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1. Introduction11

We define a string event as the occurrence of some pattern of interest in the12

output of a program. Events can be produced automatically, for instance, as13

part of a log, or due to interactions between programs and users, as in a chat14

system. Examples of events of interest include the output of sensitive informa-15

tion that must be redacted or occurrences of notifications requiring immediate16

attention. Since there is no unified framework for capturing and treating string17

events, each software application handles them in specific ways. Nevertheless,18

the building blocks to construct such infrastructure are already in place: gram-19

mar synthesis [1, 2, 3] and function interception [4, 5]. This paper uses this body20

of knowledge to create a framework that handles string events for applications21

running in the Java Virtual Machine, as a way to anonymize sensitive data in22

logs.23

The advent of Data Protection Laws in several countries [6, 7, 8] has be-24

stowed great importance onto the capacity to treat and explain the output25

produced from black-boxes software (Section 2.1). However, this task is chal-26

lenging (Section 2.2), since the chain of characters produced by such black boxes27

is unbounded. The efficient detection of string events requires the synthesis of28

a language’s grammar from a potentially unlimited number of examples.29

Contributions. We describe an on-line grammar synthesis algorithm that in-30

crementally over-approximates a grammar for any language (Section 3). Our31

grammars fit into a format henceforth called Heap-Chomsky Normal Form (Sec-32

tion 3.1), a restriction of Chomsky Normal Form. Heap-CNP grammars recog-33

nize, indeed, a regular language; hence, they can be represented as regular34

automata. Therefore, these grammars are never ambiguous and admit LL(1)35

parsers. LL(1) parsers can run in linear time on the input size [9], and admit36

formal proofs of correctness, as recently shown by Edelmann et al [10]. We have37

implemented a system that uses our theory to anonymize sensitive information38

in logs, while treating the log generator as a black-box (Section 4).39

Summary of Results. We implemented the above techniques in a tool, the40
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Zhefuscator, that redacts sensitive data in SQL queries found in logs created by41

Java-based systems. Zhefuscator implements a form of reactive programming,42

which, in the words of Ramson and Hirschfeld [11, p12-2], “consist of two parts:43

detection of change and reaction to change.” Detection is the topic of Section 3,44

whereas reaction is discussed in Section 4. In Section 5 we evaluate properties45

of this tool. We summarize the results of this evaluation as follows:46

� Section 5.1 shows that we can construct a grammar for typical database47

logs (MySQL and PostgreSQL) after observing less than 10 examples of48

outputs. Exercising Zhefuscator on more complex logs, e.g., files in the49

/var/log directory of MacOS, then convergence requires more examples,50

but still a small proportion compared to the size of the log. Our worst51

case performance required 170 examples in a log containing 6,579 entries.52

� Section 5.2 demonstrates that our on-line approach can be up to 14x faster53

than a brute-force event detection system that does not synthesize gram-54

mars. Performance is important because our techniques are meant to be55

used in tandem with a running application. If it’s overhead is prohibitive,56

then chances are that users would not employ it. Furthermore, the more57

complex is the language that generates the logs, the larger is the improve-58

ment of Zhefuscator over its trivial counterpart.59

� Section 5.3 shows that our event handler does not add statistically sig-60

nificant overhead onto 11 out of 15 benchmarks from DaCapo [12], when61

building a grammar for the entire output of each benchmark. Further-62

more, in the four benchmarks where overhead is noticeable, in only one63

case (luindex), it reaches 50%.64

Software. Zhefuscator is open software, distributed through the GPLv3 license,65

and publicly available at https://github.com/lac-dcc/Zhe. As of today, it66

is embedded in products of at least one data-protection company: Cyral Inc.67

(https://www.cyral.com/).68
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2. Motivation and Challenges69

Section 2.1 provides motivation for the automatic treatment of string events70

and Section 2.2 discusses the challenges related to this endeavor.71

2.1. String Events in the Context of Data Protection72

In this paper, we call a generator a computer program that produces a string73

ti at each time slot i. Software that produces logs, like database servers and74

operating systems, or content providers, such as e-mail and news services, can75

be understood as generators. Usually, when part of the output of a generator76

is analyzed, this analysis is performed off-line, i.e., after such text has been77

produced and stored. However, there are situations in which such analysis must78

be carried out on-line, i.e., while it is being produced.79

Data protection laws are one of the forces driving the need for on-line anal-80

yses. As an example, the General Data Protection Regulation (GDPR)1, valid81

in the European Economic Area since 2016, requires companies to anonymize82

personal data, whenever this data is amenable to be used in ways not foreseen83

by the company’s terms of use [8]. Discussions involving the European GDPR84

have inspired similar laws in other regions, such as the California Consumer85

Privacy Act2, taking effective since January of 2020 in the American state of86

California, and the General Law of Personal Data Protection [13], taking effect87

in August of 2020 in Brazil.88

Data protection laws bear an impact on log generation, since logs should89

not leak personal data. However, many software systems have been designed90

and implemented before the advent of these laws. Adapting these systems to91

accommodate privacy is an expensive endeavor inasmuch as such adaptation92

entails modifications in legacy code. However, in this paper, we demonstrate93

that it is possible to filter logs while they are produced, by projecting this prob-94

lem onto the general framework of string events. The appearance of sensitive95

1https://eugdpr.org/
2AB-375 Privacy: personal information: businesses.(2017-2018)
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information in a log is a string event. Given the right framework, this event can96

be detected and treated on-the-fly. Nevertheless, the creation and deployment97

of this framework involves theoretical and practical challenges, which we discuss98

in the next section.99

2.2. Event Recognition: Challenges100

Handling string events while treating the event generator as a black box is101

challenging for three reasons, which we discuss in this section. To make this102

presentation more concrete, we relate the challenges to the following real-world103

problem, which Zhefuscator solves:104

Example 1 (Concrete Problem). Consider a log-producing database server105

running on the Java Virtual Machine. The grammar that describes the log syn-106

tax is unknown. Logs might contain SQL queries. Some queries contain sensi-107

tive information. Design a system that intercepts strings in the log, before they108

are printed, and anonymizes particular literals embedded in the SQL queries.109

A literal is any constant in the SQL query, e.g., integer values, quoted strings,110

and so on. The users specifying which data must be elided are not necessarily111

programmers.112

Challenge 1 (Grammar Synthesis). How to efficiently identify SQL queries113

within the log, when the log grammar is not known?114

Each generator has its own log format. Part of this log uses the SQL syntax.115

If we call L the language of log strings, then each string t ∈ L might contain116

SQL and non-SQL substrings, as Example 2 shows. In this combination of two117

languages, we call L the host language and SQL the event language.118

Example 2. Figure 1 shows part of a log taken from an actual application119

(literals have been replaced with fake surrogates). Strings in the target language,120

SQL, are shown in red. This log contains five examples, one per line. Each121

example is produced by the generator in successive moments in time. A solution122

to Challenge 1 amounts to synthesizing a parser for this log.123
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        82 Query SELECT * FROM Clts WHERE SSN='078-05-1120' 0
        83 Init DB grossi
11 8:02 84 Query SELECT * FROM Byrs WHERE name='J.Generics' 1 
        85 Connect mysqldumpuser@localhost on
12 8:11 86 Query DELETE * FROM Clts WHERE name='J.Generics'

Figure 1: Snippet of log with five examples.

Requiring a parser for the host language L would complicate the deployment124

of the obfuscator, as this requirement forces users to be aware of L’s format.125

It is possible to separate host and event languages via a brute-force approach126

considering every token of the host language as the potential starting point of127

a sentence in the event language. However, as we show in Section 5.2.1, this128

approach does not scale well with the number of tokens in the string t ∈ L. The129

generator produces an infinite stream of strings; hence, Challenge 1 involves130

inferring a grammar in the limit, that is, from an infinite number of examples.131

Even though this problem is undecidable even for regular or superfinite lan-132

guages, as shown by Edward Gold [14], we can efficiently build unambiguous133

grammars that recognize, in a scalable manner, the subset of the host language134

defined by all examples seen up to a point. We detail this process in Section 3.135

Challenge 2 (Interface). Which interface should users who are not program-136

mers use to specify sensitive patterns?137

Obfuscating the log in Figure 1 requires knowing which SQL literals must be138

redacted. It is up to users of the obfuscator to specify such literals. However,139

information can be sensitive when used in some types of queries, and innocuous140

when used in others, as Example 3 illustrates.141

Example 3. Consider an instance of the concrete problem (Ex. 1) that re-142

quires redacting occurrences of SSN in the pattern: SELECT * FROM Clts WHERE143

SSN=’?’. Occurrences of SSN in other patterns, such as DELETE FROM Clts144

WHERE SSN=’000-00-0000’, must be preserved.145

When building Zhefuscator, we first considered defining a domain specific146
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language (DSL) to let users specify patterns to obfuscate3. Our experience shows147

that this option is not ideal: it prevents users of the log-producing system—148

usually non-programmers—from using our tool. In Section 4.1 we describe a149

programming-by-examples approach, inspired by the Parsimony IDE [2], which150

provides users a simple but effective interface for specifying sensitive data. From151

this interface, we derive an event grammar, that specifies which queries should152

have their literals redacted. This grammar feeds Zhefuscator with knowledge to153

distinguish sensitive and innocuous queries. It will redact every literal within154

the former group, while preserving occurrences of the same literal in the latter.155

