Producing Shorter Congruence Closure Proofs in
a State-of-the-Art SMT Solver

Bruno Andreotti® and Haniel Barbosa

Universidade Federal de Minas Gerais (UFMG),
Belo Horizonte, Brazil
{bruno.andreotti,hbarbosa}@dcc.ufmg.br

Abstract. An important component of SMT solving is the theory of
equality and uninterpreted functions, which is traditionally modelled in
solvers via a congruence closure algorithm. Oftentimes, these algorithms
are instrumented to provide machine checkable proofs when determining
why two terms are equivalent. In a recent work published at FMCAD’22,
Flatt et al. presented a modified congruence closure algorithm that could
effectively produce demonstrably shorter proofs. This new algorithm re-
lies on computing redundant equalities, which are not necessary to prove
the equivalence between two terms but can provide shorter proofs. While
promising, the modified algorithm was only considered in an equality sat-
uration tool. In this work, we have adapted this algorithm to apply it
within an SMT solver, and implemented our approach in the state-of-
the-art solver cveb. We discuss the challenges faced when integrating this
algorithm into the backtracking nature of an SMT solver, and how we
have addressed them. We evaluate our implementation on a large set of
SMT-LIB benchmarks from multiple theories, and demonstrate how this
new technique can result in smaller SMT proofs, while having only a
moderate impact on runtime performance.

Keywords: SMT solving - Congruence closure - SMT proofs

1 Introduction

Proof-producing SMT solvers have a large potential for increasing the trustwor-
thiness of formal methods applications that rely on solvers to discharge proof
obligations. However, proof certificates can be quite large and therefore challeng-
ing to be checked quickly, specially in tools with limited performance, such as
formally verified checkers or proof assistants. One way to mitigate this issue is to
employ solving techniques that can lead to shorter proofs within the same proof
calculus, which would be cheaper to check. Flatt et al. [11] recently proposed such
a procedure for the congruence closure algorithm [19], a key component of SMT
solvers to reason about equality and uninterpreted functions [9,17]. Their ap-
proach keeps redundant equalities that would normally be discarded, since they
are not needed during solving, and takes advantage of them for finding shorter
proofs. Their work however was in the context of the equality saturation [25] tool


https://doi.org/10.5281/zenodo.17181344
https://orcid.org/0000-0003-0345-6495
https://orcid.org/0000-0003-0188-2300

2 Andreotti and Barbosa

egg [26]. Equality saturation, which has recently seen significant usage in e.g.
program optimization, works by constructing a graph that represents all equiv-
alent forms of a program, and selecting an optimized one. Aiming to generate
shorter proofs for the congruence closure algorithm as used within SMT solvers,
in this paper we adapt the procedure of Flatt et al. for the CDCL(T) architec-
ture [20] of modern SMT solvers, and implement it in the state-of-the-art solver
cveb [4].

Extending the core component of state-of-the-art SMT solvers is notoriously
challenging [6], and adapting the algorithm for CDCL(7) involves supporting
backtracking and orchestrating the congruence closure reasoning with the SAT
solver. Since equality saturation tools do not involve backtracking, and in general
their congruence closure implementations do not need to interact with external
reasoning, these considerations were not relevant in the original implementation
in egg. Another difference is positive, however: finding shorter proofs potentially
can lead to shorter conflict clauses. These clauses are used by SMT solvers to
guide the search of the SAT solver, and shorter explanations can prune the search
space more aggressively and lead to better performance. This potential advantage
is not present in the equality saturation context since it is not performing a
backtracking search guided by explanations.

After introducing the necessary background (Section 2), we discuss in detail
the various challenges specific to the SMT setting and how we tackled them
(Section 3). We also cover the specific implementation decisions to effectively
integrate the algorithm to cveb (Section 4). Our evaluation of the current imple-
mentation (Section 5) indicates an encouraging reduction in the size of proofs
from the congruence closure algorithm, as well as some significant improvement
in runtime for particular families of benchmarks, while also uncovering a number
of future directions for improvements.

1.1 Related work

Producing smaller unsatisfiability proofs has long been a concern in the context
of SAT solvers. Fontaine et al. [12] introduced techniques for compressing res-
olution proofs by optimizing the resolution derivation to more efficiently reuse
pivots. Heule et al. [13] proposed producing smaller proofs directly from the SAT
solver, by using a more expressive proof system. This new proof system could
result in proofs that are not only smaller, but also faster to check. More recently,
Reeves et al. [22] leveraged proof skeletons to reduce the storage requirements
of proofs by only recording a subset of derived clauses, those deemed “impor-
tant” according to different criteria, and reconstructing the missing clauses at
checking-time.

While most of these works could be adapted to work in an SMT solver,
they are mainly concerned with the challenge of storing large proofs, which is
especially relevant to SAT solving. In a recent work, Otoni et al. [21] showed how
theory-specific proof witnessess could be used to compactly certify the execution
of specific SMT algorithms. This work encompassed the theories of linear integer
and real arithmetic, and equality and uninterpreted functions. For the latter, the



Shorter Congruence Closure Proofs in an SMT Solver 3

authors relied on a compact representation of the equality reasoning, but did not
meaningfully modify the proof search in the congruence closure algorithm. To
the best of our knowledge, no recent work exists in the direction of producing
shorter proofs and smaller explanations from congruence closure reasoning in
SMT solvers.

2 Background

2.1 CDCL(T) SMT solvers

The problem of Boolean satisfiability (SAT) consists of determing whether a for-
mula in propositional logic is satisfiable, that is, whether there exists an assign-
ment to the formula’s free variables that makes the formula true. It is commonly
assumed that the formula is in conjunctive normal form (CNF). The problem
of Satisfiability Modulo Theories (SMT) is a generalization of SAT, with a few
key differences. Firstly, it operates over many-sorted first-order logic, allowing
quantifiers, equality, and arbitrary function symbols; and secondly, the logic is
complemented by a set of theories, which restrict the possible interpretations of
the formula. These theories usually model a real-world domain in mathematics
(like the theories of integer and real arithmetic) or in computer science (like the
theories of strings and floating point numbers).

Most modern SMT solvers are based on the CDCL(T) algorithm [20], a vari-
ation of the Conflict-Driven Clause Learning (CDCL) algorithm [15] for SAT
solving. This algorithm searches for a satisfying assignment by, for each step
of the search, selecting an unassigned variable and assigning it a value among
{T,L}. Then, the algorithm computes all other assignemnts that are directly
implied by this, in a process called propagation. While in SAT solvers only propo-
sitional reasoning is used during this step, SMT solvers often also incorporate
theory-specific reasoning, in what is referred to as theory propagation.

