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Abstract. In the past decade, satisfiability modulo theories (SMT)
solvers have been extended to support the theory of strings and reg-
ular expressions. This theory has proven to be useful in a wide range of
applications in academia and industry. To accommodate the expressive
nature of string constraints used in those applications, string solvers use a
multi-layered architecture where extended operators are reduced to a set
of core operators. These reductions, however, are often costly to reason
about. In this work, we propose new techniques for eagerly discovering
conflicts based on equality reasoning and lazily avoiding reductions for
certain extended functions based on lightweight reasoning. We present a
strategy for integrating and scheduling these techniques in a CDCLpT q-
based theory solver for strings and regular expressions. We implement
the techniques and the strategy in cvc5, a state-of-the-art SMT solver,
and show that they lead to a significant performance improvement.

1 Introduction

Most software processes strings and, as a result, modern programming languages
integrate rich functionality to represent and manipulate strings. The semantics of
string-manipulating functions are often complex, which makes reasoning about
them challenging. In recent years, researchers have proposed various approaches
to tackle this challenge with dedicated solvers for string constraints [3,5,11,19,21],
often as extensions of satisfiability modulo theories (SMT) solvers [10]. Dedicated
solvers have been successfully used in a wide range of applications, including:
finding or proving the absence of SQL injections and XSS vulnerabilities in web
applications [30,32,35]; reasoning about access policies in cloud infrastructure [6,
7, 13]; and generating database tables from SQL queries for unit testing [34].

SMT solvers are frequently used as back ends for formal tools that reason
about software or hardware. These tools typically produce a mix of easy and hard
proof obligations that must be discharged by the solver. For many applications,
it is crucial that the SMT solver responds quickly, and modern solvers are finely
tuned to deliver the required performance. String solvers often stratify reasoning
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about constraints by combining different reasoning techniques rather than relying
on a single, monolithic procedure. Specifically, it is common for a string solver to
have a core procedure that processes only a basic language of string constraints
with a minimal set of string operators. Extended constraints, containing addi-
tional operators, are supported by applying transformations that reduce them
to combinations of basic constraints. Optimizations to this design have been
explored in previous work, e.g., by simplifying extended string constraints based
on the current context (i.e., the current set of asserted constraints) [29]. However,
existing techniques still sometimes fall short for industrial applications, which
continue to require richer languages of constraints while expecting the underlying
solvers to remain efficient. To meet these needs, string solvers must have an
even greater understanding of extended constraints and be equipped with fast
procedures that leverage this knowledge.

In this work, we focus on CDCLpT q-based SMT solvers [26], where solving is
done through the cooperation of a SAT solver and one or more theory solvers.
The SAT solver is responsible for finding truth assignments M that satisfy the
Boolean abstraction of the input formula, and the theory solvers are responsible
for returning conflict clauses (disjunctions of literals that are valid in the theory
T but are falsified by M) and, optionally, lemmas (selected clauses that are valid
in T ). The conflict clauses and lemmas from theory solvers are then added to
the original input formula, and the process of finding a satisfying assignment M
is repeated until no conflicts are detected, indicating that the input formula is
satisfiable in T , or an unrecoverable conflict is derived, indicating that the input
is unsatisfiable in T . Theory reasoning done while the SAT solver is constructing
the assignment M is characterized as eager. Theory reasoning done after a full
assignment has been computed is called lazy.

Inspired by real-world benchmarks, we propose new techniques for string
solvers that make them more eager, and hence faster, in their discovery of conflicts
and lazier in reducing constraints that are hard to handle such as, for instance,
negated regular expression membership constraints. For the former, we extend the
congruence closure [24] module at the heart of the string solver to perform selected
theory-specific forms of reasoning including eager evaluation, reasoning based on
inferred prefixes and suffixes, and (integer) arithmetic approximations (Section 3).
For the latter, we introduce several new techniques for avoiding reductions
involving extended string operators (Sections 4 and 5). This set of techniques is
particularly useful for satisfiable benchmarks, where it is possible to determine
that a (candidate) model indeed satisfies the input formula without having to
fully process extended constraints. We have designed these techniques to be
compatible with most existing solving techniques for strings. In Section 6, we
propose an extended strategy that describes the integration of the new techniques
within an existing string solver.

In summary, our contributions are as follows:

– We describe new techniques for eagerly detecting conflicts based on an
enriched congruence closure procedure for the theory of strings.
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– We describe a strategy for model-based reductions, which can be used to
minimize the reductions considered during string solving.

– We describe a procedure for efficiently reasoning about inclusion relationships
for a common fragment of regular membership constraints. This procedure
is used both for detecting conflicts and for avoiding unfoldings of regular
expressions.

– We evaluate an implementation of the new techniques in cvc5 [8], an open
source state-of-the-art SMT solver, on a wide range of string benchmarks
and show a significant improvement in overall performance.

1.1 Related Work

As mentioned above, string solvers typically reduce the input constraints to
a basic form. Common basic representations include finite automata [14, 17,
18,31,33], bit-vectors [19], arrays [20], variations of word equations and length
constraints [12,29,32,36], and hybrid approaches that combine word equations and
bit-vector representations [23]. Our techniques for lazier reductions are primarily
targeted at reductions to word equations, but our other techniques are more
broadly applicable and could be used with any of the other basic representations.

In general, the theory of strings is undecidable [12], but modern solvers
integrate a wide range of techniques to solve problems that appear in practice.
One line of work has been exploring techniques that avoid reductions or make
them more efficient. Reynolds et al. [29] describe an approach for lazily performing
reductions after simplifying extended functions based on other constraints in the
current context. In later work, Reynolds et al. [27] propose the use of aggressive
rewriting to eliminate or simplify extended string constraints before performing
reductions. In this work, we propose techniques that can be combined with that
earlier work to perform reductions even more lazily. Reynolds et al. [28] also
proposed a technique for improving the efficiency of reductions by introducing
fewer fresh variables. Our approach is orthogonal to this work, because it further
avoids reductions, but cannot avoid them entirely.

