cvc5 is evaluated,
the only proof it produces is sorry (indicating that cvc5 found a proof and lean-
auto trusts the result). querysmt also closes goals with sorry because querysmt is
meant to be replaced with the suggested proof script. Since querysmt only suggests
a proof script if duper finds a proof that follows from the hints, the suggested script
is expected to succeed up to proof reconstruction for the individual hint assertions,
for which we have a high success rate.
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1. lean-auto + cvc5: A tactic which uses lean-auto to translate input prob-
lems into the SMT-LIB format and trusts any proofs produced by cvc5. This
serves as a theoretical upper bound for both querysmt and lean-smt.

2. querysmt: The default implementation of querysmt. querysmt is consid-
ered to succeed if duper finds a top level proof of the original goals assuming
the hints given by cvc5. This does not necessarily entail that grind alone is
sufficient to prove all the hints duper depends on. grind’s success rate at
proving the hints output by cvc5 is evaluated separately.

3. querysmt−: A modified implementation of querysmt in which duper is
not provided the hints output by cvc5. querysmt− retains the preprocessing
described in Section 3 and still uses cvc5’s unsat core to minimize the set of
premises provided to duper, but does not translate cvc5’s hints into Lean
subgoals or pass the resulting assertions into duper.

4. lean-smt: A tactic that interfaces with cvc5 and performs proof reconstruc-
tion via proof replay [24]. At the advice of one of its authors, lean-smt is
run with the + mono option which instructs lean-smt to use lean-auto as a
component of its preprocessing.

5. grind: A built-in Lean tactic inspired by modern SMT solvers. grind does
not interface with external SMT solvers, but the inspiration for its underlying
design and widespread use make it a helpful point of comparison.

Fig. 5. Descriptions of SMT-related methods

Table 1. Benchmark theorems solved by SMT-related methods

Int Theorems Nat Theorems List Theorems
Total 2058 3270 4576
lean-auto + cvc5 1137 1486 891
querysmt 840 892 749
querysmt− 472 627 708
lean-smt 333 35 445
grind 541 812 -

than Int or Nat theorems. From manual inspection of the theorems involved, we
suspect that a significant factor contributing to this discrepancy is that in the
List category, there is a significant overlap between the set of theorems for which
built-in datatype reasoning would be helpful and the set of theorems for which
induction is necessary. cvc5 is not able to solve problems requiring induction by
default [31], or to produce proofs for it, so it cannot be used by querysmt in
this scenario. We therefore suspect that a smaller fraction of the List theorems
being solved by lean-auto + cvc5 genuinely require theory reasoning.

On problems relating to Ints and Nats, querysmt performs best, followed
by grind, followed by lean-smt. We note that grind has stricter conditions
on its input lemmas than querysmt or lean-smt, and also that grind benefits
from additional hints about how to use its input lemmas (in the form of custom
attributes). It may be possible to achieve better performance with grind either
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by tailoring the set of provided premises to better suit grind or by manually
providing additional hints about how to use the premises it receives.

lean-smt’s performance in both the Int and Nat categories is severely di-
minished by the fact that lean-smt lacks special support for natural numbers.
This says more about temporary limitations resulting from lean-smt’s current
coverage than the theoretical limit of lean-smt’s approach. Still, we note that
one of the benefits of our method is relative ease of extensionality. It requires
much less effort to add support for parsing hints in a new theory than to add
full-fledged proof replay for the same theory.

We omit grind’s performance on List problems in Table 1 because it is
significantly impacted by our evaluation methodology. When evaluating grind’s
performance on List problems with the same script used in the other experiments,
grind succeeds at finding proofs for 1,458 problems. However, upon investigating
why grind performs so much better than the other tools, we discovered that a
nontrivial number of problems are solved by grind accessing lemmas it wouldn’t
have access to in the original environment. In particular, several theorems tagged
with grind attributes yield benchmark problems that grind solves by invoking
the original theorem. When we modify the evaluation script to test grind in
the original theorem’s proof environment10, grind only solves 439 problems.
The interpretation of these results depends on whether one views the theorems
tagged with grind attributes as part of grind’s implementation.