What distinguishes one type of query from the other? Syntax! And this syntax156

is specified by the user, when building the event grammar (following steps yet157

to be introduced in Section 4.1). Notice that the user will never have to deal158

with the format of the tokens, e.g., the SSN format in Example 3. All that she159

must do is to highlight examples of sensitive queries.160

Challenge 3 (Engineering). How to intercept the generator’s output without161

changing its implementation?162

Challenge 3 is an engineering problem specific to the log-generation appli-163

cation. In Section 4.2 we describe a solution for systems running on the Java164

Virtual Machine. In contrast to our solutions to the other challenges, the ap-165

proach adopted in Section 4.2 is not general—a natural consequence of the fact166

that Challenge 3 is technology specific.167

3. First Challenge: Grammar Synthesis168

Context-free grammars.. Let G = 〈S,N, T, P 〉 be a context-free grammar, with169

non-terminals N , terminals T , a start symbol S ∈ N and production rules170

P ⊆ N × (N ∪T )∗. The set V = N ∪T is G’s vocabulary. A sentence is a string171

3This language, which we currently call ZheLang is publicly available at https://github.

com/joaosaffran/zhe-lang. ZheLang, when used as a tool to specify string events, is more
expressive than the techniques that we explain in this paper. However, it requires some
knowledge of parsing and Boolean logic, which our example-based approach avoids. It is our
intention to describe ZheLang in future work.
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of terminals. A sentence t is generated from a grammar G if there is a sequence172

of applications of production rules that transforms S in t. This sequence of173

applications is called a derivation. In a leftmost derivation the leftmost non-174

terminal is always reduced first. The concatenation of strings p and q is p•q. If t175

and t′ are strings, and t is a substring of t′, we write t ∈ subs(t′). A context-free176

grammar G is in Chomsky normal form if all of its production rules are of the177

form A ::= BC, A ::= a, or S ::= ε, in which A, B and C are non-terminals, a is178

a terminal and S is the start symbol. The language that G recognizes, denoted179

lang(G), is the set of all strings generated from G. Given a string t, it can be180

generated ambiguously by a grammar G if G allows two different derivations181

that generate t. If G generates any string ambiguously, then G is ambiguous.182

String events.. Let L be a language. A text over L is a sequence of strings183

t0, t1, . . ., such that ti ∈ L. A generator for L is a Turing Machine that generates184

this text. We say that ti is the text generated at time i. We allow ti = tj , i 6= j.185

No function from time to strings is assumed; however, we assume that on the186

limit the text covers L. Notice that the existence of a generator, coupled with187

this last assumption, implies that L is recursively enumerable. From these188

notions, we define string events as follows:189

Definition 1 (String Event). A string event 〈s,Ge, ti, L〉, parameterized by190

a context-free grammar Ge, which we call the event grammar, occurs at time191

i, i > 0, on the text ti produced by a language L, which we call the host language,192

if there exists s ∈ lang(Ge), such that s ∈ subs(ti).193

Example 4 (String Event). Let the host language L be the language that con-194

tains the string representations of every natural number, and only these strings.195

Let the event grammar Ge be a grammar that recognizes palindromes with more196

than one digit on the language of positive decimal numbers. Tokens, in this case,197

are single digits. Consider the text over L in which ti = “i”, for i ∈ N+, i.e.,198

the text is “1”, “2”, . . . , “10”, “11”, . . .. A string event occurs on t1223 = “1223”,199

because “22” ∈ subs(“1223”) is a palindrome.200
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3.1. Synthesizing the Grammar for the Host Language201

As seen in Definition 1, capturing string events involves detecting occurrences202

of substrings produced by a context-free grammar Ge within text pertaining to203

a recursively enumerable language L. We call a grammar G that recognizes L,204

i.e., L = lang(G), the host grammar. In the context of handling string events205

from a black-box event generator, as explained in Section 2.2, we cannot assume206

that the host grammar is known. Thus, it is necessary for L to be discovered207

while string events are being captured. Moreover, only examples of strings that208

are part of the language, denoted “positive examples”, are available to do so.209

As demonstrated by Gold [14], this problem is undecidable for most classes of210

languages, including context-free.211

3.2. On-Line Grammar Synthesis212

The intuition behind Gold’s result is simple: since L is being determined213

by positive examples, whichever grammar has been synthesized up to time m214

can fail to parse an example tn, n > m. However, up to time m, it is always215

possible to build a grammar Gm that recognizes t1, . . . , tm: in the worst case,216

Gm contains m production rules, one for each string ti, 1 ≤ i ≤ m. Therefore,217

Gold’s conclusions indicate that a grammar for L should be recognized by an218

on-line algorithm, which builds successive grammars G1, . . . , Gm up to time m,219

such that {t1, . . . , tm} ⊆ lang(Gm), 1 ≤ i ≤ m.220

The Language Separation Problem.. In this paper, we assume that the event221

grammar Ge that encodes string events is known4. Therefore, to capture string222

events we must be able to distinguish occurrences of strings from lang(Ge)223

within the input text. From these observations, we define the language separa-224

tion problem as follows:225

4Section 4.1 discusses the approach that we have chosen to let users specify events. Notice
that users do not need to provide Ge explicitly: they specify events through examples valid
in Ge, which is assumed to be already known by the language synthesis system.
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# An infinite sequence of strings:
val text: String stream

# Parameters of the implementation
val TOKENIZE: String -> Token list

fun add_example
      (tokens: Token list, current_grmr: Grammar) =
  if successfull_parse(current_grmr, tokens)
  then current_grmr  # Success!
  else
    let
      val new_grammar = fill_holes(tokens)
    in
      merge(current_grmr, new_grammar)
    end

1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

fun build_grammar((example::text): String stream, grammar: Grammar) =
  let
    val new_grammar = add_example(TOKENIZE example, grammar)
  in
    build_grammar(text, new_grammar)
  end

# Start language separation with the simplest sketch grammar:
val grammar:Grammar = build_grammar(text, R1 ::= ε)

16
17
18
19
20
21
22
23
24
25

Figure 2: The language separation procedure.

Definition 2 (Language Separation Problem). Let T = {t1, . . . , tm} be a226

set of strings pertaining to an unknown host language L. Given Ge = 〈se, Ne, Te, Pe〉,227

find grammars Gm = 〈sm, Nm ∪Ne, Tm ∪Te, Pm ∪Pe〉 such that {t1, . . . , tm} ⊆228

lang(Gm), 1 ≤ i ≤ m.229

Our language separation algorithm is outlined in Figure 2 as a program writ-230

ten in ML syntax. The entry point of this program is function build grammar,231

which receives text, the infinite sequence of strings t1, t2, t3, . . . corresponding to232

the language to be recognized. The function build grammar operates in a clas-233

sic counterexample-guided inductive synthesis (CEGIS) [15, 16] loop, in which234

a learner proposes solutions and a verifier checks them, providing counterexam-235

ples for failures. In our context the learner produces grammars that recognize236

the examples seen so far and the verifier checks whether they can generate the237

subsequent examples.238

For each string example in the text stream, build grammar refines a grammar239

that recognizes example. Thus, the grammar variable at line 25 of Figure 2 refers240

to the grammar that recognizes text on the limit, that is, after an infinite num-241

ber of examples have been produced. Notice, nevertheless, that even though242

build grammar never halts, it produces a new grammar each time it is recur-243

sively invoked (Line 21). Function build grammar uses an auxiliary routine244

add example. This procedure checks if the current grammar can parse a string245

in text (Line 8). If it can, nothing else happens (Line 9). However, if parsing246
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fails, then add example refines the current grammar (Lines 10-15). The next247

section describes this refinement.248

On the TOKENIZE Function. In this work, we do not focus on synthesis of lexers.249

Instead, we rely on a predefined lexer, the TOKENIZE function, which trans-250

forms examples into sequences of tokens. Said function is invoked at Line251

19 of Figure 2. Examples of tokens are int = {. . . ,−2,−1, 0, 1, 2, . . .} and252

time = int : int . Our solution to language separation (Fig. 2) is parameterized253

by this function. The tokenizer might bear an impact on the number of exam-254

ples necessary to synthesize a definitive grammar for the host language. It can255

also modify the speed of the algorithms that we shall discuss in the next section.256

In Section 5.2.4 we analyze these two facts empirically.257

3.3. Grammar Synthesis from Examples258

Whenever build grammar fails for a new example ti, we use the function259

fill holes to produce a grammar Gi that recognizes it. This function is in-260

voked at Line 12 of Figure 2, and its implementation is given in Figure 3. We261

shall be explaining this code in the rest of this section. Notice that the auxiliary262

function build hcnf contains comments mentioning two “Rules”. These rules263

will be the explained shortly.264

# Build a grammar in Heap-CNF that recognizes “tokens”
fun build_hcnf(n:int, [token]: Token list): Grammar =
         Rn ::= token        # Rule 1
     | build_hcnf(n:int, token::Rest: Token list): Grammar =
         Rn ::= R2nR2n+1    # Rule 2
         R2n ::= token       # Rule 1
         build_hcnf(2×n+1, Rest)  # R2n+1 ::= …

fun fill_holes(tokens: Token list): Grammar = build_hcnf(1, tokens)

1
n2

n3
4

n5

n6

nn7
8
9

Figure 3: The grammar synthesizer.