If at any point in the search a clause in the formula is unsatisfied, meaning
all its literals are set to L by the current variable assignments, we reach what
is called a conflict. In this case, the algorithm must backtrack, undoing a num-
ber of assignments until it reaches a previous branching point. The algorithm
also performs conflict analysis to understand the root cause of the conflict and
incorporate that information as a new learned clause, referred to as the conflict
clause. If a satisfying assignment is found, the CDCL(7) algorithm then employs
a series of theory solvers, to determine whether the assignment is consistent with
the relevant theories. If it is, the formula is satisfied; otherwise, the theory solver
must produce a conflict clause, and the search continues.

2.2 Congruence closure

Congruence is the property that, given terms aq, ..., a,, b1,...,b, and an arbi-
trary function f, a3 = b1 A ... Aa, = b, implies f(ay,...,an) = f(b1,...,by).
For a given set of equalities, we say that the corresponding congruence closure



4 Andreotti and Barbosa

is the minimal equivalence relation that satisfies these equalities as well as the
property of congruence.

In the context of SMT solving, solving the theory of equality and uninter-
preted functions (EUF) consists in determining whether a conjunction of equal-
ities and disequalities between terms is consistent under the EUF theory. Typi-
cally, this is solved by constructing the congruence closure defined by the problem
equalities, and verifying that the problem disequalities respect it.

Efficient algorithms for computing congruence closure were first described
by Downey et al. [9] and Nelson and Oppen [17], in the context of program
verification. The algorithm is based on a Union-find data structure [24], where
each term is a vertex in a graph (called the equality graph, or e-graph), and each
equivalence class forms a tree whose root is called the class representative.

At first, each term is part of an equivalence class containing only itself. The
algorithm works by sequentially processing equalities, and merging these equiva-
lence classes when they are found to be equal. When processing an equality a = b,
if the terms are not already equivalent, the algorithm finds the representatives of
a and b, and adds an edge between them (called an equality edge), selecting one
to be the representative of the new merged class. Then, the algorithm merges
all classes that have become equivalent due to congruence (e.g. f(a) and f(b)).
Edges added in this step are called congruence edges, and the terms that caused
them to be added (in this case, a and b) are the edges’ justification.

To avoid having to deal with functions with different numbers of arguments,
we will take as a starting assumption that the terms given to the congruence
closure algorithm are currified [18]. This process, borrowed from functional pro-
gramming, turns a function application into a series of applications of a special
“apply” function symbol, which we will denote f. For example, the term g(a, b, ¢),
when currified, becomes f(f(f(g,a),b),c). From here on, we will assume that all
terms have been currified, and are therefore either constants or an application
of f over two arguments.

Once the equality graph is built, we can determine if two terms are equivalent
by searching for a path between their corresponding vertices. However, for many
applications (including SMT solvers), simply determining whether two terms are
equivalent is not enough—it is also necessary to produce an explanation of their
equivalence. Here, an explanation is defined as a subset of the input equalities
that is sufficient to ensure the terms are equivalent. In SMT solvers that use
the CDCL(T) algorithm [20], explanations from congruence closure are crucial,
as they are used to construct conflict clauses for the solver. Furthermore, since
a smaller conflict clause will prune a larger part of the search space, a small
explanation is preferable. However, it is known that finding the smallest possible
explanation for the equivalence of two terms is an NP-complete problem [10].

Besides providing an explanation, a congruence closure algorithm may also
produce a structured proof. If an explanation is simply a set of equalities that
justify the equivalence between two terms, a proof is a derivation, using these
equalities and the properties of reflexivity, symmetry, transitivity and congruence
to demonstrate that the two terms are equivalent. Proof-producing SMT solvers



0~ O Tk Wi

e e el el el e
© 00O Ut W+ O©

Shorter Congruence Closure Proofs in an SMT Solver 5

have become increasingly important in the last few years, and are already used
in many applications [2, 3,5, 14, 21], including proof automation in interactive
theorem provers [23].

An explanation-producing congruence closure algorithm was first described
by Nieuwenhuis et al. in [19]. When explaining the equivalence of two terms,
this algorithm traverses the path between respective nodes in the equality graph.
When traversing an equality edge, the algorithm simply records the input equal-
ity associated with that edge. When traversing a congruence edge between the
terms f(a1,a2) and f(b1,bs), the algorithm recursively explains the equivalence
of the terms a1 and by, and that of as and by; then adds all returned equalities to
the explanation. Figure 1 shows the pseudocode for this algorithm. While the al-
gorithm as described can only produce explanations, it can be straightforwardly
extended to produce structured proofs.

function get_explanation(start, end):
let explanation = []
let lca = find_lowest_common_ancestor (start, end)
explanation += explain_along_path(start, lca)
explanation += explain_along_path(end, 1lca)
return explanation

function explain_along_path(lower, upper):
let explanation = []
let current = lower
while current != upper:
let edge = current.edge_to_parent ()
if edge is congruence edge between f(a1,a2) and f(b1,b2):
explanation += get_explanation(ai, b1)
explanation += get_explanation(az, b2)
else:
explanation += edge
current = current.parent ()
return explanation

Fig. 1: Pseudocode for a classical proof-producing explanation algorithm. The
function get_explanation returns a list with the explanation for the equivalence
of two terms. Since the equivalence class is represented by a rooted tree, the
function works by explaining the path from each of the nodes to their lowest
common ancestor.

Importantly, the explanations returned by this algorithm might not be the
smallest valid explanations. While there is only one unique path between the two
nodes in the tree, if the input equalities were processed in a different order, or
if different congruence edges were added, the explanation for the equivalence of
these nodes might be different. More generally, the fact that the standard con-



6 Andreotti and Barbosa

gruence closure algorithm discards redundant equalities means that oftentimes
shorter explanations are not found.

2.3 The GREEDY congruence closure algorithm

In an effort to produce shorter explanations from congruence closure, Flatt et
al. [11] developed two new congruence closure algorithms, called TREEOPT and
GREEDY, that do not discard redundant equalities, and instead use them to
provide alternative, possibly shorter paths in the equality graph. Additionally,
these new algorithms also compute extra congruence edges each time two classes
are merged, contributing to even more alternative paths.