Both Reynolds et al. [28] and Backes et al. [7] reduce a fragment of regular
expression constraints to extended string constraints. In contrast, our approach
avoids reductions of certain regular membership constraints.

2 Preliminaries

We work in many-sorted first-order logic with equality and assume the reader is
familiar with the notions of signature, term, literal, (quantified) formula, and free
variable (see, e.g., [16]). We consider many-sorted signatures Σ, each containing
a family of logical symbols « for equality and interpreted as the identity relation,
with input sort σ ˆ σ for all sorts σ in Σ. A Σ-interpretation is a Σ-structure
that additionally assigns a value to each variable. A theory is a pair T “ pΣ, Iq,
in which Σ is a signature and I is a class of Σ-interpretations, the models of
T . A Σ-formula ϕ is satisfiable (resp., unsatisfiable) in T if it is satisfied by
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n : Int for all n P N ` : Intˆ Int Ñ Int ´ : Int Ñ Int ě : Intˆ Int Ñ Bool

l : Str for all l P A˚ ¨ . . . ¨ : Str ˆ ¨ ¨ ¨ ˆ Str Ñ Str | | : Str Ñ Int

substr : Str ˆ Intˆ Int Ñ Str ctn : Str ˆ Str Ñ Bool
indexof : Str ˆ Str ˆ Int Ñ Int replace : Str ˆ Str ˆ Str Ñ Str

P : Str ˆ Lan Ñ Bool Σ : Lan
rcon : Lanˆ ¨ ¨ ¨ ˆ Lan Ñ Lan re : Str Ñ Lan
inter : Lanˆ ¨ ¨ ¨ ˆ Lan Ñ Lan ˚ : Lan Ñ Lan
union : Lanˆ ¨ ¨ ¨ ˆ Lan Ñ Lan rangec1,c2 : Lan

Fig. 1: Functions in signature of the theory of strings TS.

some (resp., no) interpretation in I. By convention and unless otherwise stated,
we use letters x, y, z to denote variables and s, t to denote terms.

We consider an (extended) theory TS of strings whose signature ΣS is given in
Figure 1. We fix a totally ordered finite alphabet A of characters. The signature
includes the sorts Str, Lan, Int, and Bool, denoting A˚, regular languages over
A, integers, and Booleans respectively. The core signature is given on the first
two lines. It includes the usual symbols of linear integer arithmetic, interpreted
as expected. We will write t1 ’ t2, with ’ P tą,ă,ďu, as syntactic sugar for
the equivalent inequality between t1 and t2 expressed using only ě. The core
string symbols are given on the second line, and include a constant symbol, or
string constant, for each word of A˚ interpreted as that word; a variadic function
symbol ¨ . . . ¨ : Str ˆ . . .ˆ Str Ñ Str, interpreted as word concatenation; and a
function symbol | | : Str Ñ Int, interpreted as the word length function. In our
examples, we will take a A to be the set of ASCII characters and denote string
constants by double-quote-delimited string literals (as in "abc").

The four function symbols in the next two lines of Figure 1 encode operations
on strings that often occur in applications: a substring operator, a string con-
tainment predicate, an operation to find the position of one string in another,
and one to replace a substring with another. We refer to these function symbols
as extended functions. For details on the semantics of these operators, see for
example [29].

The remainder of the signature covers regular expressions. It includes an
infix binary predicate symbol P : Str ˆ Lan Ñ Bool, which denotes word
membership in a given regular language. The remaining symbols are used to
construct regular expressions. In particular, Σ denotes (the language of) all
strings of length one; repsq denotes the singleton language containing just the
word denoted by s; rconpR1, ¨ ¨ ¨ , Rnq denotes all strings that are a concatenation
of strings denoted by the arguments; the Kleene star operator R˚ denotes all
strings that are obtained as the concatenation of zero or more repetitions of the
strings denoted by R; interpR1, ¨ ¨ ¨ , Rnq denotes the intersection of the languages
denoted its arguments; and unionpR1, ¨ ¨ ¨ , Rnq denotes the union of the languages
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denoted by its arguments. Finally, we include the class of all indexed regular
expression symbols of the form rangec1,c2 where c1 and c2 are string constants
of length one. We call this a regular expression range and interpret it as the
language containing all strings of length one that are between c1 and c2 (inclusive)
in the ordering associated with A.

3 Eager Equality-Based Conflicts for Strings

We consider theory solvers for strings like those described by Liang et al. [21],
which have at their core a congruence closure algorithm that determines whether
a set of string constraints S is satisfiable in the empty theory (i.e., all function
symbols, including string operations, are treated as uninterpreted). In this section,
we describe two enhancements to such congruence closure algorithms, which can
help detect theory-inconsistencies in S. We stress that our extended congruence
closure is computed eagerly and incrementally as the SAT solver assigns truth
values to string equalities. This enables the enhanced congruence closure algorithm
to detect theory inconsistencies early, when the truth assignment is still only
partially specified. We elaborate on how this enables eager backtracking in
Section 6.

3.1 Enhancing Congruence Closure with Evaluation

The string solver implements a procedure to compute the congruence closure
CpSq over the set S of currently asserted string equalities. Let T pSq be the set of
all terms and subterms in S. Formally, CpSq is the set of all equalities between
terms in T pSq that are entailed by the empty theory:

CpSq “ ts « t | s, t P T pSq,S |ù s « tu

The output of the procedure that computes CpSq can be represented as a set of
equivalence classes, that is, a partition of T pSq where each block of the partition
is a maximal set of equivalent terms. For each equivalence class, we designate
a unique term in it as the representative for that class; if the class contains at
least one constant term, then the representative must be one of them. We will
denote by rts the equivalence class of a term t induced by CpSq. By a slight abuse
of notation we will use rts also to denote the representative of that class.