To build a parser for the host language L, thus solving the Language Sepa-265

ration Problem, we apply a programming-by-examples [17] approach. For each266

example ti we synthesize a grammar Gi that generates it. Then we merge this267

grammar into a previously synthesized grammar G that generates the previous268
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examples, thus obtaining a new grammar G such that {t1, . . . , ti} ⊆ G. Each269

grammar Gi synthesized for generating the given example ti is in Heap-CNF, a270

restrictive form of CNF defined as follows:271

Definition 3 (Heap-CNF). A Heap-CNF grammar has restrictions on the272

non-terminals and the production rules. Non-terminals are R1, R2, R3, . . . , R2n−2, R2n−1,273

for some arbitrary n. The allowed production rules are274

� R2k+1−2 ::= a,275

� R2k−1 ::= R2k+1−2R2k+1−1, and276

� R2k−1 ::= a277

in which a is a terminal and k ∈ {1, . . . , n}. Since non-terminals are numbered278

in the same way as data in the heap data structure, we call this restricted version279

of Chomsky Normal Form, Heap-CNF.280

We restrict ourselves to Heap-CNF grammars for three reasons. First, given281

two grammars in this format, it is possible to merge them in linear time on the282

number of non-terminals, thus producing a new Heap-CNF grammar, as we will283

see in Section 3.3.1. Second, they are not ambiguous (Theorem 5). Finally, they284

admit LL(1) parsing (Theorem 7). We shall leverage the two latter properties285

to demonstrate that our solution to the language separation problem is correct.286

The two latter properties are a consequence of Heap-CNF grammars encoding287

regular languages. Indeed, a Heap-CNF language can be described by a regular288

automaton. Nevertheless, we shall call them grammars, as we are using them289

to synthesize parsers.290

The grammar Gi is built by successively increasing its vocabulary and by291

“filling holes”, i.e. adding production rules to a partial grammar while ti =292

t1i t
2
i · · · tni is traversed. Initially the partial grammar contains only the starting293

non-terminal R1 and no terminals or production rules. At each iteration, the294

grammar is augmented to generate the first token in the sequence, which is then295
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removed from it. The grammar is also expanded so that it can be further aug-296

mented to generate the remaining tokens. This is represented by the application297

of the following two expansions, which add production rules to Gi:298

Rk ::= ?
(Rule 1)⇒ Rk ::= tji , if tji is the last token of ti

or Gi contains Rk+1

Rk ::= ?
(Rule 2)⇒ Rk ::= R2kR2k+1, R2k ::= ?, R2k+1 ::= ?

otherwise

299

in which Rk is a non-terminal not yet associated with a production rule.300

The first rule allows the consumption of the first remaining token in ti. It301

can be applied when the respective non-terminal is not the last one in G, except302

if there is only one token left to be consumed. Otherwise, the second rule303

is applied, which introduces two new non-terminals in the grammar: one for304

consuming the first remaining token, via Rule 1, and another to continue the305

process for generating the subsequent tokens in ti. This process continues until306

the grammar that parses ti is obtained. Function fill holes (Figure 3), which307

implements this procedure, takes as input a sequence of tokens ti and yields a308

grammar Gi in Heap-CNF that consumes said sequence, as stated below.309

Theorem 1 (Correctness). Function fill holes (Fig. 3) produces a gram-310

mar Gi that recognizes an example ti = t1i · · · tni in n steps with 2n − 1 non-311

terminals.312

Proof 1. The proofs of all lemmas and theorems of this paper are provided as supple-313

mentary material.314

Example 5. Figure 4 illustrates fill holes “stepwisely” building a grammar315

that generates the first example from Figure 1. Note that the characters ‘82’ and316

‘0’ were tokenized to int and the SQL query to se. At Step 1 the partial grammar317

consists only of the starting non-terminal R1. Given that the list of tokens to318

generate contains more than one element, fill holes applies rule 2 (line 5319

of Figure 1), producing the partial grammar in Step 2 with two new undefined320
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t1  =  

R1  ::=  ? R1  ::=  R2  R3
R2  ::=  ?
R3  ::=  ?

R1  ::=  R2  R3

R2  ::=  int(82)
R3  ::=  ?

R1  ::=  R2  R3
R2  ::=  int
R3  ::=  R6  R7
R6  ::=  ?
R7  ::=  ?

R1  ::=  R2  R3
R2  ::=  int
R3  ::=  R6  R7

R6  ::=  Query
R7  ::=  R14  R15
R14 ::=  se
R15 ::=  int(0)

st
ep

 1

st
ep

 2

st
ep

 3

st
ep

 4

st
ep

 8...

82 Query 0SELECT * ... WHERE SSN='078-05-1120'

R1  ::=  R2  R3
R2  ::=  int
R3  ::=  R6  R7

R6  ::=  Query
R7  ::=  ?

st
ep

 5

Figure 4: Grammar inference via fill holes.

non-terminals. Rule 1 is then applied to generate the first token in the list (line321

6), producing the grammar in Step 3. The fill holes algorithm proceeds to322

recursively build a grammar to generate the remaining tokens, applying rules323

2 and 1 in sequence, until it reaches the case when there is only one token to324

be generated. This triggers a final application of rule 1 (line 3), yielding the325

grammar in Step 8.326

The grammar synthesis has the following properties:327

Lemma 1 (fill holes yields Heap-CNF). Given an example ti, the result-328

ing grammar Gi produced by fill holes that generates ti is in Heap-CNF.329

Theorem 2. Given an example ti = t1i t
2
i · · · tni , the resulting grammar Gi pro-330

duced by fill holes is such that R2n−1 ::= tni .331

Theorem 2 and Lemma 1 perfectly define the structure of grammars pro-332

duced by fill holes, as stated below:333

Corollary 1. Given an example ti = t1i t
2
i · · · tni , the resulting grammar Gi pro-334

duced by fill holes is such that335

R2k+1−2 ::= tki , k ∈ {1, . . . , n− 1}

R2k−2 ::=

 R2k+1−2R2k+1−1 k ∈ {1, . . . , n− 1}

tni k = n

336

Figure 5 illustrates the structure of a derivation of a string of 5 tokens from the337

Heap-CNF grammar that would be produced by fill holes.338
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R31 ::= token

R30 ::= token

R15 ::= R30R31
R14 ::= token

R7  ::= R14R15
R6  ::= token

R3  ::= R6R7
R2  ::= token

R1  ::= R2R3

Figure 5: The format of the leftmost derivation tree of a Heap-CNF grammar to produce a
string with 5 tokens.

The se Token.. Throughout this paper, we have been treating the string event339

as a single token. As an example, in Figure 4, we represent it as se, the starting340

symbol of the even grammar Ge. However, the string event is not a single341

token; rather, it is a complex sentence pertaining to lang(Ge). Consequently, the342

sentence represented by se does not even need to be formed by the same tokens343

as the host language. In other words, the tokens in se do not, necessarily, need344

to be recognizable by the TOKENIZE function adopted in our implementation of345

build grammar. That function recognizes tokens from the host language, not346

from the event language.347

Recognizing se is necessary when augmenting the current grammar via the348

fill holes routine. To perform this task, we resort to a brute-force approach:349

we try to recognize the largest subsentence s ∈ subs(ti) within the active ex-350

ample ti so that s ∈ lang(Ge) (See Definition 1). This heuristic is O(|Ge||ti|),351

because we can imagine a scenario in which every prefix of ti is also a prefix of352

some—incomplete—sentence in lang(Ge).353

Nevertheless, the brute-force search tends to fail already in the first token,354

at least in the setting in which we use it: redaction of SQL queries embedded355

in an unknown language. For instance, consider that the event language is356

a subset of SQL performing the so called CRUD operations, i.e., SELECT,357

UPDATE, CREATE and DELETE. Only sentences that start with one of these358
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four tokens can be part of the event language. Therefore, as soon as the brute-359

force algorithm stumbles on a different token, it can stop searching immediately.360

Typical data-representation languages, such as YAML, XML or JSON bear361

similar properties, meaning that valid sentences in these languages start with a362

limited number of token combinations.363

Furthermore, it is important to consider that the brute force approach is364

only necessary to augment the current grammar. Whenever line 8 of Figure 2365

succeeds, no brute-force heuristics are used. As we shall see in Section 5.1, in366

a typical SQL or PostgreSQL log, four to nine samples—among an unbounded367

number of examples—are enough to give us a definitive grammar to solve the368

language separation problem.369

3.3.1. Merging grammars370

Once fill holes produces a grammarGi for a new example ti, this grammar371

is merged into the current grammar G, as it can be seen at Line 26 of Figure 2.372