Keeping redundant edges means that the graph for each equivalence class is
no longer a tree. Whereas before there was always only one path between two
terms in an equivalence class, now the explanation algorithm must have a way
to determine which of the possible paths represents the shortest proof. This is
where the strategies used by the two algorithms diverge.

The TREEOPT algorithm is a O(n®) algorithm that finds an optimal proof
for a slightly modified metric of proof size. On the other hand, GREEDY is a
O(nlogn) heuristic algorithm, that attempts to find small explanations without
incurring an increase in complexity when compared to traditional congruence
closure algorithms.

Flatt et al. [11] convincingly showed that TREEOPT does not present a sig-
nificant improvement in proof size when compared to GREEDY, while having a
substantial performance overhead. For this reason, we believe that TREEOPT is
impractical for use in SMT solvers, and therefore focus our interest on GREEDY.

GREEDY is a greedy congruence closure algorithm that attempts to find a
small explanation while keeping the same O(nlogn) complexity as traditional
algorithms. To do this, it first computes an estimate of the proof size for each
edge in the equality graph. This estimate is obtained by computing the proof size
of the edge with the traditional congruence closure algorithm, that is, ignoring
redundant equalities.

Once the estimates are calculated, the algorithm simply finds the shortest
path between the terms, using the estimates as weights for the edges. The algo-
rithm is parameterized by an integer fuel, which, similarly to [11], we set to 10
as a default. When it encounters a congruence edge, if the fuel is greater than
0, the algorithm recurses (and decrements its fuel) to explain the justification of
the congruence edge. However, if the fuel is 0, the algorithm explains the justifi-
cation by simply using the classical congruence closure algorithm, i.e., ignoring
redundant equalities.

2.4 Computing extra redundant edges

As mentioned, besides not discarding redundant equalities that are asserted, the
new algorithms also compute extra redundant congruence edges everytime two
equivalence classes are merged. This is done by finding all terms in the newly



0~ O ULk Wi

e el el el
N O UL W~ O O

Shorter Congruence Closure Proofs in an SMT Solver 7

merged class that have the same canonical form. For an application term f(a, b),
we say that its canonical form is the term f(a’,d’), where t’ is the representa-
tive of the equivalence class of the term t. For a constant term ¢, we say that
its canonical form is just ¢t. Notably, if two non-identical terms have the same
canonical form, it means they are equivalent by congruence, and we may add a
congruence edge between them.

function get_canonical_form(term):
if term is of the form f(a,b):

let a' = representative_of (a)
let b = representative_of (b)
return f(a',b)

else:

return term

function compute_extra_edges (eclass):

let canonical_map = {}
for term in eclass:
let canon = get_canonical_form(term)

for other in canonical_map[canon]:
add_edge (term, other)
if number_of_redundant_edges > LIMIT:
return
canonical_map[canon] += term

Fig.2: The algorithm for computing extra congruence edges between the two
equivalence classes.

Figure 2 shows the algorithm for computing extra congruence edges in an
equivalence class. We keep a map from a canonical form term to a list of terms
in the class that have that canonical form. When we process a term, we compute
its canonical form, and add an edge between it and every other term that shares
that canonical form. This process is repeated for every term in the equivalence
class, or until an arbitrary limit is reached.

While the original work by [11] implemented the new algorithms in an equal-
ity saturation tool, implementing them in an SMT solver requires several changes
due to the backtracking nature of the solver and the complex interactions be-
tween the congruence closure algorithm and other modules. Over the next sec-
tions, we describe in detail the challenges we faced when adapting the GREEDY
algorithm, and how we tackled them.



8 Andreotti and Barbosa

3 Handling implicit dependencies in a congruence closure
within CDCL(T)

Modern SMT solvers work by orchestrating a CDCL SAT solver that finds mod-
els for an abstraction of the input formula, with multiple theory solvers that
check if these models are consistent. In the EUF theory, the theory solver is also
commonly used during propagation, that is, even before a full model is found, the
EUF solver is queried to ensure that the partial model that is being constructed
by the SAT solver is consistent, and also to derive new facts that can be propa-
gated. This results in a back-and-forth interaction between the SAT solver and
the theory solver, where the SAT solver adds propagated facts into the congru-
ence closure algorithm, which in turn will derive new literals that are asserted
to the SAT solver. Figure 3 shows an example of this interaction between the
SAT solver and the congruence closure algorithm during propagation, and the
e-graph after this interaction has played out.

a=b >
c=d ;
b=c :i f(a’a) f(a7 d)
iderives fla,a) = f(a,d)
| <
L e =fad | 4 d
derives a = di 3 \ /
O | b — ¢
a=d

- (b) Equality graph at the end of the

explain f(a,a) = f(a,d) = interaction.

(a) Interaction between SAT solver and con-
gruence closure algorithm.

Fig.3: An example of a possible interaction between the SAT solver and the
congruence closure algorithm, and the e-graph that is constructed after this
interaction has played out. Here, we use simple lines to denote equality edges;
double lines to denote congruence edges; and dashed lines to denote redundant
edges.

In the example, the SAT solver first asserts into the congruence closure the
equalities a = b, ¢ = d and b = ¢, in that order. When the latter is added,
the terms a and d are in the same equivalence class, which means the terms
f(a,a) and f(a,d) have become equivalent by congruence. The congruence clo-
sure algorithm adds the congruence edge (f(a,a), f(a,d)) accordingly. Then, as
part of theory propagation, the congruence closure algorithm sends the lemma
f(a,a) = f(a,d) to the SAT solver. This in turn causes a propagation in the



Shorter Congruence Closure Proofs in an SMT Solver 9

solver, which results in the fact a = d being derived by SAT reasoning. This
equality is asserted to the congruence closure algorithm, which results in the
redundant edge (a, d) being added.

Now, the edge a = d depends on the equality f(a,a) = f(a,d), even though
that dependency is not represented in any way in the equality graph—we call
these implicit dependencies. When queried for an explanation of f(a,a) = f(a,d),
the congruence closure algorithm cannot use the equality a = d in the explana-
tion, as that would result in a circular proof. Instead, the only correct explanation
for this equivalence is the one based on the longer path between a and d, namely
the equalities a = b, b = c and ¢ = d.

In the traditional congruence closure algorithm, where no redundant edges
are kept, after the path between two terms is first established it will never change.
This means that equalities which are implicitly dependent on the equivalence
between two terms will never influence the explanation that is returned for those
terms’ equivalence, preventing this kind of circular proof. In this modified version
of the algorithm, however, we need to take special care to ensure this cannot
happen.

