
Extending SMT Solvers to Higher-Order Logic
(Technical Report)

Haniel Barbosa1, Andrew Reynolds1, Daniel El Ouraoui2,
Cesare Tinelli1, and Clark Barrett3

1 The University of Iowa, Iowa City, USA
2 University of Lorraine, CNRS, Inria, and LORIA, Nancy, France

3 Stanford University, USA

Abstract. SMT solvers have throughout the years been able to cope with increas-
ingly expressive formulas, from ground logics to full first-order logic (FOL). Nev-
ertheless, higher-order logic (HOL) within SMT is still little explored. We pro-
pose a pragmatic extension for SMT solvers to natively support HOL reasoning
without compromising performance on FOL reasoning, thus leveraging the ex-
tensive research and implementation efforts dedicated to efficient SMT solving.
We show how to generalize data structures and the ground decision procedure to
support partial applications and extensionality, as well as how to reconcile instan-
tiation techniques with functional variables. We also discuss a separate approach
for redesigning an SMT solver to HOL via new data structures and algorithms.
We apply the pragmatic extension to the CVC4 SMT solver and redesign the
veriT SMT solver. Our evaluation shows they are competitive with state-of-the-
art HOL provers and often outperform the traditional encoding into FOL.

1 Introduction

Higher-order (HO) logic is a pervasive setting for reasoning about numerous real-world
applications. In particular, it is widely used in proof-assistants (also known as inter-
active theorem provers) to provide trustworthy, formal, and machine-checkable proofs
of theorems. A major challenge in these applications is to automate as much as possi-
ble the production of these formal proofs, thereby reducing the burden of proof on the
users. An effective approach for stronger automation is to rely on less expressive but
more automatic theorem provers to discharge some of the proof obligations. Systems
such as HOLYHammer, MizAR, Sledgehammer, and Why3, which provide a one-click
connection from proof-assistants to first-order (FO) provers, have led in recent years
to considerable improvements in proof-assistant automation [17]. Such a layered ap-
proach is also used by automatic HO provers such as Leo-III [51] and Satallax [20],
which regularly invoke FO provers to discharge intermediary goals depending solely
on FO reasoning. However, as noted in previous work [15, 38, 57], each of these ap-
proaches has disadvantages: full encodings into FO, such as those performed by the
“hammers,” may lead to performance, soundness and completeness issues; while the
combination of FO and HO reasoning in automatic HO provers may suffer from the
HO prover itself, which is not optimized for FO proving, having to perform substantial
FO reasoning in HO problems that have a large “FO component,” which occurs often

2 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

in practice. We aim to overcome these shortcomings by extending Satisfiability Mod-
ulo Theories (SMT) [10] solvers, which are highly successful automatic FO provers, to
natively support HOL.

The main challenges for extending SMT solvers to HOL are dealing with partial ap-
plications and with functional variables. The former mainly affects term representation
and core algorithms, which assumes that all symbols are fully applied. The latter im-
pacts quantifier instantiation techniques, which must now account for applied variables.
Moreover, often HO problems can only be proven if functional variables are instantiated
with synthesized λ-terms, via HO unification [27], which is undecidable.

In this paper, we present two approaches for extending SMT solvers to natively
support HO reasoning (HOSMT). In the first approach, called the pragmatic approach
(Section 3), we consider how to extend a solver with only minimal modifications to its
core data structures and algorithms. This approach targets existing state-of-the-art SMT
solvers with large code bases and complex data structures optimized for the FO case.
In the second approach, called the redesign approach (Section 4), we consider how to
rethink a solver’s data structures and develop new algorithms. This approach may lead
to better results, but seems better suited for “lightweight” solvers, i.e., less optimized
solvers with smaller code bases. Moreover, the redesign approach provides more flexi-
bility to later develop new techniques specially suited for higher-order reasoning.

A common theme of both approaches is that the instantiation algorithms are not
extended with HO unification. We consider an efficient integration of these techniques
to be a challenge significant enough to be explored only in a next phase of this work.

We present an extensive experimental evaluation (Section 5) of our pragmatic and
redesign approaches as implemented in the state-of-the-art SMT solver CVC4 [8] and
the lightweight veriT [19], respectively. Besides comparisons against state-of-the-art
HO provers, we also evaluate these solvers against themselves, comparing a native HO
encoding using the extensions in this paper to the base versions of the solvers with
the more traditional FO encoding (not using the extensions). Our results show the
extension of CVC4 complements its encoding-based counterpart and is often ahead of
the state-of-the-art, as well as significant improvements for the redesigned veriT.