We define the merging of two Heap-CNF grammars as follows:373

Definition 4 (Grammar Merging). Let G = 〈R1, N, T, P 〉 and Gi = 〈R1, N
i, T i, P i〉374

be two Heap-CNF grammars. G′ = 〈R1, N ∪N i, T ∪T i, P ∪P i〉 is the grammar375

that merges G and Gi.376

Our goal is that G′ be also in Heap-CNF and still generates lang(G) and377

lang(Gi). This is achieved by combining the production rules of G and Gi,378

i.e. by defining the production rules of G′ as P ∪ P i. Since G and Gi are in379

Heap-CNF they have the same non-terminals up to R2k−1, in which R2k−1 is380

the maximum non-terminal in either G or Gi. So each non-terminal in G′ up to381

R2k−1 will generate the combined tokens of G and G′, while every non-terminal382

beyond R2k−1 has the same production rules of the grammars it comes from,383

thus generating the same strings that grammar generates.384

Example 6. Figure 6 shows the grammars produced for the first, third and fifth385

lines of Figure 1. The tokenization applied to the characters is illustrated in the386

derivation trees. Each grammar but the first is formed by the merging of a387
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current grammar plus the grammar newly built to match the latest example in388

the log. Since grammars share non-terminals up to a given index, the union of389

the production rules has the effect of adding tokens as alternatives to a given390

non-terminal. For example, in the grammar that generates the first example, R15391

generates the terminal int, while in the second grammar it generates the non392

terminals R30R31, so merging these two grammars results in a grammar in which393

R15 ::= R30R31 | int. This observation ensures that the merged grammar will be394

able to generate both the examples generated by the two original grammars.395

82 Query SQL 0

R1

R7

R15

R6

R14

R2 R3

11 8:02 SQL 184 Query 12 8:11 SQL86 Query

R1  ::=  R2  R3
R2  ::=  int
R3  ::=  R6  R7

R6  ::=  Query
R7  ::=  R14  R15
R14  ::=  se
R15  ::=  int

R1  ::=  R2  R3
R2  ::=  int
R3  ::=  R6  R7

R6  ::=  Query | time
R7  ::=  R14  R15
R14  ::=  se | int
R15  ::=  R30  R31 | int
R30  ::=  Query
R31  ::=  R62  R63
R62  ::=  se
R63  ::=  int

R1  ::=  R2  R3
R2  ::=  int
R3  ::=  R6  R7

R6  ::=  Query | time
R7  ::=  R14  R15
R14  ::=  se | int
R15  ::=  R30  R31 | int
R30  ::=  Query
R31  ::=  R62  R63 | se
R62  ::=  se
R63  ::=  int

R1

R7

R15

R6

R14

R2 R3

R31R30

R63R62

R1

R7

R15

R6

R14

R2 R3

R31R30

int int int time int int int time int

Figure 6: Grammars produced from the examples in Figure 1.

Notice that the final grammar that results from merging multiple grammars396

recognizes a language that is larger than the union of all the examples seen397

thus far. For instance, the final grammar in Example 6 recognizes the string398
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“int Query se Query se”, which encodes two SQL queries.399

Lemma 2 (Merging). If G is the grammar that results from merging two400

Heap-CNF grammars G′ and G”, then G is Heap-CNF, and lang(G′)∪lang(G”) ⊆401

lang(G)402

Theorem 3. The procedure build grammar (Fig. 2) constructs grammars in403

Heap-CNF.404

Theorem 4 (Semantics). Let G1, G2, . . . , Gn be the grammars constructed405

by function build grammar (Fig. 2) for input strings t1, t2, . . . , tn. Grammar406

Gi, 1 ≤ i ≤ n recognizes every input ti, 1 ≤ i ≤ n.407

Lemma 3 (Size Complexity). Let Gn be the grammar constructed by func-408

tion build grammar (Fig. 2) after observing inputs t1, t2, . . . , tn. The size of409

Gn is O(N), where N is the number of tokens in t1, t2, . . . , tn.410

Theorem 5 (Determinacy). Let Gn be the grammar constructed by function411

build grammar (Fig. 2) after observing inputs t1, t2, . . . , tn. Gn is not ambigu-412

ous.413

Corollary 2 (Time Complexity). Let Gn be the grammar constructed by414

function build grammar (Fig. 2) after observing inputs t1, t2, . . . , tn. Gn recog-415

nizes ti, 1 ≤ i ≤ n with O(N) derivations, where N is the number of tokens in416

ti.417

3.3.2. Limitations: False Positives418

The procedure build grammar synthesizes a grammarG that over-approximates419

the host language L. By over-approximation, we mean that there might exist420

strings that belong to lang(G), but that do not belong to L. This observation421

leads to the notion of false positives, which we define as follows:422

Definition 5 (False Positive). Let Gn be the grammar synthesized by build423

grammar after observing n examples from the host language L. We call a false424

positive an example tfp such that tfp /∈ L, tfp ∈ lang(Gn) and tfp contains a425

string event (Definition 1).426
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Example 7 (False Positive). Consider the third grammar seen in Figure 6.427

This grammar recognizes four strings with four tokens: (i) int query se int; (ii)428

int time se int; (iii) int query int int; (iv) int time int int. Only sentences in the429

format (i) fit the examples seen in Figure 6. Sentence (ii) does not correspond430

to any example and contains a string event (marked by se).431

A false positive will lead to the treatment of a string event that, in principle,432

should be ignored. In the context of this work, the system to be described in433

the next section will redact information that is not sensitive. Such action is434

innocuous in the settings where said system is deployed. Furthermore, the logs435

that we evaluate in Section 5 never lead to false positives. Therefore, we have436

decided to take no account of false positives in this work. There are two more437

reasons that led us to ignore them. First, the number of events is unbounded;438

hence, strings that are false positives up to a certain instant in time might439

become true positives later. Second, we follow Parsimony’s approach [2] when440

specifying the event grammar, as we discuss in Section 4.1. Parsimony does not441

support negative examples—a potential way to avoid some false positives.442

4. Case Study: the Zhefuscator443

We have used the grammar inference techniques discussed in Section 3 to444

implement a system that redacts sensitive information present in program logs.445

This system is called the Zhefuscator. Zhefuscator receives as input an event446

language, given as a grammar Ge, and a running instance of the Java Virtual447

Machine (JVM). Notice that the Zhefuscator does not need the source code of448

the program under execution in the JVM—this program is treated as a black449

box. Figure 7 provides an overview of this tool. In the rest of this section, we450

discuss particular details of its implementation.451

4.1. Second Challenge: User Interface452

Zhefuscator is meant to be used by professionals who are not necessarily453

programmers. Therefore, to simplify the task of specifying string events, we454

provide users with an example-based interface, in which users select substrings455
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User selects 
examples of 
queries that 

must be 
redacted 
(Sec. 4.1)

Zhefuscator builds a 
grammar Ge that 

recognizes string events. 
Ge starts with se, the 

starting symbol of the 
event language (Sec. 4.1)

Function 
build_grammar 
(Fig. 2) uses Ge to 
infer the grammar 

G of the host 
language L (Sec. 3)

Events are captured and 
treated during the execution 
of the program. Treatment 

involves redacting sensitive 
information in the output T 
of the program (Sec. 4.2).

ExsLog Ge

GT

Static (off-line) processing

Dynamic (on-line) processing

Figure 7: Zhefuscator: event handler for the JVM.

from log entries, and a base grammar, Gb, which will be used as a basis for456

building the event grammar Ge. As a helper to the user, once a substring l457

is marked for being redacted, all other substrings in the log entries that are458

recognized by the same rule from Gb which recognizes l are highlighted. That459

rule is then added to Ge. Through this iterative procedure, the event grammar460

Ge is built from the basic grammar Gb according to the example substrings461

selected by the user. Note that users do not deal directly neither with the462

basic nor with the event grammar: they only deal with textual examples, from463

which they must choose samples. Currently, we use the SQL grammar as the464

base grammar, but our implementation is not specific to any grammar. Just465

keep in mind that if the base grammar does not recognize the example substring466

selected to be redacted, this example will be ignored in the final event grammar.467

To determine which data must be redacted, users follow the procedure markup,468

in Figure 8.469

Theorem 6 (Markup). Grammar Ge produced by markup (Fig. 8) recognizes470

a subset of lang(Gb) or the empty language.471

As seen in the proof of Theorem 6, grammars Ge and Gb start with the same472

initial symbol se. This symbol is used to compose the instance of the language473

separation problem (Definition 2) that routine build grammar solves.474
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Procedure markup(Gb : Base Grammar , Lf : Log Example)

1. Let Ge be an empty grammar.

2. The user selects a literal l to be redacted, which occurs in a given example
from Lf .

3. Zhefuscator uses the event grammar to extract the largest string s ∈
lang(Gb) that contains l.

4. A grammar G′e, formed with the production rules of Gb necessary to rec-
ognize s is constructed.

5. The terminal symbol T that recognizes l is marked to be redacted, T must
occur within the rule that recognizes s.

6. Ge is augmented with the rules in G′e.

7. Every sentence s′ ∈ Lf that Ge recognizes is highlighted.

8. If there are more literals in Lf that must still be obfuscated, the user goes
back to step 2.

Figure 8: The markup procedure that determines which literals must be redacted.