3.1 Edge levels

To properly handle implicit dependencies, we need to augment the equality graph
with information that encodes these dependency relations. The most precise way
of doing this would be to construct the entire implication graph of the SMT
solver, and restrict which edges can be used based on that. However, this is
complicated to do in practice and might incur a performance cost, since modern
SMT solvers rely heavily on lazily computing proofs. For example, most SAT
solvers do not store the entire implication graph and instead keep a trail, which
consists of a list of all assigned literals, in the order that they were assigned.
Since a literal can only have been implied by literals that were assigned before
it, this trail is a topological ordering of the implication graph.

We follow a similar strategy, and augment the equality graph based on the
order in which the equalities are asserted into the congruence closure algorithm.
Specifically, we assign to each edge in the e-graph a level', which is the index
in which this edge was added to the graph; as such, these levels also correspond
to a topological ordering of the implication graph. We also define the concept
of two terms’ merge level. For two terms in the same equivalence class, we say
that their merge level is the level in which the terms were originally determined
to be equivalent, i.e., the level of the edge that merged their equivalence classes.
When searching for the explanation of the equivalence between two terms, we
restrict the search to edges whose level is no greater than the terms’ merge level.
Effectively, this restricts the search to edges already present in the e-graph when
the equivalence of the two terms was first derived.

1 Although similar concepts, these levels are distinct from the SAT solver’s decision
levels. In the example in Figure 3, all of the shown interaction could have taken place
during propagation, which is to say, during a single decision level.



— =

= O © 00O Ui Wi -

10 Andreotti and Barbosa

Figure 4 shows the e-graph from Figure 3b, but with level information de-
noted in blue. Consider again querying this e-graph for the explanation of f(a,a) =
f(a,d). Their equivalence was first determined when the congruence edge be-
tween them was added, so their merge level is the level of that edge, namely 3.
Therefore, the redundant edge between a and d, which has level 4, and which
implicitly depends on the congruence edge (f(a,a), f(a,d)), will not be included
in the search for an explanation, preventing a circular proof.

Fig.4: The e-graph from Figure 3b, but with the level of each edge shown in
blue.

Figure 5 shows the pseudocode for the GREEDY algorithm, modified to take
into account the levels of edges. Now, besides finding the shortest path between
the terms according to the computed weights, this shortest-path search must
also ignore edges whose level is greater that max_level, set to be the merge
level of the two terms.

function get_explanation(start, end, weights):

let max_level = get_merged_level(start, end)
let path = shortest_path(start, end, weights, max_level)
let explanation = []

for edge in path:
if edge is congruence edge between f(a1,a2) and f(b1,b2):
explanation += get_explanation(ai, b1, weights)
explanation += get_explanation(az, b2, weights)
else:
explanation += edge
return explanation

Fig.5: Pseudocode for the modified explanation algorithm. Here, we assume
shortest_path is a function that returns a list of edges representing the shortest
path between two nodes, given a set of edge weights, and rejecting all edges whose
level is greater than max_level.



Shorter Congruence Closure Proofs in an SMT Solver 11

3.2 Alternative solutions

Restricting the explanation search with edge levels is an aggressive way of pre-
venting circular proofs, and at first glance, it might seem that other, less re-
strictive solutions might be possible. In this section, we discuss some alternative
solutions that were considered for the implicit dependencies problem, and why
ultimately they were not feasible.

Weighing the edges based on proof size The GREEDY algorithm already
relies on adding weights to the e-graph edges to enable finding smaller proofs.
These weights attempt to capture the size of the proof required to justify an
edge. Conceivably, it would make sense to make these weights also include the
parts of the proof that go beyond congruence closure reasoning. Currently, an
equality that is asserted into the congruence closure algorithm would receive the
weight 1, even if it implicitly depends on an equivalence, since the weight cannot
capture the external reasoning that was done to derive the asserted equality.
If instead we could compute an appropriate weight for that edge, which took
into account all the reasoning required to derive it, we could ensure that an
edge which implicitly depends on an equivalence will have a weight bigger than
the proof size for that equivalence. Thus, when explaining this equivalence, the
shortest path found would not include this edge.

While this strategy might work in theory, it would require estimating the
proof size for each edge, including parts of the proof beyond congruence clo-
sure reasoning. In a modern SMT solver, most of these proofs are computed in
a lazy fashion [5], and changing that behaviour would greatly impact perfor-
mance. Therefore, while this technique might work in different contexts, it is not
practical for a high-performance SMT solver.

Computing levels based on provenance While constructing the entire im-
plication graph for the SMT solver might be impractical, there are incomplete
alternatives that are less restrictive than the arbitrary topological ordering im-
posed by the edge levels. In particular, when the SAT solver asserts a literal [ into
the EUF theory solver, it has access to the set of literals that immediately caused
that literal to be propagated (in the SAT solver, this would be a clause). This
set of literals, which we denote as I’s provenance, represents the direct ancestors
of [ in the implication graph. Using this information, we can define the level of a
literal ! (which will determine the level of edges in the e-graph) to be one more
than the maximum level of the literals in its provenance. More formally,

level(l) = 1 + max { level(p) | p € provenance(l) }

Contrary to the previous level solution, this would allow multiple edges to
share the same level, and in fact each level will correspond to one “layer” of the
implication DAG. This would mean that equalities that have the same level have
no dependency relation in the implication graph—one could be explained by the
other and vice-versa.



12 Andreotti and Barbosa

While this solution is quite elegant?, it would still result in explanations that
are rejected by the SAT solver as circular. Let [; and Iy be two literals with
the same provenance level, and say the EUF solver produces an explanation for
l1 in terms of Iy, but I is situated after [; in the SAT solver trail. Since the
SAT solver does not store the full implication graph, it cannot ensure that the
explanation given is valid, even if it does respect the dependency relations in
the implication graph. In other words, the SAT solver considers the particular
topological ordering of the implication graph that composes the SAT trail as the
“source of truth”, and will reject explanations that do not follow it, even if they
wouldn’t lead to circular proofs.

This invariant sits at the core of modern SAT solvers, and changing it would
involve allowing arbitrary reimplication of propagated literals. There has been
some recent work exploring the benefits of reimplication in SAT solving [8, 16],
but these techniques are still not well established in SMT solvers. Until that
changes, we believe that any correct solution for the implicit dependencies prob-
lem will necessarily be as strict as the above solution based on the edge levels.

