Formal Verification of PLC Programs
Using the B Method*

Haniel Barbosa and David Déharbe

Departamento de Informética e Matematica Aplicada, UFRN, Brazil
hanielbbarbosa@gmail.com,
deharbe@dimap.ufrn.br

Abstract. In this paper we propose an approach to verify PLC pro-
grams, a common platform to control systems in the industry. Programs
written in the languages of the IEC 61131-3 standard are automatically
translated to B machines and are then amenable to formal analysis of
safety constraints and general structural properties of the application.
This approach thus integrates formal methods into existing industrial
processes.

Keywords: B method, PLC, safety critical systems, formal methods.

1 Introduction

In many industries, such as mass transport and energy, it is very common to
use PLCs in control applications. Those applications are mostly programmed
according to IEC 61131-3 [1], an international standard that specifies the five
standard PLC programming languages, namely: LD (Ladder Diagram) and FBD
(Function Block Diagram), graphical languages; IL (Instruction List) and ST
(Structured Text), textual languages; and SFC (Sequential Function Chart),
that shows the structure and internal organization of a PLC. It is not rare that
a variation of such languages is employed too.

As the complexity of the applications increases, and as various are safety
critical, it is important to ensure their reliability. Formal methods are a mean
to fulfill this requirement, as testing and simulation (the de-facto method in
many branches) can left flaws undiscovered. However, it is difficult to integrate
formal methods in the industrial process since most control engineers are not
familiarized with formal verification.

Some recent works have been trying to integrate formal methods and PLC ver-
ification, using different approaches. In [7], the authors created a new language
combining ST and Linear Temporal Logic, ST-LTL, to ease the use of formal
verification by control engineers. [6] presents a method to verify applications
using Safety Function Blocks with timed-automata through model-checking and

* Project supported by ANP. CNPq grants 560014/2010-4 and 573964/2008-4
(National Institute of Science and Technology for Software Engineering—INES,
www.ines.org.br).

J. Derrick et al. (Eds.): ABZ 2012, LNCS 7316, pp. 353 2012.
© Springer-Verlag Berlin Heidelberg 2012

354 H. Barbosa and D. Déharbe

simulation. A model-driven engineering approach is used in [5] to generate mod-
els in a FIACRE language from LD programs. To this date, these approaches
are concerned only with parts of the IEC 61131-3 standard.

Our approach already handles two of the five languages of the standard,
namely SFC and ST, and we are working to extend it to be fully compliant.
To do so, we use the PLCopen [3] standard, which provides an interface repre-
senting all the IEC 61131-3 languages in an XML-based format. Another goal of
our approach is to be capable of verifying legacy programs in numerous different
PLCs. We have built an intermediary model based in the PLCopen interface that
is loaded from the PLC programs and then is used to automatically generate a
B model.

B [2] is a formal method that can be used to specify systems and through proof
obligations demonstrate its correctness according to the specification, avoiding
state-explosion problem. It is practical and competitive to develop safety-critical
systems, with the correct methodology and tools. Using the B method we can
verify safety constraints through the proof obligations and also to check struc-
tural issues, such as deadlock freedom, using animation tools such as ProB [4].
Thus, we increase the confidence in the PLC applications and facilitate the use
of formal methods in the industry.

Next section presents details on the different phases of our method as well as
an example. In the end we have some discussions and future work.

2 The Method

The method we are proposing consists of three main phases:

1. translate the information in the PLC programs into an intermediary model
(from now on called “PLC model”), either from a PLC program or from an
XML file in the PLCopen standard;

2. generate from it a B model that makes possible to check the structural and
safety properties of the project;

3. and at last complete the formal model with these safety properties, derived
from the project requirements (manually, for now).

2.1 Towards the PLC Model

The PLC model may be generated either directly from an XML in the PLCopen
standard or from the programs in some hybrid language, based on the IEC 61131-
3 standard. Such languages are common as adaptations to specific domain PLCs
may be necessary.

We projected a compiler to analyze the programs; it deals with the elements
of the standard languages and may be customized to any existing differences,
to accommodate any new language. This way we can deal with legacy programs
that are not strictly standard compliant. To deal with XML, we use a reader
module to load the PLC model along with the uncustomized compiler.

Once the PLC model is constructed we are able to work independently from
the PLC programs or the PLCopen to generate the B specification.