4.2. Third Challenge: Engineering475

This section describes details concerning the engineering of the Zhefuscator—476

a language-specific problem. For reasons related to the business model in which477

the authors of this paper are involved, Zhefuscator has been implemented in478

Java, and deployed onto the Java Virtual Machine. Therefore, it intercepts and479

treats string events produced by programs written in any programming lan-480

guage that runs on the JVM, including Java, Scala, Kotlin, Clojure and many481

others. In what follows, we discuss particular aspects of the implementation of482

this tool.483

Parsing. Zhefuscator uses the theory seen in Section 3 to build parsers incre-484

mentally. These parsers are constructed via the ANTLR [18] parser generation485

tool. This tool takes as input a grammar that specifies a language and gener-486

ates as output source code for a recognizer of that language. Procedure build487

grammar gives ANTLR a new grammar whenever it fails to parse the cur-488

rent text example. ANTLR produces LL(*) parsers, which suits the needs of489
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build grammar, because Heap-CNF grammars are always Left-to-right, Left-490

most derivation and can be parsed with one token of lookahead, as the Theo-491

rem 7 states. In terms of implementation, we update the grammar by relying492

on the JVM’s ability to load classes dynamically. The JVM does not need to be493

restarted in this process. The new grammar is compiled into Java bytecodes by494

a separate thread, and, as we will see in Section 5, such updates take negligible495

time.496

Theorem 7 (LL). Any Heap-CNF grammar is LL(1).497

Corollary 3. There are languages whose grammars cannot be synthesized by498

Zhefuscator.499

The proof of Theorem 7 mentions that Heap-CNF grammars recognize lan-500

guages with a finite number of possible derivation trees. In fact, strictly speak-501

ing, a Heap-CNF language is finite, as the grammar is not recursive. However, in502

practice, Zhefuscator deals with infinite languages. Infiniteness comes from the503

lexer. The procedure build grammar is parameterized by a string tokenizer. In504

the context of Zhefuscator’s implementation, this tokenizer is given by ANTLR.505

The regular language used to recognize tokens can accept an unbounded num-506

ber of strings. In Section 5.2.4 we evaluate the impact of the tokenizer on the507

performance of Zhefuscator.508

Method interception.. Zhefuscator uses Java Agents to intercept calls to the509

System.out.* singleton object. The Java Agent API [19] provides support to510

the dynamic instrumentation of JVM applications. Intercepted strings are first511

fed to build grammar, and then redacted. The first action might result in an512

expansion of the host language’s grammar. The second might lead to modifica-513

tions in the output of the program. Literals that must be redacted are specified514

using the technique discussed in Section 4.1.515

String Obfuscation.. Zhefuscator performs the redaction of sensitive informa-516

tion via asymmetric cryptography. A sensitive literal l is replaced with a new517
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string ls, which can be later used as a key to retrieve the true value of l from518

a classified table. Currently, we use Advanced Encryption Standard (AES) to519

ensure safe redaction of values.520

4.3. Discussion521

The developments explained in this section are necessary to make the ideas522

introduced in Section 3 practical. We do not claim them as contributions,523

given that the interface and implementation that we adopted have been al-524

ready discussed in previous work. Our choice for these aspects of our work are525

pragmatical. On the one hand, the interface discussed in Section 6.3 and the im-526

plementation discussed in Section 4.2 were effective enough to realize the ideas527

discussed in this paper. However, this choice comes with limitations, which we528

discuss in the rest of this section.529

4.3.1. Lack of Negative Examples530

The main limitation of our example-based approach is a lack of negative531

examples. This limitation is also present in Parsimony [2]; hence, it has naturally532

persisted in our implementation of it. We opted to avoid negative examples533

because it is our understanding that in most of the cases where Zhefuscator is534

useful, negative examples are unnecessary. In other words, database logs tend535

to follow simple formats, with a small set of sentences of interest. Nevertheless,536

if necessary to handle more complex formats, then Zhefuscator might produce537

false positives. In the context of this work, as explained in Section 3.3.2, false538

positives might cause the redaction of sentences that do not contain sensitive539

information.540

4.3.2. Expressiveness541

Additionally, an example-based interface lacks resources that would be promptly542

available in a domain-specific language, such as the ability to specify logical com-543

binations of events. For instance, users could be interested in enabling certain544

events only after particular events of interest have been detected. Our current545

interface lacks such sequencing operations. Users interested in such ability are546
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encouraged to use ZheLang, a DSL that we have defined for the treatment of547

string events. Nevertheless, ZheLang is not the focus of this paper.548

5. Evaluation549

We have implemented the techniques discussed in this paper onto an actual550

on-line obfuscator, which we call the Zhefuscator. Zhefuscator is open source551

and can be used to redact queries produced by database logs. This section552

investigates the following research questions related to this implementation, as553

well as the techniques that support it:554

� RQ1—Convergence: how many examples are necessary to produce555

grammars for languages typically used by SQL logging systems?556

� RQ2—Effectiveness: are the parsers derived from the synthesized gram-557

mars effective?558

� RQ3—Practicality: what is the runtime overhead of Zhefuscator when559

deployed onto a database system dealing with a heavy workload?560

We chose these three particular questions to demonstrate that the theory561

developed in Section 3, and its implementation described in Section 4, once562

combined into a concrete tool, lead to a system that is not only novel, but also563

practical.564

Runtime Setup. Every result reported in this section has been produced on565

an 8-core Intel(R) Core(TM) i7-3770 at 3.40GHz, with 16GB of RAM running566

Ubuntu 16.04.567

5.1. RQ1—Convergence568

Methodology. To answer RQ1 we measure how many times the predicate569

successfull parse, invoked at Line 8 of Figure 2, fails before we produce a570

definitive grammar for a certain log generator. We perform this analysis on logs571

from two database systems and from the OSX operating system. Logs are given572

as a text of examples ti, as defined in Section 3. Each ti is the entire output573
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produced by the generator, be it a database, be it the operating system, at574

time unit i. To determine the parts of the log that should be obfuscated, we575

chose, from each one, four examples, following the steps enumerated in Figure 8.576

We chose the first four sentences that did not fit into the same SQL production577

rule. However, this choice bears no impact on the results reported in this paper.578

Convergence does not depend on it, and the time to redact strings (running time579

will be evaluated in the next section) is the same for the different approaches580

that we compare.581

5.1.1. Logs from Database582

On this experiment, we have generated logs from two different SQL Databases:583

MySQL version 14.14 Distribution 5.7.27 and PostgreSQL version 9.2.24. Work-584

loads for these two databases were produced by the 9 real-world web applica-585

tions emulated by OLTP-Bench [20], which include systems such as Wikipedia,586

Twitter and an ordinary seats system.587

Discussion. Figure 9 shows the average prefix necessary to synthesize a gram-588

mar in different database systems. Zhefuscator requires approximately eight589

examples to infer a grammar for the logs produced by MySQL, and five for590

those produced by PostgreSQL. In the former collection, logs contain an av-591

erage of 662K lines; in the latter, 1,867K. This experiment indicates that, for592

typical database logs, the grammar inference procedure of Section 3 tends to593

converge to a definitive parser after five to eight examples. Furthermore, these594

examples are a very small portion of the entire log: in every case, we had a595

definitive grammar after observing less than 0.01% of the whole log file.596

5.1.2. Logs from the Operating System597

This experiment uses the logs produced by default by MacOS version 10.14.6598

in the /var/log directory. Contrary to the examples that use the databases,599

these logs are very different one from the other (the format of sentences is not600

shared across them). This fact will be made clear once we analyze how many ex-601

amples are necessary for synthesizing a definitive grammar—this number varies602

substantially across the logs. We gathered four logs from five distinct OS users,603
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Figure 9: Average prefix size necessary to synthesize a grammar for different log files produced
by either MySQL or PostgreSQL.

whose usage pattern corresponds to the profile of professional programmers.604

The logs used in this experiment are:605

� corecaptured.log: logs operations of the network hardware. On average,606

these logs have 174K lines.607

� wifi.log: logs network traffic. On average, they contain 9K lines.608

� system.log: logs the operations executed in the whole system. On aver-609

age, they contain 4K lines.610

� fsck apfs.log: logs file system operations, and contain 4K lines on av-611

erage.612

Discussion. Figure 10 shows the average prefix necessary to synthesize gram-613

mars for the OSX logs. The number of required examples is higher than what614

has been observed in Section 5.1.1. The ratio of examples per log size is also615

higher. In one case (user3:system) we had a log with only five lines, whose616

grammar demanded three examples. This case is an anomaly, due to the small617

log size. The largest prefix consisted in 170 examples, for a log with 6,579 sam-618

ples (user1:system). In general, the ratio of examples per sample is still very619

low. For instance, our largest logs (corecap tured) have almost 200K lines on620

average, and yet our on-line grammar inference engine finds a grammar that621

recognizes all these samples after observing 57 to 64 examples.622
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5.2. RQ2—Effectiveness623

This section evaluates the practicality of the grammars synthesized by Zhe-624

fuscator. To this effect, we shall answer the five questions below. BF refers to625

the Brute Force approach, which searches event patterns exhaustively within626

text examples:627

1. Section 5.2.1: how does Zhefuscator compare to BF to parse one individual628

example for which a parser has not already been synthesized.629

2. Section 5.2.2: how does Zhefuscator compare to BF to parse 1,000 exam-630

ples in an actual log file produced by a MySQL database.631

3. Section 5.2.3: how does Zhefuscator compare to BF to parse 1,000 exam-632

ples in artificially generated logs of different sizes.633

4. Section 5.2.4: how does the tokenizer change the runtime of Zhefuscator.634

5.2.1. Parsing Effectiveness635

There exists a trivial approach to solve the Language Separation Problem636

introduced in Definition 2: given an example ti in the host language, we start637

a search for an event s, an SQL query in our context, at every token of ti.638

If two events can start at the same token, we choose the longest one. This639

solution is called the brute-force approach. The developments in Section 3 are640

attractive inasmuch as they lead to a faster solution to language separation than641

the brute-force technique. In this section, we compare the parsing speed of both642

approaches.643
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Before we discuss our methodology, two observations are in order. First,644

when Zhefuscator’s current grammar is not able to recognize the active exam-645

ple, it behaves in a similar manner as the brute force approach: it must scan646

the SQL query, assuming that it can start at any token. In addition to this, it647

must augment the current grammar using the techniques discussed in Section 3.648

Second, when Zhefuscator’s parser is able to recognize the active example, pars-649

ing happens via O(N) productions, where N is the number of tokens. Yet, the650

number of characters per token varies, and the lexer’s runtime must be taken651

into consideration. Thus, the overall runtime is O(M), where M is the number652

of characters in the active example. The brute force approach might expand653

O(N2) productions; however, such worst case seldom happens. Most of the654

tokens in a valid example cannot be the prefix of any SQL query. Therefore,655

although näıve, the brute force approach is still likely to outperform Zhefusctor656

for examples with few characters.657

Methodology. The brute-force approach becomes less practical as the number658

of characters in the examples ti of the host language L increases. To investi-659

gate at which point the grammars synthesized by build grammar become more660

efficient, we have used the logs seen in Section 5.1.1. To obtain examples of vary-661

ing sizes, we either split or concatenate lines from these logs; hence, producing662

strings of different lengths.663

Discussion. Figure 11 compares the brute-force with our synthetic grammars.664

Our grammars are more asymptotically efficient than the brute-force approach.665

After multiple merging operations, a Heap-CNF grammar still recognizes a sen-666

tence in O(N) derivation steps, where N is the size of the sentence. The brute667

force approach, in turn, will always require O(N2) steps. Figure 11 shows that668

for examples between 128 and 256 characters (about 16 tokens) our approach669

becomes consistently better than the trivial brute-force parsing. In Section 5.2.2670

we observe the effect of this improvement when applied onto an actual log.671
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Figure 11: Time comparison of brute force approach and the ANTLR parser.