Computing the congruence closure CpSq allows the string solver to detect
theory conflicts in the current context which occur when the context contains a
disequality s ff t, where rss “ rts. It also allows the string solver to propagate to
the SAT solver entailed equalities that occur in the input formula but have not
been explicitly asserted yet.

By default, congruence closure procedures effectively treat theory symbols as
uninterpreted functions. Here, we propose a lightweight approach for injecting
some theory-specific reasoning by evaluating string terms whenever possible.
Specifically, for every term that is a function application fpt1, . . . , tnq, where f
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is a string theory symbol, if the representatives rt1s, . . . , rtns are all constants,
the enhanced congruence closure procedure adds the equality fpt1, . . . , tnq «
fprt1s, . . . , rtnsqÓ to CpSq, where fprt1s, . . . , rtnsqÓ is the constant resulting from
the evaluation of fprt1s, . . . , rtnsq. Adding these equalities improves the ability of
the congruence closure layer to detect more theory conflicts and propagations, as
illustrated in the following example.

Example 1. Consider the constraints ty « "b", z « replacepx, y, "d"q, x « z, x «
"abc"u, where the term replacepx, y, "d"q denotes the result of replacing the first
occurrence of y in x by "d" if one exists. The congruence closure for this set of
constraints determines the following equivalence classes, each with a constant
representative:

t"b", yu, t"d"u, t"abc", x, z, replacepx, y, "d"qu .

This means that the term replacepx, y, "d"q is equivalent to the concrete term
replacep"abc", "b", "d"q. Evaluating the latter results in the constant "adc".
Hence, the congruence closure procedure will add the equality replacepx, y, "d"q «
"adc" to its input set of equalities and recompute the congruence closure. This
will cause the third equivalence class in the list above to contain the (distinct)
string constants "abc" and "adc", thus resulting in a conflict.

In our implementation, we must track explanations for inferred equalities for
the purposes of reporting conflict clauses. In the above example, the equality
replacepx, y, "d"q « "adc" is added to the congruence with the explanation
x « "abc"^y « "b", which is then used in the standard technique for constructing
explanations for congruence-closure-based reasoning [25].

We remark that enhancing congruence closure with evaluation is not specific
to the theory of strings, and can be leveraged by other theory solvers based on
congruence closure. Further exploration of this technique and its impact on other
theories is left as future work.

3.2 Tracking Properties of Equivalence Classes

In addition to the use of evaluation, we enhance our congruence closure procedure
with further information that can be used to discover conflicts eagerly based on
string-specific reasoning. We describe two examples of this mechanism below.

First, we maintain a mapping Z from integer equivalence classes e to intervals
of the form r`, us, indicating concrete lower and upper bounds on the value that
the terms in e can have. Open intervals are achieved by letting ` and u be ´8
and 8 respectively. The interval can be inferred using string-specific reasoning
over the terms in e.

Second, we maintain a mapping S from string equivalence classes e to a pair
of string constants pl1, l2q denoting the maximal known prefix l1 and suffix l2
of the value that the terms in e can have. For example, if e contains the term
"abc" ¨ x then l1 for e is, at least, "abc". When no prefix is known, l1 is the
empty string. The suffix l2 is handled similarly.
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newEqcptq :

t : Int Z rts :“

$

’

&

’

%

rn, ns if t “ n

r`|s|, u|s|s if t “ |s|

r´8,8s otherwise

t : Str S rts :“

#

pt, tq if t is a constant

pl1, l2q if t reduces to l1 ¨ t
1
¨ l2 with l1, l2 constants

mergeEqcprt1s, rt2sq :

t1, t2 : Bool

if pt1, t2q “ pJ, x P Rq where R “ rconprepl1q, R
1, repl2qq then

mergeEntrypZ rxs, r`|R|, u|R|sq
mergeEntrypS rxs, pl1, l2qq

t1, t2 : Int mergeEntrypZ rt1s, Z rt2sq

t1, t2 : Str mergeEntrypS rt1s, S rt2sq

mergeEntrypE1, E2q :

E1, E2 “ r`1, u1s, r`2, u2s
if `1 ą u2 or `2 ą u1 then CONFLICT

else E1 :“ rmaxp`1, `2q,minpu1, u2qs

E1, E2 “ pp1, s1q, pp2, s2q
if p1 pre p2 or s1 suf s2 then CONFLICT

else E1 :“ pmax| |pp1, p2q,max| |ps1, s2qq

Fig. 2: Methods for tracking intervals, prefixes, and suffixes for equivalence classes.

Figure 2 shows how the maps Z and S are updated when new equivalence
classes are created (newEqc) and when equivalence classes are merged (mergeEqc),
the two basic methods that are used when computing congruence closures. For the
second method, a helper method (mergeEntry) is used to combine the contents of
the entries in two maps. We assume without loss of generality that when mergeEqc
is called on equivalence classes prt1s, rt2sq, rt1s becomes the new representative
for the merged class.