2 Preliminaries

Our monomorphic higher-order language L is defined in terms of right-associative
binary sort constructors→,× and pairwise-disjoint countably infinite sets S, X and F ,
of atomic sorts, variables, and function symbols, respectively. We use the notations ān
and ā to denote the tuple (a1, . . . , an) or the cross product a1 × · · · × an, depending
on context, with n ≥ 0. We extend this notation to pairwise binary operations over
tuples in the natural way, e.g., for a binary operator ./, the notation ān ./ b̄n stands for
a1 ./ b1, . . . , an ./ bn. A sort τ is either an element of S or a functional sort τ̄n → τ
from sorts τ̄n = τ1 × · · · × τn to sort τ . The elements of X and F are annotated with
sorts, so that x : τ is a variable of sort τ and f : τ̄n → τ is an n-ary function symbol of
sort τ̄n → τ . We identify function symbols of sort τ̄0 → τ with function symbols of
sort τ , which we call constants when τ is not a functional sort. Whenever convenient
we drop the sort annotations when referring to symbols.

Extending SMT Solvers to Higher-Order Logic (Technical Report) 3

The set of terms is defined inductively: every variable x is a term. Given variables
x̄n : τ̄n and a term t : τ , then λx̄n. t, with sort τ̄n → τ , is a term, called a λ-abstraction,
with x̄n being its bound variables and t its body. A variable occurrence is free in a term
if it is not bound by a λ-abstraction. A term is ground if it has no free variables.

Given a function symbol f : τ̄n → τ and terms t1 : τ1, . . . , tn : τn, then f(t̄n) : τ is
a term, called an application of f with t̄n as its arguments and f as its head. An appli-
cation f(t̄m) : τm+1 × · · · × τn → τ , for m < n, is a term, called a partial application
of f. A λ-application is an application whose head is a λ-abstraction. The subterm re-
lation is defined recursively: a term is a subterm of itself; if a term is an application, all
subterms of its arguments are also its subterms. Note this is not the standard definition
of subterms in HOL, which also includes application heads and all partial applications.
The set of all subterms in a term t is denoted by T(t). We assume S contains a sort
o, the Boolean sort, and that F contains Boolean constants >, ⊥, a Boolean unary
function ¬, Boolean binary functions ∧, ∨, and, for every sort τ , a family of equality
symbols ' : τ × τ → o and a family of symbols ite : o× τ × τ → τ . These symbols
are interpreted in the usual way as, respectively, logical constants, connectives, identity
and if-then-else (ITEs). We refer to terms of sort o as formulas and to functions of sort
τ̄ → o as predicates. An atom is a total predicate application. A literal is an atom or
its negation. We assume the language contains ∀ and ∃ as binders over formulas. We
use the symbol = for syntactic equality on terms. We reserve the names a, b, c, f, g, h, p
for function symbols; w, x, y, z for variables in general and F,G for variables of func-
tional sort; r, s, t, u for terms; and ϕ,ψ for formulas. The notation t[x̄n] stands for a
term whose free variables are included in the tuple of distinct variables x̄n; t[s̄n] is the
term obtained from t by a simultaneous substitutions of s̄n for x̄n.

We assume F contains a family @ : (τ̄n → τ)× τ1 → (τ2 × · · · × τn → τ) of ap-
plication symbols for all n > 1. We use it to model (Curried) applications of terms
of functional sort τ̄n → τ . For example, given a function symbol f : τ1 × τ2 → τ3
and application symbols @ : (τ1 × τ2 → τ3)× τ1 → (τ2 → τ3) and @ : (τ2 → τ3) ×
τ2 → τ3, @(f, t1) and @(@(f, t1), t2) have the same denotation, respectively, as
λx2 : τ2.f(t1, x2) and f(t1, t2). To simplify the notation we may omit the @ symbols
and write (. . . ((f, t1), . . .), tn) to denote the application @(. . . (@(f, t1), . . .), tn).

An applicative encoding is a well-known approach for performing HO reasoning
using FO provers. This encoding converts every functional sort into an atomic sort,
every n-ary symbol into a nullary symbol, and uses @ to encode applications. Thus, all
applications, partial or not, become total, and quantification over functional variables
becomes quantification over regular FO variables. We adopt Henkin’s semantics [12,
31] with extensionality and choice, as is standard in automatic HO theorem proving.
This logic coincides with the monomorphic fragment of higher-order TPTP, THF0 [13],
modulo background theories.