5.2.2. Effectiveness on an Actual Log File672

In Section 5.2.1, we compared the average time taken by the Zhefuscator673

and the brute force approach to parse one example. However, the benefit of674

our parser synthesizer becomes more evident once we analyze its effect when675

amortized onto a long chain of examples. In this section, we analyze this effect676

via skyline charts. These charts show the time taken per individual example677

in the log. For this experiment, we chose the log produced by the MySQL678

implementation for the AuctionMark application. We emphasize that the679

choice of log, for this experiment, is immaterial: all the logs produced by MySQL680

follow the same format, and Zhefuscator’s parser needs to be augmented only 8681

times for all of them. AuctionMark has been chosen simply because it is the682

first benchmark in OLTPBench.683

Methodology. We compare both the approaches, Zhefuscator and the brute684

force, when given the first 1,000 examples in the log that MySQL produces685

for AuctionMark. For each example, we count only the time to recognize686

strings—redaction is not accounted for, because it applies the same algorithm,687

the same number of times, in both the approaches. Notice that choosing more688

than 1,000 examples will not change the results reported in this section, because689

Zhefuscator builds a definitive parser after observing 19 entries in the log file.690

Discussion. Figure 12 shows the result of this experiment, juxtaposing the691
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Figure 12: Skiline comparison between Zhefuscator and the brute force approach to parse
1,000 examples from the AuctionMark log.

skyline produced by the brute force approach and by Zhefuscator. The log file692

contains two distinct parts. The first 250 examples are system configuration693

commands, and have 1,021 characters, on average. The last 750 examples are694

various SQL queries, and contain 106 characters on the average. Using the C to-695

kenizer, we obtain 105 tokens, on the average, considering the 1,000 examples in696

the log file. Under this circumstance, the performance gap between Zhefuscator697

and the brute force approach is noticeable.698

Zhefuscator spends, on the average, 26.15 milliseconds per example, with a699

standard deviation of 17.86 ms. This number includes the extra time Zhefus-700

cator needs to augment the current parser—an action that happened 8 times701

in this experiment. The brute force approach spends 586.63 milliseconds per702

example, with a standard deviation of 1,830.33 ms. Zhefuscator is 22.5x faster,703

per example, than the brute force approach. However, this experiment uses an704

ideal scenario for Zhefuscator: a long stream of homogeneous textual examples.705

In the next section, we shall analyze the behavior of Zhefuscator under more706

unfavorable conditions.707

5.2.3. Increased Effectiveness via Amortized Cost708

The logs produced by MySQL and PostgreSQL are formed by long individual709

examples (more than 100 tokens on average). However, these examples are710

all similar; hence, as already observed in Figure 9, Zhefuscator synthesizes a711

definitive parser after observing a very short subset of them. To stress out the712
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performance of Zhefuscator, in this section we analyze its behavior when dealing713

with more complex logs, which we have produced artificially.714

Methodology. To produce the logs, we use six different types of tokens:715

booleans, integers, doubles, strings, dates and sets of comma-separated inte-716

gers within curly brackets, e.g., {2, 3, 5, 7}. We generate four types of logs.717

Each log contains a random number of tokens between 0 and R ∈ {4, 8, 16, 40},718

before and after an SQL query. We use always the query “SELECT string FROM719

string WHERE id = int”. With R = 4, we have 46 + 46 = 8, 192 possible720

example formats; with R = 8, we have 86 +86 = 524, 288, and so on. Therefore,721

fill holes will be invoked a much larger number of times than in the setup722

used in the previous section.723

Discussion. Figure 13 shows the result of this experiment. Whereas BF724

shows homogeneous behavior—its runtime per example varying only slightly—725

Zhefuscator has two types of responses. Such responses depend on the current726

parser recognizing or not the active example. When recognition is possible,727

parsing is fast; otherwise, the parser must be augmented with new productions,728

and we observe a runtime spike, which is marked in Figure 13 with a black729

dot. Said spikes are compulsory for the initial examples. However, as the cur-730

rent grammar increases, sentence recognition becomes more common, and spikes731

tend to disappear. As a consequence, the more events are observed, the larger732

is the performance improvement of Zhefuscator over the brute force approach.733

Figure 14 shows average time per example, plus standard deviations observed734

for Zhefuscator and for the brute force approach. The figure shows two results735

for Zhefuscator: the first considers only the time when parsing succeeds; the736

second considers, in addition, the time taken by fill holes, when Zhefuscator737

fails. In the former scenario, Zhefuscator always outperforms the brute force738

approach. In the latter, it always loses. The conclusion is that, once it reaches739

a steady state, Zhefuscator’s O(N) parser is consistently a better option than740

BF’s O(N2) algorithm. However, if necessary to augment the current parser741

too often, our technique loses its attractiveness. In this particular experiment,742

fill holes performs worse than in Section 5.2.2, because the host language is743
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Figure 13: Runtime comparison between Zhefuscator and the brute force approach to parse
1,000 examples of artificially generated logs. Black dots mark invocations of fill holes.

much more complex.744

5.2.4. Impact of the Tokenizer on Runtime745

The add example routine, which is invoked by build grammar (Figure 2,746

Lines 7-15) is parameterized by a tokenizer. The tokenizer is a function that747

converts the input text into tokens. The tokenizer is just an artifact of our748

implementation: users of our system will never have to deal with it. The imple-749

mentation of Zhefuscator can use any tokenizer that ANTLR supports. As we750

have hinted in Section 3.2, the tokenizer impacts both the number of examples751
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Format

Tk/Ex

parsing	only fill_holes:	35 parsing	only fill_holes:	39 parsing	only fill_holes:	51 parsing	only fill_holes:	264

avg	(Zhe) 17.53 18.40 22.08 23.67 29.47 34.05 88.88 1,085.01

std	(Zhe) 3.45 6.32 4.51 10.09 5.00 23.70 21.15 2,004.49

avg	(BF) 137.15 232.14 464.65 347.20

std	(BF) 31.41 55.38 103.24 60.48

29.99 38.26 54.10 298.43

[0,4]+SQL+[0,4] [0,8]+SQL+[0,8] [0,16]+SQL+[0,16] [0,40]+SQL+[0,40]

Figure 14: Average time and standard deviation (per example, in milliseconds) that Zhefus-
cator (Zhe) and the brute force approach (BF) take to analyze the artificial logs. “Parsing
only” reports runtimes for examples in which Zhefuscator’s current parser succeeds without
having to synthesize a new grammar. “fill holes: XX” includes the time of “parsing only”,
plus the time to augment the current parser. XX reports the number of times Zhefuscator
had to augment the current parser (via the fill holes routine).

as well as the runtime of Zhefuscator. In this section, we analyze this impact752

by verifying the behavior of Zhefuscator when parameterized by two different753

lexers.754

Methodology. We have tried Zhefuscator with two different lexers. Both were755

taken from public projects that use ANTLR—they have not been implemented756

as part of this research.757

Discussion. Although the choice of tokenizer might modify the number of758

examples necessary to reach a definitive grammar, the two tokenizers that we759

have used led to the same prefix size in Figures 9 and 10. This happens because760