We now look at these methods in more detail. When a new equivalence class
for term t is created, we look at the type of t. If t has integer type, there are
three cases. If t is a numeral n, it is mapped to the interval rn, ns. If t is a length
term of the form |s|, then we compute an interval r`|s|, u|s|s where `|s| (resp.,
u|s|) is a sound under-approximation (resp., over-approximation) of the length
of s. We use the procedure described by Reynolds et al. [27] to compute these
approximations. We use it because it is available, well-tested, and designed to be
fast, but any sound approximation could be used. Otherwise, t is mapped to the
open interval r´8,8s. If t has string type, we consider two cases. If t is a string
constant, its prefix and suffix are both set to t. If t can be normalized using a
simple set of rewrite rules to a concatenation term of the form l1 ¨ t

1 ¨ l2, where
l1 and l2 are string constants of maximal length and t1 is a non-constant term,
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then t is mapped to the pair pl1, l2q. Note that the notation l1 ¨ t
1 ¨ l2 is meant to

include the case where either l1 or l2 (or both) is the empty string.4

When two equivalence classes rt1s and rt2s are merged, first, if rt1s is J and
rt2s is a regular expression membership predicate x P R, then we may infer
information about x, because x P R is now known to be true in the current
context. We compute upper and lower bounds r`|R|, u|R|s on the length of all
strings that occur in R. We use fast approximate techniques for computing these
bounds (e.g., sum the length of constant components of concatenations to infer
lower bounds). Note that these techniques are context-independent and are solely
based on the structure of R. We update the entry Z rxs based on this information.
Similarly, we update the entry S rxs with information about the constant prefix
and suffix of the regular expression R. On the other hand, when rt1s and rt2s are
integer or string equivalence classes, we merge the entries for the appropriate
mapping. We stress that the entry for rt1s is updated with the information from
the entry for rt2s and not vice versa. This is because rt1s is the new representative
of the merged equivalence class, and further merges may refer to it, while rt2s is
subsequently unused.

When merging entries, we may determine that the constraints represented
by the two entries are inconsistent, in which case we have found a conflict. For
example, when merging integer equivalence classes, if the lower bound for one
equivalence class is greater than the upper bound for the other, we raise a conflict.
For string equivalence classes, a conflict is raised if the prefixes for the two
equivalence classes are incompatible (i.e., neither is a prefix of the other) and
similarly for suffixes. We write p1 pre p2 (resp., s1 suf s2) to denote that p1
is not a prefix of p2 or vice versa (resp., s1 is not a suffix of s2 or vice versa),
and max| | to denote the function returning the string constant having maximum
length. If no conflict is raised, then the new entry E1 is updated to contain the
merged information: for integers, we take the maximal lower bound and minimal
upper bound; and for strings, we take the prefix or suffix of maximal length.

In the context of CDCLpT q, when the procedure raises a conflict, it is required
to return a conflict clause, which in turn will cause the solver to backtrack. To
make it possible to compute conflict clauses in the methods described above,
each component of the entries for an equivalence class e in the two maps Z
and S is additionally annotated with an explanation pair pt, ϕq, where t is a
term in e and ϕ entails that t has the property represented by the component.
This is maintained independently for each lower bound, upper bound, prefix
and suffix. In most cases, this pair is of the form pt,Jq, where t is the source
of the annotation. When inferring annotations from an asserted membership
constraint x P R during mergeEqc above, their explanations are the pair px, x P Rq.
Explanations are updated when entries E1 and E2 are merged, where, e.g., the
explanation for the lower bound is taken from E2 when `2 ą `1. When two entries

4 It is possible to produce tighter prefixes and suffixes recursively—for instance for
terms t1 ¨ t

1
¨ t2 where the equivalence class of t1 (resp., t2) is assigned a constant

prefix (resp., suffix). However, in our experiments, this did not turn out to be worth
the extra effort.
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are in conflict, the explanations are used to generate the conflict. For example,
assuming two entries have explanations pt1, ϕ1q and pt2, ϕ2q, we send the conflict
clause  pt1 « t2^ϕ1^ϕ2q. The equality t1 « t2 may be further expanded using
standard methods for explanations during congruence closure [25].

Example 2. Consider the constraints tx P rconprep"a"q,Σ˚, rep"b"qq, z « "bcd" ¨

w, x « zu. The state of the map S after processing each assertion is as follows:

# Assertion S Conflict?

1 x P rconprep"a"q,Σ˚, rep"b"qq rxs ÞÑ p"a", "b"q
2 z « "bcd" ¨ w S1 Y rzs ÞÑ p"bcd", εq
3 x « z S2 S2prxsq,S2przsqq

When the first constraint x P rconprep"a"q,Σ˚, rep"b"qq is asserted, we construct
the (Boolean) equivalence class for this constraint and merge it with rJs. Based on
the mergeEqc method, we infer that the prefix and suffix for the string equivalence
class rxs are "a" and "b" respectively, which are added to S to obtain S1 When
the second constraint is asserted, we infer the prefix "bcd" for rzs and add it to
S1 to get S2; no suffix is inferred since we do not know the value of w. When the
third constraint is asserted, the equivalence classes rxs and rzs merge. Since we
have inferred that "a" is a prefix of rxs and "bcd" is a prefix of rzs, we have a
conflict, as these two strings do not have a common prefix. Our procedure will
thus report a conflict containing the three constraints.