Formal Verification of PLC Programs Using the B Method 355

2.2 Generation of the B Model

A good architecture is essencial to generate a good model, as well as to define
which information from which language will be responsible for which elements
of the B model, since it is common to have PLCs using more than one language.
As so far we are working only with SFC and ST, our architecture can handle
just the elements of these two languages. When we deal with the elements of the
other languages the architecture will be adapted to include them.

The architecture of the model is depicted in figure [[l This model represents
a PLC that process signals required by a control application, having them as
inputs. The PLC outputs are treated as local variables; it is no loss of generality to
deal with them like that since we are dealing with the PLCs only as independent
components. The safety requirements will concern mostly these outputs.

The machine contains the

signatures of the operations Contains the operations
representing the steps, and the (MACHINE plc representing the ST functions,
eventual preconditions from that can be used in the steps’
the transitions. The refinement REFINEMENT plc_r —> MACHINE Functions]’ actions

has the actions as bodies of the -

operations.

Fig. 1. Shows the architecture of the B model generated by a SFC + ST PLC

For the PLC component, the operations are derived from the SFC steps, as
whether or not they have preconditions is based in the SFC transitions. The
body of these operations and the content of their preconditions are the result
of the translation of ST statements. The operations of the Functions machine
are also constructed with the translated ST statements.

Figure Plshows a little example of the generation of the B model. Due to space
limitations, we do not present the whole process.

The next step is to add safety requirements. Since the PLC programs
do not represent such constraints explicitly, they are manually extracted from
the project requirements and inserted into the model as invariants of the

Stepl =
== hasCommandToOpen PRE hasCommandToOpen = TRUE
THEN
ok_opening:= IF (train_stopped = TRUE)
@E’, train_stopped - THEN& (train_in platform = TRUE)
AND train_in_platform; ok_opening := TRUE
ELSE
ok_opening := FALSE
END
END;

Fig. 2. Example shows a SFC step, its transition and its action (in ST) as base for the
generation of a B operation

356 H. Barbosa and D. Déharbe

refinement, conditions that must always hold as the PLC actions are per-
formed. For example, the requirement “a train must be stopped and in the plat-
form to open its doors” is inserted as the invariant: (ok opening = TRUE) =
((train stopped = TRUE) & (train in platform = TRUE)). Tools like AtelierB
can perform automatic verification of their consistency and point out where lies
any problem, guiding its treatment.

The formal model can also be evaluated with an animation tool like ProB,
making possible to model check the model to verify structural properties (dead-
lock, liveness, LTL conditions...).

3 Discussions and Future Work

We have overviewed a method to carry out formal verification of the languages
of the IEC 61131-3 standard for PLC programming through the automatic gen-
eration of a B specification. There is still much work to be done, but the results
so far are quite satisfactory.

Future work lies most in expanding the generation of the B model to the
other language. The safety constraints are still manually derived from the re-
quirements, but we plan to automatize this process. We are about to start a
case study with the company ClearSy, strongly involved with the B method and
safety critical systems engineering, in a real project in the railway field to execute
problem diagnosis in high speed trains.

References

1. TEC: IEC 61131-3 - Programmable controllers. International Electrotechnical Comis-
sion Standards (2003)

2. Abrial, Jr.: The B-book: assigning programs to meanings. Cambridge University
Press, Cambridge (2005)

3. PLCopen: XML Formats for IEC 61131-3. PLCopen Technical Committee 6 (2009)

4. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855-874. Springer, Heidelberg
(2003)

5. Farines, J., de Queiroz, M.H., da Rocha, V.G., Carpes, A.A.M., Vernadat, F.,
Crégut, X.: A model-driven engineering approach to formal verification of PLC
programs. In: IEEE EFTA (2011)

6. Ljungkrantz, O., Akesson, K., Fabian, M., Yuan, C.: A Formal Specification lan-
guage for PLC-based Control Logic. In: Proc. of 8th IEEE International Conference
on Industrial Informatics, pp. 1067-1072 (2010)

7. Soliman, D., Frey, G.: Verification and Validation of Safety Applications based on
PLcopen Safety Function Blocks using Timed Automata in Uppaal. In: Proceedings
of the Second IDAC Workshop on Dependable Control of Discrete Systems (DCDS),
pp. 39-44 (2009)

	Formal Verification of PLC Programs Using the B Method

	Introduction
	The Method
	Towards the PLC Model
	Generation of the B Model

	Discussions and Future Work
	References