C and SQL have many similar tokens, including identifiers—the most common761

in the examples. However, the impact on runtime is different. Using the C762

tokenizer, Zhefuscator takes 26.15 milliseconds, on average (STD = 17.85ms),763

per example from the AuctionMark log (Figure 12), including the eventual764

time taken to augment the grammar. Using the SQL version, this time drops765

down to 18.81 milliseconds, with a standard deviation of 3.33ms. The latter is766

faster because the SQL lexer uses a smaller automaton than the C lexer.767

5.3. RQ3—Practicality768

The techniques described in Section 3 have a computational cost. The goal769

of this section is to measure such cost. This empirical evaluation shall allow770

us to claim that the overhead of Zhefuscator, when deployed onto typical Java771

applications, is low enough to be practical.772
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Methodology. It is difficult to measure the overhead of Zhefuscator in our773

experimental setup involving actual deployments of MySQL and PostgreSQL.774

This difficulty comes from the fact that logging, at least in that particular775

setting, is a rare event. Log entries are produced only when users enter queries776

in the database. In this scenario, the overhead of Zhefuscator is negligible. Thus,777

to probe this overhead in a more heavily loaded scenario, we shall proceed with778

two experiments. In Section 5.3.1 we measure the runtime overhead that event779

handling imposes onto a single invocation of the System.out.println routine used780

to output log information in a database server. This evaluation provides some781

insight into the absolute overhead of event handling; however, it does not give782

us much information about how Zhefuscator would impact user experience, for783

the time of handling one single string event is very fast. To circumvent this784

limitation, in Section 5.3.2 we measure the overhead that Zhefuscator imposes785

onto batch computations, i.e., that perform a fixed number of steps. In this786

case, we focus on the Java Dacapo benchmark suite [12].787

5.3.1. Overhead of Treating one String Event788

To measure the overhead of treating one string event, we have built a system789

that reads a log file and outputs it line by line using the System.out.println790

method from the Java Standard Library. For maximum stress, we assume that791

every SQL literal must be redacted. In this experiment, we adopt the same logs792

from the MySQL databases used in Section 5.1.1.793

Discussion. Figure 15 presents the results of this evaluation. Each log was794

evaluated ten times; hence, each box plot contains ten samples. The figure795

makes it clear that Zhefuscator’s event handler has an overhead over individual796

method invocations. This overhead can be as high as two orders of magni-797

tude, as observed in resourcestresser. However, this cost accounts for a798

very small proportion of the runtime of a typical database system. In the case799

of resourcestresser, the average time to redact every literal in the log is800

0.03sec per invocation of System.out.println. This time includes the invocation801

of build grammar (Fig. 2) and the obfuscation of literals. Obfuscation includes802
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the time to encrypt literals using AES.803
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Figure 15: Overhead of Zhefuscator on an extreme case: a system that only outputs different
database logs.

5.3.2. Deploying on Java Dacapo804

In this experiment, we measure the overhead of building a grammar for every805

output produced by the programs in the DaCapo Benchmark Suite. DaCapo’s806

logs do not contain SQL queries; hence, in this section, we are measuring the807

time to build grammars, but not the time to redact queries.808

Discussion. Figure 16 compares the runtime of DaCapo without and with809

interventions from Zhefuscator. Figure 17 shows accompanying data: p-values,810

number of log events and number of production rules in the final grammar811

that we synthesize. The p-value provides us with some notion of statistically812

significant runtime difference: the lower the p-value, the more noticeable is the813

gap in runtime between the two versions of each DaCapo program. Typically,814

p-values below 0.05 are considered statistically significant. These p-values have815

been obtained via a T-Test applied on the same data used to produce Figure 16.816

The T-Test provides us with an idea on how different are a “control” and a “test”817

groups. In our setting, the control group is formed (in Figure 16) by applications818

that do not run the Zhefuscator. The test group, in contrast, is formed by the819
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same applications using the Zhefuscator. The lower the p-value returned by820

the T-Test, the more statistically significant is the different between these two821

groups.822
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Figure 16: The overhead of Zhefuscator on Dacapo.
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cally significant the overhead.

The runtime overhead of Zhefuscator, even when deployed onto a batch823

system, tends to be small. In 11, out of 15 cases, we could not perceive any824

statistically significant runtime difference. The largest runtime gap that we825

have observed was in fop; however, this is the benchmark that runs for the826

shortest time. Thus, this overhead, due to the initialization of Zhefuscator’s827

agent, tends to be amortized in systems that run for more time. The largest828

absolute overhead was observed in xalan: 1.7 seconds on average, over a system829

that runs for 44 seconds on average.830
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6. Related Work831

Much theory concerning the recognition of languages on the limit has been832

designed and discussed in the literature. Section 6.1 discusses this theory, to833

give the reader some perspective on the foundations of the present work. We834

also notice that much of the developments in this work bear resemblances to835

programming fuzzing. Yet, whereas fuzzing is concerned with recognizing a lan-836

guage that describes the input of a program, our paper deals with the inverse837

problem: we recognize a language that describes the output of the program.838

Section 6.2 discusses work related to fuzzing. Additionally, there exists a vast839

body of literature concerned with the synthesis of grammars from examples.840

This is the approach that we use in Section 4.1 to equip the Zhefuscator with a841

user interface. In Section 6.3 we discuss work related to the synthesis of gram-842

mars from examples. Finally, our theory, once implemented into an actual tool,843

yields a reactive system. Events, in this case, are the occurrence of particu-844

lar patterns in Strings. Section 6.4 explores other reactive systems of similar845

nature.846

6.1. Inductive Grammar Synthesis847

The notion of language identification in the limit, which we have used as848

a motivation for our on-line grammar inference algorithm, was introduced by849

Edward Gold in the mid sixties [14]. Much research evolved from Gold’s initial850

problem formulation. The main developments in the field are due to Angluin851

and her collaborators [21, 22, 23, 24]. Nevertheless, several research groups have852

formalized grammar inference for specific types of languages [25, 26, 27, 28, 29].853

Since the nineties, decidability for inference of grammars for several classes854

of languages is already known [30]. Usually, the language thus produced is855

deterministic, although Eman et al. have shown how to derive probabilistic856

automata on the limit [31]. The identification of string events fits into the857

framework of language inference in the limit; however, in this paper, we do not858

try to guess the right host language L that contains said events. Instead, we859

try to infer a grammar G that recognizes string events in any prefix of this860

37



language. Notice that G might also recognize strings that do not belong into861

L. This possibility has no practical implications in the context of this paper:862

we are interested in finding string events, not in recognizing exactly the host863

language that contains it.864

Recent progress in the field of machine-learning has imbued Gold’s original865

program with renewed attractiveness. For an overview of how machine-learning866

techniques are used to solve language recognition in the limit, we recommend867

Bennaceur et al.’s [32]. The literature contains several examples of how statis-868

tical inference techniques are used to learn a language in the limit, such as the869

work of Li et al. [33], who employ a genetic-based algorithm to learn the struc-870

ture of XML documents. Or, along a different direction, the work of Graben871

et al. [34], who have developed an interactive system to gradually learn a sim-872

ple language of English numerals. We contend that such techniques, although873

effective in their contexts, are not ideal fits to our problem—online language874

recognition—because they require slow, exploratory-based algorithms, which875

would be too heavy for our needs.876

6.2. Program Fuzzing877

In this paper, we are interested in approximating a grammar that character-878

izes the output of a program. The inverse problem has received more attention879

in the programming language community: to infer a grammar that describes880

the input of a program. This kind of inference is useful in testing via software881

fuzzing, as demonstrated by Bastani et al. [35] and Blazytko et al. [36], for in-882

stance. The many approaches described in the literature [35, 36, 37, 38] differ883

from our work in many ways. First, there is the obvious difference in direction:884

we infer grammars for program outputs, not inputs. Second, these techniques885

typically rely on negative examples to refine the inferred grammar, whereas neg-886

ative examples play no role in our formulation. Finally, there is a difference in887

purpose: we are not interested in testing a program; rather, our intention is to888

intervene in the program already in production.889
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6.3. Interactive Grammar Inference890

There exists prior work about the construction of parsers for programming891

languages based on examples [39, 40, 41, 1, 2]. Such systems synthesize and892

refine grammars, one example at a time. Much of the inspiration behind our893

approach to select which literals must be redacted (see Section 4.1) came from894

Parsimony [2], an IDE for example-guided synthesis of lexers and parsers. This895

line of work is an instance of a much broader field known as programming-by-896

examples (PBE) [42]. Zhefuscator is not a framework to support programming897

by example. It infers grammars on-the-fly that recognize examples produced898

automatically by a machine, not a person. Therefore, the speed to synthesize899

a parser is an essential requirement of our work—more than clarity, or the900

efficiency of the parser itself. That is the reason why we have opted to produce901

Heap-CNF grammars: it is fast to generate and merge them.902

6.4. String Events903

This paper is not the first work to deal with the on-line detection of string904

events. Research along this direction was mostly concerned with security. String905

events have been handled, for instance, in the context of intrusion detection [43,906

44], dynamic taint analysis [45, 46] and on-the-fly spam identification [47]. Nev-907

ertheless, if we do not claim primacy, we claim generality. All these previous908

works would identify string events in very specific situations, e.g., as particular909

patterns embedded in an SQL query, in the case of tainted flow analysis [45],910

or as a combination of specific tokens within a network package, in the case of911

intrusion detection [43]. This paper is the first work to provide a general frame-912

work that, in a way, “learns” a language, and recognizes string events embedded913

into it.914

7. Conclusion915

This paper has presented a theoretical framework to detect string events.916

Said events are described by a language whose grammar is known. They occur917

within a potentially infinite text, defined by a host language, whose grammar is918
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unknown. We showed how to synthesize a grammar G that recognizes any prefix919

of the infinite text stream. By defining a specific restriction of Chomsky Normal920