4 Implementation

We have implemented the modified version of the congruence closure algorithm
from the previous section in cveb [1], a state-of-the-art SMT solver. The existing
theory solver for the theory of equality and uninterpreted functions, called its
equality engine, implements a version of a proof-producing congruence closure
algorithm as seen in Nieuwenhuis et al. [19]. As part of this work, we adapted
this existing implementation to not discard redundant equalities, and imple-
mented the GREEDY explanation algorithm, with the adaptations detailed in
the previous sections. This required rewriting a large part of the equality engine,
with over 900 lines of code changed. In this section, we highlight some of the
implementation details that went in to this work.

4.1 Computing the merge level of two terms

An important part in selecting which edges are allowed in an explanation is
determining the merge level of the terms being explained. For a given path
between two terms in the e-graph, we said that its path level is the maximum of
the levels of all edges in path. This corresponds to the level that the path first
appeared in the e-graph. Note that the level in which two terms were merged is
the level in which any path first appeared between them. Thus, the merge level
of two terms is the minimum path level of all the paths between them.
However, we know that when two terms are merged, the path between them
with minimal path level will not contain any redundant edge (otherwise that edge
would have caused a merge, and would not be redundant). Therefore, we only

2 Tt does, however, require changing the API of the EUF theory solver to receive prove-
nance information, and updating all users of that API to provide that information,
which is a non-trivial engineering effort.



Shorter Congruence Closure Proofs in an SMT Solver 13

need to concern ourselves with paths that don’t contain redundant edges. There
is always only one such path between two terms, which is the path computed by
the classical congruence closure algorithms, known as the tree path.

All put together, to compute the merge level of two terms we must simply
traverse the tree path between them, and record the highest edge level encoun-
tered.

4.2 Backtracking-aware edge limits

As mentioned earlier, when computing extra redundant congruence edges, the
modified congruence closure algorithm only adds edges up to a limit. This is
intended to ensure the algorithm has a linear overhead when compared to tra-
ditional congruence closure algorithms, since in theory the extra edges could
amount to O(n?) where n is the number of nodes in the e-graph. In the original
implementation [11], this limit was set to 2n.

When implementing these algorithms in cvch, however, we found that setting
a limit based on the current state of the graph was not sufficient. In particular,
in many benchmarks we saw a situation where the SAT solver asserts an equality
to the congruence closure algorithm, which caused a large number of redundant
edges to be computed; then, the solver backtracks, removing all the redundant
edges, as well as the asserted equality; and after that the process repeats, with
the solver adding a small number of non-redundant edges followed by computing
a large number of redundant edges.

In these benchmarks, we saw that the total number of redundant edges added
greatly shadowed the number of non-redundant edges, and there was a sub-
stantial slowdown compared to the traditional congruence closure algorithm. To
address this, we implemented a smarter limit to the number of computed redun-
dant edges, which takes into account all the edges added throughout the solving
process. Now, the total number of redundant edges added cannot exceed twice
the number of non-redundant edges.

4.3 Lazy computation of weights and extra edges

Due to backtracking, it might be the case that edges added to the e-graph will be
removed before an explanation using them is computed. Therefore, eagerly re-
computing edge weights everytime an edge is added would be inefficient. Instead,
we only compute edge weights when searching for an explanation.

Recall that the weight of an edge is based on the proof size for that edge,
without using redundant equalities. Therefore, the only edges that affect the
weight of a given edge are those that appeared before it. cvch’s equality engine
backtracks by removing edges in reverse order, meaning that if an edge was not
removed during backtracking, no edge before it was removed either. As such,
when backtracking, we don’t need to invalidate any computed edge weight, aside
from removing the weights of edges that were removed.

We also compute the extra congruence edges as described in Section 2.4 in a
lazy fashion, only when queried for an explanation. Importantly, we must take



14 Andreotti and Barbosa

care to set the edge level correctly. For a redundant congruence edge between
the terms a and b, we can safely set its level to the merge level of a and b. This
is because, although we potentially compute this edge much later, it could have
conceivably been added as soon as the terms’ equivalence classes were merged—it
does not have any implicit dependencies.

5 Evaluation

In order to evaluate the effectiveness and performance of our implementation,
we tested it against a large set of benchmarks from the SMT-LIB benchmarks
library [7], an industry-standard set of benchmarks for SMT solvers. We used
the 162,228 SMT problems from a set of 14 logics, notably involving, besides
the theory of equality and uninterpreted functions, the theories of strings and
arrays’. These particular theories were selected because they make heavy use
of equality reasoning, and are good testing grounds for the congruence closure
algorithm. The results were generated with a cluster equipped with 32 x Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10GHz, 256 GiB RAM machines, with one core
per solver/benchmark pair, 120s time limit, and 8 GiB memory limit.

We focus our evaluation on a comparison between the GREEDY and VANILLA
algorithms. For each benchmark, we recorded the time taken to solve the bench-
mark with each of the algorithms, as well as the size of the final proof produced.
We also measure directly, for each benchmark, the explanation size returned by
all calls to get_explanation.

Table 1 shows an overview of our main results. The benchmarks are divided
in three groups, based on the logic: the logics that include the theory of arrays,
those that include the theory of strings, and those that include neither. For each
logic group, the table presents the relative change in runtime, proof size and
explanation of the GREEDY algorithm, when using VANILLA as a baseline.

The table shows that the perfomance of the modified algorithm is heavily
theory-dependent. For the theory of strings, the change in explanation size is
very minor, but the total proof size is moderately smaller when using GREEDY
than with VANILLA. However, the runtime overhead is very large for these logics.
On the other hand, for the other two benchmark groups, the explanation size
difference is more pronounced, but this difference did not translate into a large
difference in the total proof size. The runtime overhead for these groups was
significantly smaller, but still substantial.

In the next few sections, we take a more detailed look into each of the eval-
uated metrics.

5.1 Runtime

Figure 6 presents scatter plots of the runtime of each benchmark, when run
with GREEDY and VANILLA. The benchmarks are again divided in three groups,

3 The specific logics used were ALIA, AUFLIA, AUFLIRA, QF ALIA, QF AUFLIA,

QF AX,QF S, QF SLIA, QF UF, QF UFLIA, QF UFLRA, UF, UFLIA, and
UFLRA.