Example 3. Consider the constraints t|s| ff 0, |"abc" ¨ w| ff 0, x « s, x « "abc" ¨

wu, where s is the term substrpy, 0, 2q, which takes the substring of y at position
0 of length (at most) 2. The state of the map Z after processing each assertion is
as follows:

# Assertion Z Conflict?

1 |s| ff 0 r0s ÞÑ r0, 0s, r|s|s ÞÑ r0, 2s
2 |"abc" ¨ w| ff 0 Z1 Y r|"abc" ¨ w|s ÞÑ r3,8s
3 x « s Z2

4 x « "abc" ¨ w Z3 Zpr|s|sq,Zpr|"abc" ¨ w|sq

When the first constraint |s| ff 0 is asserted, we construct the equivalence classes
r0s and r|s|s. The former trivially has bounds r0, 0s. For the latter, we use the
methods from [27] to infer lower and upper bounds for |s|. Note that every string
has a lower length bound of 0. The upper bound for the length of substrpy, 0, 2q
can easily be inferred to be 2. Similarly, when |"abc" ¨ w| ff 0 is asserted, the
equivalence class r|"abc" ¨ w|s is created, whose length has a lower bound of 3
and no upper bound. After the latter two constraints are asserted, note that s
becomes equal to "abc" ¨ w by transitivity, and hence |s| is equal to |"abc" ¨ w|
by congruence. When these two equivalence classes merge, we obtain a conflict
from their respective entries in Z, since the former has an upper bound of 2 and
the latter has a lower bound of 3. Thus, our procedure returns the latter two
constraints as a conflict.
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4 Model-Based Reductions for Strings

The bottleneck for string solving often lies in reasoning about the reductions of
extended string functions. Context-dependent simplification can greatly improve
the scalability of string solvers for extended string constraints [29]. At a high level,
this approach attempts to simplify extended terms based on information that
holds in the current context, which can preempt the need for potentially expensive
reasoning. In this work, we extend this strategy by additionally reasoning about
candidate models.

First, we briefly review how extended string terms are reduced to more basic
constructs. A reduction formula for term t is a formula ϕ^ t « k, where k is a
fresh variable and ϕ is a formula over terms k, t1, . . . , tn that characterizes the
meaning of t in the sense that a theory interpretation satisfies ϕ if and only if
it satisfies t « k. As a result, the formula D k. pϕ^ t « kq is valid in the theory,
and hence its Skolemized version can be given to the SAT solver as a lemma.
This effectively reduces the satisfiability of constraints of the form crts to the
satisfiability of crks ^ ϕ, where t has been replaced by k.

Example 4. Let t be the regular expression membership constraint x P rep"a"q˚.
The formula pk « px « ε_ x P rep"a"q _ ψqq ^ t « k where ψ is

Dk1k2k3. x « k1 ¨ k2 ¨ k3 ^ k1 P rep"a"q ^ k2 P rep"a"q˚ ^ k3 P rep"a"q

is a reduction for t.

Reductions like the one above can be expensive to reason about, since they may
introduce fresh (possibly universally) quantified variables. Context-dependent
simplifications can avoid these reductions in some cases.

Given a string term t of the form fpt1, . . . , tnq, where f is an extended function,
a context-dependent simplification is a formula of the form pt1 « s1 ^ . . .^ tn «
snq ñ t « l where l is the constant value obtained by evaluating or rewriting
fps1, . . . , snq. Whenever possible, we use context-dependent simplifications for
extended string terms, where t1 « s1, . . . , tn « sn are equalities that hold in
the current context. The same approach can be applied to regular expression
memberships as well, where a membership constraint of the form x P R can be
simplified to J or K whenever x is inferred to be equal to a concrete string literal.

Example 5. Let t be as in the previous example. The formula x « "b"ñ t « K
is a context-dependent simplification for t.5

While context-dependent simplification eliminates some reductions, in this
paper we propose making certain reductions even lazier by taking into account
candidate models. If a candidate model can be built that already satisfies a
constraint with extended terms, it is not necessary to reduce it.

To elaborate, existing procedures for strings [21] are able to construct candi-
date models M (or, more precisely, interpretations) for satisfiable sets of string

5 We omit from the implication the trivial antecedent rep"a"q˚ « rep"a"q˚.
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constraints before reductions are considered by treating all (sub)terms headed
by an extended function as fresh variables, and by ignoring regular expression
membership constraints. A strategy for model-based reduction only considers
reductions for t if the candidate model M is inconsistent with the semantics
of t—something that can be easily checked by evaluating t in the model and
verifying that the computed value coincides with the value that M assigns to t as
a variable. This allows us to avoid reductions for cases where a candidate model
is correctly guessed in the presence of extended functions and regular expression
membership constraints. A concrete instantiation of this strategy is described in
Section 6.

Example 6. Consider the constraints tx « y ¨ "c", x P rconpΣ˚, rep"j"q,Σ˚qu.
A model-based reduction strategy would first construct a candidate model that
satisfies the first constraint, e.g., M “ tx ÞÑ "abc", y ÞÑ "ab"u. It would then
check whether the membership constraint x P rconpΣ˚, rep"j"q,Σ˚q evaluates
to false in M. This is indeed the case, since xM “ "abc", making M a model
for the full set of constraints. Hence, the reduction for the regular membership
constraint in this example can be avoided altogether.

5 Fast Techniques for Regular Expression Inclusion

As mentioned in Section 4, regular expression memberships are handled by a
lazy reduction, which can be seen as a single-step unfolding. While model-based
reductions can avoid some reductions, the remaining ones may still be expensive.
In this section, we show another technique to avoid reductions, based on the
observation that most regular expressions in real programs are relatively simple.
We focus on those of the form rconpR1, . . . , Rnq, where each Ri corresponds to a
fixed or arbitrary number of range or constant regular expressions. Such regular
expressions are frequently used to match a string that is made up of multiple
segments, each with a different alphabet. For this fragment of regular expressions,
our procedure allows us to detect conflicts before unfolding and may additionally
tell us which regular expression memberships are entailed by others, and hence
can be discarded.

We use the notation LpR1q Ď LpR2q to denote that R1 matches a subset
of the strings matched by R2. The derivation rules in Figure 3 can be used to
implement a fast, incomplete procedure to prove LpR1q Ď LpR2q. The procedure
applies the rules bottom-up to build a derivation tree with LpR1q Ď LpR2q as the
root. The statement is proven if a derivation tree is found where all leaves have no
preconditions. For any given pair of regular expressions, the number of possible
rule applications is finite, and whether a rule applies can be checked in polynomial
time w.r.t. the number of elements in the regular expression concatenations.