Hint Evaluation As noted in Figure 5, querysmt’s success criteria depends
on duper deriving a proof of the original goal from the hints output by cvc5, but
does not depend on grind succeeding at proving all of the subgoals generated
by assuming these hints. If querysmt finds a proof and successfully outputs a
proof script in which grind fails to prove one or more of the generated hints,
querysmt has still done something valuable in reducing the original goal to a
smaller subgoal. Still, querysmt’s usefulness is significantly impacted by the
frequency with which cvc5’s hints can be proven automatically, so we perform
an additional evaluation to test how frequently cvc5 produces hints that grind
can’t solve. This evaluation includes not just hints that appear in querysmt’s
suggestions, but all hints output by cvc5 regardless of whether duper succeeds
in its proof search, and regardless of whether they would actually appear in the
final proof script suggestion.

Of the 9,904 problems tested, 499 produce a set of hints that grind fails
to certify, approximately 5% of the total. 57 of these failures come from Int
problems, 168 of these failures come from Nat problems, and 274 of these failures
come from List problems. From manual inspection, we know that many of these
failures are false negatives owed to cvc5 producing large sets of hints that can be
solved individually by grind but collectively cause grind to time out11. We still
register such cases as failures because it is difficult to distinguish this behavior
10 Note that this test is only feasible because grind is built into Lean and is therefore

accessible in the original proof environment.
11 As in other experiments, grind gets 200,000 heartbeats and 30 seconds per theorem.
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from tests in which grind genuinely times out on a single hint. Not all failures
are false negatives, but anecdotally, the hints grind genuinely fails on tend to be
easy to discharge manually using some combination of aesop [21] and duper.

We also measure the number of hints generated for problems where querysmt
succeeds in suggesting a proof script. Proof scripts with many hints are harder
to read, modify, and maintain than proof scripts with just a few hints, so it is
preferred for querysmt to include as few hints as possible in the final suggestion.

The average number of hints cvc5 generates on Int, Nat, and List problems
that querysmt solves is 3.1, 4.6, and 4.6 respectively. After filtering out hints
that are not needed for the final proof, querysmt’s final suggestion only includes
0.8, 0.7, and 0.2 hints on average for Int, Nat, and List problems respectively.
These averages are brought down by the problems that duper can solve without
any hints, but even after filtering out all problems in which querysmt produces
0 hints, the average number of hints produced is only 1.5, 1.7, and 1.2 for Int, Nat,
and List problems respectively. This does not mitigate all readability concerns,
as individual hints can still be unnecessarily verbose, but it does show that
querysmt tends to produce suggestions of manageable size.

9 Conclusion

We explored a new hint-based approach to leveraging SMT solvers for ITP au-
tomation. We implemented this approach in the Lean proof assistant to create
querysmt, a tactic that translates Lean goals to SMT-LIB, extracts the pre-
processing and theory reasoning used by cvc5 to solve the translated problem,
and uses that information to produce a self-contained proof script for the origi-
nal goal which does not depend on cvc5. We evaluated querysmt on problems
related to its supported theories, showing that querysmt compares favorably to
existing SMT-related Lean automation and that the hints extracted from cvc5
produce a clear improvement in the underlying proof automation.

We see several possible directions for future work. One possibility is to im-
plement our approach in other proof assistants or SMT solvers to see whether
it can be applied to more than just Lean and cvc5. Another is to add support
for more SMT theories to see how our approach generalizes beyond hints relat-
ing to integers and algebraic datatypes. A third possibility is to explore ways
to gather even more information from cvc5’s proofs. For example, collecting
instances generated for quantified formulas could lead to duper finding proofs
more quickly, as was recently done for metis in Isabelle’s Sledgehammer [8]. We
also expect that querysmt’s reconstruction success rate could be increased with
better instrumentation for tracking how cvc5 normalizes AC operators.
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