Form, the Heap-CNF, we guarantee that G is non-ambiguous (Theorem 5) and921

admits LL(1) parsing (Theorem 7). We have shown, empirically, that this theory922

can be implemented into an efficient log anonymization system, the Zhefuscator,923

which redacts sensitive information from the output of programs, while treating924

these programs as black-box software. We have tested the Zhefuscator onto logs925

from databases (MySQL and PostgreSQL), operating systems (OSX) and Java926

benchmarks (DaCapo). In every case, the performance overhead of this system927

is very small.928

Future work. We speculate that recent developments in the programming929

languages community can be used to strengthen the theory and the practice930

discussed in this paper. First, concerning formalization, our theorems are not931

mechanically verified. This shortcoming is due to the lack of a general framework932

to reason about properties of LL(1) parsers. However, Edelmann et al. [10] have933

showed how to build LL(1) parsers with derivatives and zippers that are correct934

by construction.935

Second, Zhefuscator is parameterized by a tokenizer, which our current im-936

plementation borrows from ANTLR. The fact that users have no way to specify937

a lexer in our system can be considered a limitation of our current implemen-938

tation. Thus, it would be desirable to give users the possibility to define their939

own tokenizers without exposing them to minutia related to automata theory.940

Recent work by Chen et al. [48] has provided a clear interface for this purpose,941

which is based on examples supported by a natural language (NL) description942

of regular expressions. We believe that NL-based specifications will be able to943

improve purely example-based approaches that have recently been shown to be944

effective to specify regular expressions [49, 50]. This research direction is even945

more promising once we consider the availability of efficient string solvers such946

as CVC4Sy [51] or Z3-Str [52], which supports a wide range of logical theories,947

including strings and regular expressions.948
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Proofs of Lemmas and Theorems1115

This appendix contains proofs of Lemmas, Theorems and Corollaries present1116

in the paper “On-Line Synthesis of Parsers for String Events”.1117

Theorem 1. Function fill holes (Fig. 3) produces a grammar Gi that recog-1118

nizes an example ti = t1i · · · tni in n steps with 2n− 1 non-terminals.1119

Proof 2. The proof is by induction on the size |ti| of the example. On the Base Case,1120

we have that ti = token; hence, |ti| = 1. fill holes produces R1 ::= token, which1121

recognizes ti trivially. On the Inductive Case, we assume that ti = token • Rest. By1122

induction, we have that fill holes generates a grammar with starting symbol R2i+11123

that recognizes Rest in n − 1 steps (Line 7 of Figure 3). The extended grammar1124

recognizes ti:1125

Rn ::= R2nR2n+1

R2n ::= token

R2n+1 ::= . . .

By induction, we know that R2n+1 starts production rules with 2(n − 1) − 1 non-1126

terminals. Adding Rn and R2n, we have that the resulting grammar contains 2n − 11127

non-terminals.1128

Lemma 2.. If G is the grammar that results from merging two Heap-CNF gram-1129

mars G′ and G”, then G is Heap-CNF, and lang(G′) ∪ lang(G”) ⊆ lang(G)1130

Proof 3. We demonstrate the lemma analyzing each one of the four cases involved in1131

the process of merging two Heap-CNF grammars. We let R′i ::= P ′ be the production1132

rule that corresponds to Ri in Gi. Similarly, we let Ri” ::= P” be the production rule1133

that corresponds to Ri in Gi”. We let tk be a token:1134

� P ′ = tk ′1 | . . . | tk ′n and P” = tk1” | . . . | tkn”. In this case, we have that1135

Ri ::= tk ′1 | . . . | tk ′n | tk1” | . . . | tkn”, which is still Heap-CNF.1136

� P ′ = R2iR2i+1 | tk ′1 | . . . | tk ′n and P” = tk1” | . . . | tkn”. In this case, we have1137

that Ri ::= R2iR2i+1 | tk ′1 | . . . | tk ′n tk1” | . . . | tkn”, which is still Heap-CNF.1138

� P ′ = tk ′1 | . . . | tk ′n and P” = R2iR2i+1 | tk1” | . . . | tkn”. In this case, we have1139

that Ri ::= R2iR2i+1 | tk ′1 | . . . | tk ′n tk1” | . . . | tkn”, which is still Heap-CNF.1140
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� P ′ = R2iR2i+1 | tk ′1 | . . . | tk ′n and P” = R2iR2i+1 | tk1” | . . . | tkn”. In this1141

case, we have that Ri ::= R2iR2i+1 | tk ′1 | . . . | tk ′n | tk1” . . . | tkn”, which is1142

still Heap-CNF.1143

Notice that if we have a token tkx that appears in both lists: tk ′1 | . . . | tk ′n and1144

tk1” | . . . | tkn”, then this token will appear only once—by definition—in the corre-1145

sponding list of the merged grammar.1146

Theorem 3.. The procedure build grammar (Fig. 2) constructs grammars in1147

Heap-CNF.1148

Proof 4. The proof of Theorem 3 is the junction of two facts: (i) function fill1149

holes (Fig. 3) builds only grammars in Heap-CNF; and (ii) the merging of gram-1150

mars (Def. 4) yields Heap-CNF grammars. To demonstrate Fact-i, notice that fill1151

holes only produces rules in the format Ri ::= token, or Ri ::= R2iR2i+1; hence, the1152

grammar is in Heap-CNF. Fact-ii follows from Lemma 2.1153

Theorem 4.. LetG1, G2, . . . , Gn be the grammars constructed by function build1154

grammar (Fig. 2) for input strings t1, t2, . . . , tn. Grammar Gi, 1 ≤ i ≤ n recog-1155

nizes every input ti, 1 ≤ i ≤ n.1156

Proof 5. The proof works by induction on the number of examples ti. In the base1157

case, build grammar fails compulsorily in the attempt to parse t1, because its current1158

grammar recognizes only the empty string, i.e.: R1 ::= ε. Failure happens in the1159

conditional at Line 8 of Figure 2. A new grammar G1 will be constructed for t1 by1160

routine expand grammar, via function fill holes. By Theorem 1, G1 recognizes t1. In1161

the inductive step, we have a grammar Gk, that recognizes every example t1, . . . , tk.1162

When build grammar is given a new example tk+1, two scenarios are possible:1163

� Gk recognizes tk+1; hence, the conditional at Line 19 of Figure 2 is true.1164

� Gk fails to recognize tk+1. In this case, a new grammar G′ will be constructed1165

by fill holes, and the resulting grammar Gk+1 = merge(Gk, G
′) recognizes1166

t1, . . . , tk+1, by Lemma 2.1167

We let merge(Gk, G
′) above be the grammar that results from merging Gk and G′.1168
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Lemma 3.. Let Gn be the grammar constructed by function build grammar1169

(Fig. 2) after observing inputs t1, t2, . . . , tn. The size of Gn is O(N), where N1170

is the number of tokens in t1, t2, . . . , tn.1171

Proof 6. The fill holes procedure only augments the rightmost node of a derivation1172

tree. In other words, given a sentence of n tokens, fill holes produces a grammar1173

with5:1174

� 2n− 1 non-terminal symbols;1175

� 2n− 1 production rules;1176

� n terminal symbols;1177

The merge routine never adds new terminals or non-terminals to a grammar; hence,1178

it maintains its asymptotic size complexity.1179

Theorem 5.. Let Gn be the grammar constructed by function build grammar1180

(Fig. 2) after observing inputs t1, t2, . . . , tn. Gn is not ambiguous.1181

Proof 7. As a consequence of Lemma 3, the rightmost derivation tree of a Heap-CNF1182

grammar always has height n−1 and O(N) nodes. Only one rightmost derivation tree1183

is possible, which Figure 5 illustrates. The rightmost token is always recognized by a1184

production from non-terminal R2n−1.1185

Corollary 2.. Let Gn be the grammar constructed by function build grammar1186

(Fig. 2) after observing inputs t1, t2, . . . , tn. Gn recognizes ti, 1 ≤ i ≤ n with1187

O(N) derivations, where N is the number of tokens in ti.1188

Proof 8. This corollary follows from Lemma 3, plus the fact, already mentioned in1189

the proof of Theorem 5, that only one rightmost derivation tree is possible. Thus,1190

the grammar built by fill holes recognizes a sentence with n tokens with 2n − 11191

derivations.1192

Theorem 6.. Grammar G′e produced by markup (Fig. 8) recognizes a subset of1193

lang(Ge) or the empty language.1194

5We treat se, the starting symbol of the event grammar, as a single token.
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Proof 9. The proof works by induction on the number of times Step 2 in Procedure1195

markup runs. In the base case (Step 1), we have that G′e recognizes the empty lan-1196

guage. In the inductive step, we assume that G′e recognizes a subset of lang(Ge) after1197

n iterations of Step 2. In the next iteration, Steps 3 and 4 ensure that Ge” recognizes1198

a subset of lang(Ge). The junction of G′e and Ge” uses only production rules of Ge;1199

hence, it must recognize a subset of the language that Ge recognizes. Furthermore, be-1200

cause these two grammars start with se, the initial symbol of Ge, the resulting grammar1201

after the junction also starts with se.1202

Theorem 7.. Any Heap-CNF grammar is LL(1).1203

Proof 10. This fact follows from the observation that Heap-CNF grammars are not1204

recursive. Therefore, no left recursion is possible, and the language that these gram-1205

mars recognize has a finite number of possible derivation trees. The one token of1206

lookahead follows from Definition 3 and Corollary 1, because the position of a token1207

in the derivation tree is uniquely determined by the position of that token in the input1208

string.1209

Corollary 3.. There are languages whose grammars cannot be synthesized by1210

Zhefuscator.1211

Proof 11. A formal language is called an LL(k) language if it has an LL(k) grammar.1212

The set of LL(k) languages is properly contained in that of LL(k+1) languages, for each1213

k greater than or equal to zero [53]. Therefore, there exist context-free languages that1214

are not LL(1). This restriction mean that even on the limit, Zhefuscator would not be1215

able to synthesize perfect grammars for some languages. However, up to any number1216

n of events, Zhefuscator will synthesize a grammar Gn that recognizes every t1, . . . tn,1217

and potentially other strings, as discussed in Section 3.3.2.1218
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