The first four rules in Figure 3 have no preconditions. A regular expression
R matches zero or more occurrences of R and the rules Emp and Star use that
fact to conclude that (the language generated by) R˚ includes the empty string,
corresponding to zero occurrences of R, and (the language generated by) R,
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Emp
Lp""q Ď LpR˚q

Star
LpRq Ď LpR˚q

All
LpRq Ď LpΣ˚q

Refl
LpRq Ď LpRq

Trans
LpR1q Ď LpR2q LpR2q Ď LpR3q

LpR1q Ď LpR3q
CongStar

LpR1q Ď LpR2q

LpR˚1 q Ď LpR˚2 q

Char
For each x P LpRq, |x| “ 1

LpRq Ď LpΣq
Range

c1 ě c3 c2 ď c4

Lprangec1,c2q Ď Lprangec3,c4q

Concat
LpR1q Ď LpR3q LpR2q Ď LpR4q

LprconpR1, R2qq Ď LprconpR3, R4qq

Fig. 3: Rules for deriving LpR1q Ď LpR2q.

corresponding to a single occurrence of R. The third rule, All, concludes that
every R is included in Σ˚, which matches all strings. Finally, Refl captures the
reflexivity of the regular expression inclusion relation. Regular expression inclusion
is transitive, which is captured by Trans. Additionally, CongStar captures that
applying the Kleene star to regular expressions preserves the inclusion relation.
The next two rules are related to regular expressions that match single characters:
Char concludes that if a regular expression matches only single characters then it
is included in Σ, which matches all characters; Range compares the bounds of
two ranges to determine if one is included in the other. Finally, the rule Concat

splits regular expression concatenations into two parts and ensures that the parts
on the right-hand side include the parts on the left-hand side. Note that the
splits themselves can be concatenations, so there is a choice regarding how those
concatenations are split into two parts. In the context of this rule, we treat
regular expressions that match a single word as a concatenation of the individual
letters of that word. For example, for Lp"abc"q Ď Lprconp"ab", Σqq, we could
choose the subgoal Lp"c"q Ď LpΣq after applying Concat.

Given a regular expression inclusion LpR1q Ď LpR2q, the above procedure
may potentially derive conflicts or propagate regular membership constraints,
avoiding reducing them. A conflict can be derived from membership constraints
x P R1 and  y P R2 if x « y is entailed by the current context. Similarly, from
x « y being entailed and y P R1 being asserted, we can propagate the regular
membership constraint x P R2; and from x « y and  y P R2 we can propagate
 x P R1.
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Example 7. Consider the following theory literals:

x P rconpprange0,9q
˚, Σ˚, "b", Σ˚q (1)

 x P rconpprange0,9q
˚, Σ˚q (2)

We can apply Concat, Refl, and All to the two regular expressions:

Concat

Refl
Lpprange0,9q

˚q Ď Lpprange0,9q
˚q

All
LprconpΣ˚, rep"b"q, Σ˚qq Ď LpΣ˚q

Lprconpprange0,9q
˚, Σ˚, rep"b"q, Σ˚qq Ď Lprconpprange0,9q

˚, Σ˚qq

This allows us to derive a conflict, since the regular expression of the negative
membership constraint in Equation (2) includes the regular expression in the
positive regular membership constraint in Equation (1).

6 An Extended Strategy for Strings in CDCLpT q

In this section, we summarize our overall strategy for solving string constraints
that leverage the aforementioned techniques. This strategy integrates the tech-
niques presented in this paper with existing techniques used in modern string
solvers. In general, the techniques presented in this work are applicable to a wide
range of solvers. The techniques from Section 3 can be combined with any string
solver that computes the congruence closure of the constraints. Model-based
reductions are applicable to string solvers that can compute models and have the
infrastructure to selectively refine/ignore certain constraints. Regular expression
inclusion can be used in all string solvers.

Recall that in a CDCLpT q-based SMT solver, the theory solvers produce
conflict clauses or lemmas based on the content of the current context, the truth
assignment incrementally constructed by the SAT solver. In the following, we
split the discussion between checks that are performed on partial assignments
and checks that are performed on full assignments from the SAT solver.

Checking Partial Assignments Recall that M is the assignment to literals chosen
by the SAT solver. In our implementation, whenever the SAT solver adds a literal
p qt « s to M , that literal is immediately added to the congruence closure data
structure of the appropriate theory.6 This means that in a typical configuration,
conflicts that are based purely on equality reasoning may be raised the moment
M becomes unsatisfiable in the theory. This behavior makes the SMT solver
faster, as it may backtrack without having to generate any further extension to M .
The techniques in Sections 3.1 and 3.2 increase the likelihood that such conflicts
may be discovered eagerly based on evaluation, arithmetic approximations, and
tracking prefixes and suffixes for string terms. Given that those techniques are
executed every time the SAT solver assigns a value, it is imperative that they
are inexpensive.