Shorter Congruence Closure Proofs in an SMT Solver 15

Fragment Runtime Proof size Explanation size
Arrays-based logics 25.96 % -3.26 % -7.97 %
Strings-based logics 56.52 % -4.34 % -0.83 %
Remaining logics 29.85 % -3.16 % -21.27 %
Total 45.59 % -3.33 % -7.91 %

Table 1: Relative change in runtime, proof size and explanation size of GREEDY
when compared to VANILLA, for different groups of logics.

depending on the logic. Points below the diagonal represent benchmarks in which
GREEDY outperformed VANILLA, and points above the diagonal are the opposite.

=
S
o R
N
=
S
o R
=
S
o 8

greedy-10
greedy-10
e
8
greedy-10
5
v @8~ a8 w

H
S
8
@8 n o
h

H
5
\

<
:
5

=
S

o

2 51002 510002 510k2 5100k2 02 51002 510002 510k2 5100k2 2 51002 510002 510k2 5100k

vanilla vanilla vanilla

(a) Runtime for arrays- (b) Runtime for strings- (c) Runtime for remaining
based logics. based logics. logics.

Fig. 6: Scatter plots of the runtime of each benchmark, when run using GREEDY
and VANILLA.

The plot shows that, for most benchmarks, and in particular larger bench-
marks, GREEDY presents a signifcant overhead when compared to VANILLA. In
total, solving all benchmarks with GREEDY took 45.6% more time than with
VANILLA.

Interestingly, there were a number of benchmarks that took significantly less
time to run with GREEDY. In the most extreme case, the plot shows a set of
benchmarks in the array-based logics that take a few seconds to be solved with
VANILLA, but only several milliseconds when using GREEDY. Over all logics,
there were 5,347 benchmarks that were at least twice as fast with GREEDY when
compared to VANILLA (out of 162,228 total benchmarks). We speculate that this
is related to smaller congruence closure explanations resulting in smaller conflict
sets, which in turn results in a more efficient SAT search.



16 Andreotti and Barbosa
5.2 Proof size

Figure 7 presents, for each benchmark group, a scatter plot of the final proof size
of each benchmark, when run with GREEDY and VANILLA. Benchmarks where
the proof size was exactly the same with both algorithms are omitted.

2
100k

greedy-10
e
g

greedy-10
=

N e R

H
S
3
3

1000 V'
s A y 100

.
1
S~

100 - 2,7

° 1002 510002 510k2 5100k2 5 1M 100 1000 10k 100k ™M 100 1000 10k 100k im
vanilla vanilla vanilla
(a) Proof size for arrays- (b) Proof size for strings- (c) Proof size for remaining
based logics. based logics. logics.

Fig. 7: Scatter plots of the final proof size of each benchmark, when run using
GREEDY and VANILLA.

For most benchmarks, the final proof size did not change substantially be-
tween the two algorithms. However, since this is a measure of the final proof
size, which includes reasoning steps besides congruence closure, the impact of
the congruence closure algorithm is mitigated. In total, the proof size of all proofs
was 3.3% smaller when generated with GREEDY, when compared to VANILLA.

5.3 Explanation size

To more closely analyze the impact of the modified algorithm, we also looked
at, for each benchmark, the size of all explanations returned by the congruence
closure algorithm. Figure 8 presents scatter plots of the total explanation size
of each benchmark, when run with GREEDY and VANILLA. The benchmarks
were grouped similarly to the previous plots, and benchmarks where the total
explanation size was exactly the same with both algorithms are omitted.

This plot more clearly shows that the explanations returned by GREEDY are
generally smaller than those of VANILLA. However, this is not consistent across
theories. In particular, benchmarks form string-based logics seem to benefit less
from the new algorithm, while benchmarks from other logics show a more clear
improvement.

Overall, the total explanation size for the GREEDY algorithm was 7.9%
smaller that that of VANILLA.



Shorter Congruence Closure Proofs in an SMT Solver 17

H
N

5

=
ST

\
S,

5

B
ST

=
S
S
2

.

5]

B

.
Y
.
5

=
1)

o

/

100 10k M 10 100 1000 10k 100k 1M 1 100 10k i

greedy-10
P
8

N O @On 18N mEm o
Y
1
3

I
S
3
=
S
B 6Bn 68m n8m nRm 0

greedy-10
.
N @Bm a8n 8w

greedy-10

.
1

H
=
=

%

vanilla vanilla vanilla

(a) Explanation size for (b) Explanation size for (c) Explanation size for re-
arrays-based logics. strings-based logics. maining logics.

Fig. 8: Scatter plots of the total explanation size of each benchmark, when run
using GREEDY and VANILLA.

5.4 Comparison with baseline implementation from cvch

As mentioned earlier, implementing the GREEDY algorithm in cvch required
rewriting a large portion of the equality engine. This involved changing even
how the traditional algorithm was implemented, which we refer to as VANILLA.
To guarantee our changes did not degrade substantially the performance of cvch’s
equality engine, we also compared the new VANILLA implementation with the
baseline implementation, before any changes. These results are shown in Fig-
ure 9.

10 100 1000 10k 100k

main

Fig.9: Scatter plots of the runtime of each benchmark, when run using VANILLA
versus the existing implementation in cvc5.

While there is a lot of noise in the results, it is possible to see that there is a
small consistent overhead in the implementation of VANILLA when compared to
the baseline, especially in larger benchmarks. On average, benchmarks take 8%



18 Andreotti and Barbosa

longer to solve when using VANILLA. While this overhead is not negligible, it is
realtively modest, and could be improved with further optimization.

5.5 Other results

To get a more detailed view into how the redundant edges affect the returned
explanations, we also recorded a series of redundancy measurements. Over all
benchmarks, the number of redundant equalities included in the returned expla-
nations was 3.53% of the total explanation size. Similar to other metrics, this
was also theory-dependent: For strings-based logics this ratio was only 0.78%,
while for arrays and other logics, it was 5.79% and 6.61%, respectively. We
also measured the proportion of all e-graph edges that were redundant. Over all
benchmarks, 43.58% of added edges were redundant—this was largely consistent
across all logic groups, staying between 41.92% and 47.78%.

6 Conclusion and future work

We presented our effort to adapt a new congruence closure algorithm to work
in a state-of-the-art SMT solver. We evaluated our implementation on a large,
industry-standard set of benchmarks, and obtained mixed but promising results.