6 In our implementation, each theory locally maintains its own congruence closure data
structure.
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checkFullpSq

1 Let F “ getRefineExtpSq; if F “ H return SAT else return F

getRefineExtpSq

1 C,E,Em :“ H
2 for all ext. terms and r.e. memberships t P T pSq where t “ fpt1, . . . , tnq do
3 if Ds1, . . . sn s.t. S ( t1 « s1 ^ . . .^ tn « sn and fps1, . . . , snqÓ “ c then
4 if S * t « c then add t to C
5 else if t is x P R then
6 Let b be the Boolean value such that S ( t « b.
7 if b “ K and S ( x « x1 ^ px1 P R1q and LpR1q Ď LpRq then
8 return CONFLICT, tpx ff x1 _ x P R_ x1 P R1qu
9 else if S ( x « x1 ^ px1 P R1q « b and

((LpR1q Ď LpRq and b “ J) or (LpRq Ď LpR1q and b “ K)) then
10 continue
11 end if
12 Add t to Em if b is false, and E otherwise
13 else
14 Add t to E
15 end if
16 end for
17 if C is non-empty then return tcd simplifypS, tq | t P Cu
18 F :“ getRefinepSq
19 if F is non-empty then return F
20 if E is non-empty then return treduceptq | t P Eu
21 Construct model M for αpSq and return treduceptq | t P Em, S * t « tMu

Fig. 4: Strings theory solver using context-dependent simplification, regular ex-
pression inclusion, and model-based reductions.

Checking Full Assignments When a full assignment is generated by the SAT
solver, each theory solver is called upon to do a full effort consistency check on
the assignment M . We describe the strategy used for strings that incorporates
reasoning about context-dependent simplification, regular expression inclusion,
and model-based reductions.

Our approach checkFull is sketched in Figure 4, which summarizes the behavior
of our (extended) theory solver for strings to be used in the CDCLpT q loop. The
method takes as input a set of string constraints S, which is the subset of the
literals assigned by the SAT solver that belongs to the theory of strings. We
assume the method is called when S is satisfiable in the empty theory, and is
such that the techniques from Section 3 did not raise a conflict. It calls the
subprocedure getRefineExt, which returns a set of formulas F . This set may
contain a conflict clause, that is, a disjunction of literals that are false in S. If F
is non-empty, these formulas are returned to the SAT solver. Otherwise, if F is
empty, then the method returns SAT, indicating that S is satisfiable.
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In the subprocedure getRefineExt, we first classify the extended terms t from
S by adding them to (at most) one of three sets: the set of terms C to simplify
based on the context, the set of terms E to reduce, and the set of terms Em to
reduce if necessary based on a candidate model. This is done as follows. We first
check if term t can be simplified based on the context, that is, if we can infer
that its arguments are equivalent to terms s1, . . . , sn such that fps1, . . . , snq can
be simplified to a constant c. In this case, t is added to C if it is not already
entailed in S to be equal to c. Otherwise, if t is a regular expression membership
x P R, then we check whether t is otherwise directly in conflict with another
membership or can be discarded. The former holds when it is the case that x P R
holds with negative polarity, there exists a term x1 that is entailed to be equal
to x such that x1 P R1 is entailed to hold with positive polarity, and our regular
expression inclusion test can prove that the language of R includes that of R1.
In this case, we know that we are in conflict since x cannot be both in R1 and
not in R, and a conflict clause is returned. Otherwise, we may avoid reducing
t if it is entailed by another membership x1 P R1 with the same polarity again
where x1 is entailed equal to x. This may occur if the language of R includes
R1 and the polarity of both memberships are positive, or if R1 includes R and
the polarity of both memberships are negative. If none of these cases hold, then
we add t to E if it is a positive membership, and Em otherwise. Here, the
intuition is that negative memberships are both more expensive to reason about
via reductions, and more likely to be satisfied by candidate models. All other
extended terms are added to E, marking them to be reduced. Although not
shown in the figure, if t is an application of string containment, then it is handled
analogously to regular expression membership, noting that ctnpx, yq is equivalent
to x P rconpΣ˚, repyq,Σ˚q.

Assuming the above classification, we run four steps in decreasing order of
priority. First, if C is non-empty, we add the simplification formula for each
t P C, where we write cd simplifypS, tq to denote the formula corresponding to the
context-dependent simplification of t in S. Second, we run the core theory solver
for strings, denoted by method getRefine, which we assume runs the rule-based
procedure from [21]. For our purposes, we assume this method returns a (possibly
empty) set of refinement lemmas or conflict clauses, which we denote F and
return this set if it is non-empty. Otherwise, if our set E of terms to reduce is
non-empty, we return the set of reduction formulas reduceptq for all t P E. If none
of these cases generated lemmas, then we construct a candidate model M for the
abstraction of S, denoted αpSq, which denotes a formula where all extended terms
in S are replaced by fresh variables. Then, for each t P Em we check whether the
constraint for t holds in the candidate model M. In particular, this is the case if
S ( t « tM. We return reduceptq only for terms t for which this does not hold.

Notice that the model M serves only as a way of filtering our reductions. We
do not apply context-dependent simplification based on the model, e.g., adding
the lemma pt1 « tM1 ^ . . . ^ tn « tMn q ñ t « fptM1 , . . . , tMn qÓ, as this would
introduce an unbounded number of new literals ti « tMi to the search.
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Set cvc5 cvc5-v cvc5-e cvc5-m cvc5-r cvc5-vemr z3

Industry (62) 58 57 58 56 57 55 31

Slog (17) 17 17 17 17 17 17 10

QGen (159) 158 158 159 159 158 153 159

Norn (175) 85 84 81 98 85 88 47

Kepler (436) 89 89 89 89 89 89 85

Kaluza (225) 225 225 225 225 225 225 65

PyEx (6,948) 6,927 6,902 6,931 6,767 6,926 6,716 5,949

Slent (105) 93 82 69 93 93 41 39

Leetcode (13) 13 13 13 13 13 13 11

FullStrInt (2,718) 2,630 2,608 2,630 2,629 2,628 2,611 2,461

SmallRw (73) 52 52 52 51 52 51 6

Total (10,931) 10,347 10,287 10,324 10,197 10,343 10,059 8,863

Table 1: Number of solved problems per benchmark set for different configurations.
Best results are in bold. All benchmarks ran with a timeout of 1200 seconds.

7 Evaluation

We have implemented the strategy from Section 6 by extending cvc5, a CDCLpT q-
based state-of-the-art SMT solver that implements context-dependent simplifica-
tions [29], aggressive rewriting [27], and efficient reductions [28]. To evaluate our
extension, we measure its performance on the 69,907 SMT-LIB benchmarks [9]
that include the theory of strings7 and on a set of 74 benchmarks which we have
obtained from an industrial partner but are not allowed to make public. In this
section, we present and discuss the results of that evaluation.

We test the performance impact of the four techniques presented in this
paper: enhanced congruence closure (v), eager conflicts based on properties
of equivalence classes (e), model-based reductions (m), and regular expression
inclusion (r). We compare a configuration with all techniques enabled (cvc5)
with configurations that disable individual techniques (prefixed with cvc5-*).
To measure the combined impact, we additionally include a configuration that
disables all techniques presented in this paper, but otherwise uses all of cvc5’s
advanced techniques for strings (cvc5-vmre). Finally, as an additional reference
point, we compare with another state-of-the-art solver, z3 Version 4.8.14 [15].
In our experience, z3 is the most stable, feature-complete competitor to cvc5’s
string solver. We omit a comparison with z3str4 [23] because it returned wrong
answers at SMT-COMP 2021 [2] and there has not been a new release. Similarly,
we omit a comparison with z3-Trau 1.1 [1] (the successor of Trau [4]), because
we found it to be unsound in earlier work [28]. Finally, Ostrich 1.1 [14] requires

7 We excluded one benchmark with a quantifier in the quantifier-free logic QF SLIA.
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Fig. 5: Cactus plot of the number of solved benchmarks. All benchmarks ran with
a timeout of 1200 seconds.

inputs to be in the straight-line fragment [22], which is not the case for some of
the benchmarks.

We ran all experiments on a cluster equipped with Intel Xeon E5-2620 v4
CPUs. We allocated one physical CPU core and 8GB of RAM for each solver-
benchmark pair and used a time limit of 1200 seconds, which is the same time
limit used at SMT-COMP 2021. In the following presentation of the results, we
omit the 59,050 benchmarks that are solved in less than a second by all solvers to
emphasize non-trivial benchmarks. Table 1 lists the number of solved benchmarks
for each benchmark family and configuration. Figure 5 shows a cactus plot of the
number of solved instances for each configuration. The scatter plots in Figure 6
compare the performance of cvc5 with the other cvc5 configurations and z3.
Each scatter plot shows the solving times of the two solvers for each benchmark
and differentiates between satisfiable and unsatisfiable inputs.

Overall, all configurations of cvc5 significantly outperform z3, which is
reflected in Figure 5. The scatter plot Figure 6f shows that while cvc5 outperforms
z3, they also complement each other to a certain extent, which is not surprising
given the complexity of the problem and the fact that the two code bases
differ significantly. Overall, z3 solves 270 benchmarks that cvc5-vmre does not
solve and 171 benchmarks that cvc5 does not solve. Conversely, cvc5 solves
1645 benchmarks that z3 does not solve. Between cvc5 and cvc5-vmre, cvc5
uniquely solves 309 benchmarks and cvc5-vmre 15 benchmarks. This suggests
that our techniques help cvc5 solve some of the benchmarks that previously only
z3 could solve, but that they also have a significant impact on benchmarks that
z3 could not solve. Thus, adapting those techniques in z3 may be beneficial.
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Fig. 6: Scatter plots that compare the performance of cvc5 with the other
configurations. The scatter plots differentiate between satisfiable and unsatisfiable
benchmarks.

The PyEx benchmarks show the biggest difference in number of solved
benchmarks across the techniques, with model-based reductions (m) solving 160
more benchmarks, significantly increasing the success rate for cvc5. Figure 6c
indicates that primarily satisfiable benchmarks benefit from m. This is expected
because the technique allows the solver to skip reductions if it guesses a correct
model. Nevertheless, some unsatisfiable benchmarks are also solved noticeably
faster due to m. This is possibly due to the technique resulting in a search that
prioritizes reducing operators that are more likely to participate in conflicts.

Both the enhanced congruence closure (v) and the more eager conflicts (e)
have a relatively low impact on the number of solved benchmarks. However,
Figures 6a and 6b show they significantly improve solving times on several
benchmarks. This is expected because they allow the solver to detect conflicts
more eagerly, but the same or similar conflicts would have been found (later on)
with existing techniques. Since the solving procedure does not fundamentally
change, roughly the same benchmarks should be solved when adding these
techniques, but potentially much faster.
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Finally, the regular expression inclusion technique (r) has a low impact overall,
since it is restricted to a specific fragment, but Figure 6d shows it significantly
improves solving time for a few benchmarks. The benchmarks come from the
set of industrial problems and from the QGen set of benchmarks. While the
technique does not always apply, we have found it to be very important for certain
industrial problems. Moreover, the scatter plot shows that having the technique
available has no negative effect, which allows such a specialized procedure to be
always active in a modular solver.

8 Conclusion

We have presented new techniques that make conflict detection more eager and
reductions lazier in CDCLpT q-based string solvers. Our evaluation shows that
both classes of techniques significantly improve performance in the state-of-the-
art SMT solver cvc5 on SMT-LIB and industrial problems. As future work,
we plan to generalize our eager equality-based conflict detection to leverage
more sophisticated properties. We also plan to apply similar techniques to other
congruence-closure-based theory solvers, such as those for the theory of finite sets
and relations. The set of rules for proving regular expression inclusion was driven
by empirical work on industrial benchmarks, but it could be expanded. We also
plan to investigate further strategies for lazy reductions of other extended string
terms that lead to bottlenecks in real-world applications.
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