Our work shows that congruence closure algorithms that keep redundant
equalities can be efficiently implemented in the context of a backtracking SMT
solver, with reasonable overhead. Furthermore, we show that these techniques
have a measurable and at times substantial impact on explanation and proof
size. In particular, for logics involving the theories of arrays and equality and
uninterpreted functions, we show that this new algorithm can result in consis-
tently smaller explanations, with a small impact on final proof size. For some
benchmarks, we also observed that the new algorithm can result in a drastic
reduction in runtime. As for logics involving the theories of strings, the new al-
gorithm did not produce significantly smaller explanations, but it did result in
moderately smaller final proofs. However, the runtime overhead was also larger
for these benchmarks.

Future opportunities for research may include improving the heuristics or
developing new algorithms that make use of redundant edges. For example, the
current results seem to show that this technique struggles with very large bench-
marks, and maybe a more sophisticated heuristic for limiting the number of
redundant edges added might be beneficial.

While our work was initially focused in treating the interaction between the
equality engine and the SAT solver, congruence closure reasoning is used by
many theories in SMT solving, and future work might explore how to optimize
these techniques for the specific interactions between those theories and the
congruence closure algorithm. Finally, this work is still somewhat restricted by
the specific topological ordering of the implication graph that the SAT solver
selects as its trail. One possible avenue for future research is investigating how
reimplication, when adapted for an SMT context, might improve this restriction.



Shorter Congruence Closure Proofs in an SMT Solver 19

In conclusion, while the observed experimental results are overall mixed, there
is promising evidence that these technique might be useful in some contexts and
for some theories.

Data Availability Statement The source code relevant to this research, as
well as the tools and data used for the experimental evaluation are available
at [1].

References

1. Andreotti, B., Barbosa, H.: Artifact for "producing shorter congruence closure
proofs in a state-of-the-art smt solver" (Sep 2025). https://doi.org/10.5281/
zenodo.17181344, https://doi.org/10.5281/zenodo.17181344

2. Andreotti, B., Lachnitt, H., Barbosa, H.: Carcara: An efficient proof checker and
elaborator for smt proofs in the alethe format. In: Tools and Algorithms for the
Construction and Analysis of Systems: 29th International Conference, TACAS
2023, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings, Part I. p.
367-386. Springer-Verlag, Berlin, Heidelberg (2023). https://doi.org/10.1007/
978-3-031-30823-9_19, https://doi.org/10.1007/978-3-031-30823-9_19

3. Barbosa, H., Barrett, C., Cook, B., Dutertre, B., Kremer, G., Lachnitt, H.,
Niemetz, A., N 6tzli, A., Ozdemir, A., Preiner, M., Reynolds, A., Tinelli, C.,
Zohar, Y.: Generating and exploiting automated reasoning proof certificates.
Commun. ACM 66(10), 86-95 (sep 2023). https://doi.org/10.1145/3587692,
https://doi.org/10.1145/3587692

4. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Notzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvch: A versatile and industrial-
strength SMT solver. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS), Part I. Lecture Notes in Computer
Science, vol. 13243, pp. 415-442. Springer (2022). https://doi.org/10.1007/
978-3-030-99524-9_24, https://doi.org/10.1007/978-3-030-99524-9_24

5. Barbosa, H., Reynolds, A., Kremer, G., Lachnitt, H., Niemetz, A., Notzli, A.,
Ozdemir, A., Preiner, M., Viswanathan, A., Viteri, S., Zohar, Y., Tinelli, C., Bar-
rett, C.: Flexible proof production in an industrial-strength smt solver. In: Au-
tomated Reasoning: 11th International Joint Conference, IJCAR 2022, Haifa, Is-
rael, August 8-10, 2022, Proceedings. p. 15-35. Springer-Verlag, Berlin, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-10769-6_3, https://doi.org/10.
1007/978-3-031-10769-6_3

6. Barbosa, H., Reynolds, A., Ouraoui, D.E., Tinelli, C., Barrett, C.W.: Extend-
ing SMT solvers to higher-order logic. In: Fontaine, P. (ed.) Proc. Conference on
Automated Deduction (CADE). Lecture Notes in Computer Science, vol. 11716,
pp. 35-54. Springer (2019). https://doi.org/10.1007/978-3-030-29436-6_3,
https://doi.org/10.1007/978-3-030-29436-6_3

7. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

8. Coutelier, R., Fleury, M., Kovacs, L.: Lazy reimplication in chronological back-
tracking. In: Chakraborty, S., Jiang, J.R. (eds.) 27th International Conference


https://doi.org/10.5281/zenodo.17181344
https://doi.org/10.5281/zenodo.17181344
https://doi.org/10.5281/zenodo.17181344
https://doi.org/10.5281/zenodo.17181344
https://doi.org/10.5281/zenodo.17181344
https://doi.org/10.1007/978-3-031-30823-9\_19
https://doi.org/10.1007/978-3-031-30823-9_19
https://doi.org/10.1007/978-3-031-30823-9\_19
https://doi.org/10.1007/978-3-031-30823-9_19
https://doi.org/10.1007/978-3-031-30823-9_19
https://doi.org/10.1145/3587692
https://doi.org/10.1145/3587692
https://doi.org/10.1145/3587692
https://doi.org/10.1007/978-3-030-99524-9\_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9\_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-031-10769-6\_3
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-030-29436-6\_3
https://doi.org/10.1007/978-3-030-29436-6_3
https://doi.org/10.1007/978-3-030-29436-6_3

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Andreotti and Barbosa

on Theory and Applications of Satisfiability Testing, SAT 2024, August 21-24,
2024, Pune, India. LIPIcs, vol. 305, pp. 9:1-9:19. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2024). https://doi.org/10.4230/LIPICS.SAT.2024.9,
https://doi.org/10.4230/LIPIcs.SAT.2024.9

Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. J. ACM 27(4), 758-771 (oct 1980). https://doi.org/10.1145/322217.
322228, https://doi.org/10.1145/322217.322228

Fellner, A., Fontaine, P., Paleo, B.W.: Np-completeness of small conflict set
generation for congruence closure. Form. Methods Syst. Des. 51(3), 533-544
(dec 2017). https://doi.org/10.1007/s10703-017-0283-%, https://doi.org/
10.1007/s10703-017-0283-x

Flatt, O., Coward, S., Willsey, M., Tatlock, Z., Panchekha, P.: Small proofs
from congruence closure. In: 2022 Formal Methods in Computer-Aided De-
sign (FMCAD). pp. 75-83 (2022). https://doi.org/10.34727/2022/isbn.
978-3-85448-053-2_13

Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Compression of propositional reso-
lution proofs via partial regularization. In: Bjgrner, N., Sofronie-Stokkermans, V.
(eds.) Automated Deduction — CADE-23. pp. 237-251. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

Heule, M.J.H., Kiesl, B., Biere, A.: Short proofs without new variables. In:
de Moura, L. (ed.) Automated Deduction — CADE 26. pp. 130-147. Springer In-
ternational Publishing, Cham (2017)

Hoenicke, J., Schindler, T.: A simple proof format for SMT. In: Déharbe, D.,
Hyvarinen, A.E.J. (eds.) International Workshop on Satisfiability Modulo Theories
(SMT). CEUR Workshop Proceedings, vol. 3185, pp. 54-70. CEUR-WS.org (2022),
http://ceur-ws.org/Vol-3185/paper9527.pdf

Marques Silva, J., Sakallah, K.: Grasp-a new search algorithm for satisfiability. In:
Proceedings of International Conference on Computer Aided Design. pp. 220-227
(1996). https://doi.org/10.1109/ICCAD.1996.569607

Nadel, A.: Introducing intel(r) SAT solver. In: Meel, K.S., Strichman, O. (eds.)
25th International Conference on Theory and Applications of Satisfiability Testing,
SAT 2022, August 2-5, 2022, Haifa, Israel. LIPIcs, vol. 236, pp. 8:1-8:23. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik (2022). https://doi.org/10.4230/
LIPICS.SAT.2022.8, https://doi.org/10.4230/LIPIcs.SAT.2022.8

Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure.
J. ACM 27(2), 356-364 (apr 1980). https://doi.org/10.1145/322186.322198,
https://doi.org/10.1145/322186.322198

Nieuwenhuis, R., Oliveras, A.: Congruence closure with integer offsets. In: Vardi,
M.Y., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence, and Rea-
soning. pp. 78-90. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)
Nieuwenhuis, R., Oliveras, A.: Proof-producing congruence closure. In: Giesl, J.
(ed.) Term Rewriting and Applications. pp. 453-468. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005)

Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving sat and sat modulo theories:
From an abstract davis—putnam—logemann-loveland procedure to dpll(t). J. ACM
53(6), 937-977 (Nov 2006). https://doi.org/10.1145/1217856.1217859, http:
//doi.acm.org/10.1145/1217856.1217859

Otoni, R., Blicha, M., Eugster, P., Hyvérinen, A.E.J., Sharygina, N.: Theory-
specific proof steps witnessing correctness of SMT executions. In: Design Automa-
tion Conference (DAC). pp. 541-546. IEEE (2021). https://doi.org/10.1109/
DAC18074.2021.9586272, https://doi.org/10.1109/DAC18074.2021.9586272


https://doi.org/10.4230/LIPICS.SAT.2024.9
https://doi.org/10.4230/LIPICS.SAT.2024.9
https://doi.org/10.4230/LIPIcs.SAT.2024.9
https://doi.org/10.1145/322217.322228
https://doi.org/10.1145/322217.322228
https://doi.org/10.1145/322217.322228
https://doi.org/10.1145/322217.322228
https://doi.org/10.1145/322217.322228
https://doi.org/10.1007/s10703-017-0283-x
https://doi.org/10.1007/s10703-017-0283-x
https://doi.org/10.1007/s10703-017-0283-x
https://doi.org/10.1007/s10703-017-0283-x
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13
http://ceur-ws.org/Vol-3185/paper9527.pdf
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.4230/LIPICS.SAT.2022.8
https://doi.org/10.4230/LIPICS.SAT.2022.8
https://doi.org/10.4230/LIPICS.SAT.2022.8
https://doi.org/10.4230/LIPICS.SAT.2022.8
https://doi.org/10.4230/LIPIcs.SAT.2022.8
https://doi.org/10.1145/322186.322198
https://doi.org/10.1145/322186.322198
https://doi.org/10.1145/322186.322198
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
http://doi.acm.org/10.1145/1217856.1217859
http://doi.acm.org/10.1145/1217856.1217859
https://doi.org/10.1109/DAC18074.2021.9586272
https://doi.org/10.1109/DAC18074.2021.9586272
https://doi.org/10.1109/DAC18074.2021.9586272
https://doi.org/10.1109/DAC18074.2021.9586272
https://doi.org/10.1109/DAC18074.2021.9586272

22.

23.

24.

25.

26.

Shorter Congruence Closure Proofs in an SMT Solver 21

Reeves, J.E., Kiesl-Reiter, B., Heule, M.J.H.: Propositional proof skeletons. In:
Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems. pp. 329-347. Springer Nature Switzerland, Cham
(2023)

Schurr, H., Fleury, M., Desharnais, M.: Reliable reconstruction of fine-grained
proofs in a proof assistant. In: Platzer, A., Sutcliffe, G. (eds.) Proc. Conference on
Automated Deduction (CADE). Lecture Notes in Computer Science, vol. 12699,
pp- 450-467. Springer (2021). https://doi.org/10.1007/978-3-030-79876-5_
26, https://doi.org/10.1007/978-3-030-79876-5_26

Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
22(2), 215225 (apr 1975). https://doi.org/10.1145/321879.321884, https://
doi.org/10.1145/321879.321884

Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a new approach
to optimization. SIGPLAN Not. 44(1), 264-276 (Jan 2009). https://doi.org/10.
1145/1594834.1480915, https://doi.org/10.1145/1594834.1480915

Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha, P.: egg:
Fast and extensible equality saturation. Proc. ACM Program. Lang. 5(POPL) (Jan
2021). https://doi.org/10.1145/3434304, https://doi.org/10.1145/3434304


https://doi.org/10.1007/978-3-030-79876-5\_26
https://doi.org/10.1007/978-3-030-79876-5_26
https://doi.org/10.1007/978-3-030-79876-5\_26
https://doi.org/10.1007/978-3-030-79876-5_26
https://doi.org/10.1007/978-3-030-79876-5_26
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/1594834.1480915
https://doi.org/10.1145/1594834.1480915
https://doi.org/10.1145/1594834.1480915
https://doi.org/10.1145/1594834.1480915
https://doi.org/10.1145/1594834.1480915
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304

	Producing Shorter Congruence Closure Proofs in a State-of-the-Art SMT Solver