2.1 SMT solvers and quantified reasoning

SMT solvers that process quantified formulas can be seen as containing three main com-
ponents: a preprocessing module, a ground solver, and an instantiation module. Given
an input formula ϕ, the preprocessing module applies various transformations (such
as Skolemization and clausification) to it to obtain another, equisatisfiable, formula ϕ′.

4 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

The ground solver operates on the formula ϕ′. It abstracts all of its atoms and quantified
formulas and treats them as if they were propositional variables. The solver for ground
formulas provides an assignment E ∪ Q, where E is a set of ground literals and Q is
a set of quantified formulas appearing in ϕ′, such that E ∪ Q propositionally entails
ϕ′. The ground solver then determines the satisfiability of E according to a decision
procedure for a combination of background theories, such as equality and uninterpreted
functions (EUF) and linear integer arithmetic (LIA). If E is satisfiable, the instantiation
module of the solver generates new ground formulas of the form ¬(∀x̄. ψ)∨ψσ where
∀x̄. ψ is a quantified formula in Q and σ is a substitution from the variables in ψ to
ground terms. We assume that all quantified formulas in Q are of the form ∀x̄. ϕ with
ϕ quantifier-free. This can be achieved by prenex form transformation and Skolemiza-
tion. These instances will be, after preprocessing, added conjunctively to the input of
the ground solver, which will proceed to derive a new assignment E′ ∪Q′, if possible.
This interplay may terminate either if ϕ′ is proven unsatisfiable or if a model is found
for an assignment E ∪Q that is also a model of ϕ′.

Extending SMT solvers to HOL can be achieved by extending these three compo-
nents such thato:

1. the preprocessing module eliminates λ-expressions;
2. the ground decision procedure supports a ground extensional logic with partial ap-

plications, which we denote QF_HOSMT;
3. the instantiation module instantiates variables of functional type and takes into ac-

count partial applications and equations between functions.

We can perform each of these tasks pragmatically without heavily modifying the solver,
which is useful when extending highly optimized state-of-the-art SMT solvers (Sec-
tion 3). Alternatively, we can perform these extensions in a more principled way by
redesigning the solver, which better suits lightweight solvers (Section 4).

3 A pragmatic extension for HOSMT

We pragmatically extend the ground SMT solver to QF_HOSMT by removing λ-expre-
ssions (Section 3.1), checking ground satisfiability (Section 3.2), and generating models
(Section 3.3). Extensions to the instantiation module are discussed in Section 3.4.

3.1 Eliminating λ-expressions and partial applications of theory symbols

To ensure that the formulas that reach the core solving algorithm are λ-free, a pre-
processing pass is used to eliminate λ-applications and λ-abstractions. The former are
eliminated via β-reduction, with each application (λx̄. t[x̄]) ū replaced by the equiva-
lent term t[ū]. The substitution must rename bound variables in t to avoid capture.

Two main approaches exist for eliminating λ-abstractions: λ-lifting [33] and com-
binators [42]. Combinators allow λ-terms to be synthesized during solving without the
need for HO unification. This translation, however, introduces a large number of quanti-
fiers and often leads to performance loss [16, Section 6.4.2]. We instead apply λ-lifting
in our pragmatic extension: λ-abstractions are replaced by a fresh function symbol, and

Extending SMT Solvers to Higher-Order Logic (Technical Report) 5

a quantified formula is introduced to define it in terms of the original expression. Note
that this is similar to the typical approach used for eliminating ITE expressions in SMT
solvers. The new function takes as arguments the variables bound by the respective
λ-abstraction and the free variables occurring in its body.

Formally, λ-abstractions of the form λx̄n. t[x̄n, ȳm] of type τ̄n → τ with ȳm : ῡm
occurring in a formula ϕ are lifted to partial applications @(f, ȳm) where f is a fresh
function symbol of type ῡm × τ̄n → τ . Moreover, the formula ∀ȳmx̄n. f(ȳm, x̄n) '
t[x̄n, ȳm] is added conjunctively to ϕ. To minimize the number of new functions and
quantified formulas introduced, eliminated expressions are cached so that the same def-
inition is reused, as is done for ITE removal. Further optimizations such as making the
cache invariant to α-renaming could also be applied. We note that careful engineering
is required to perform λ-lifting correctly in an SMT solver not originally designed for
it. For instance, using the existing machinery for ITE removal may be insufficient, since
this may not properly handle instances occurring inside binders or as the head of appli-
cations. Moreover, all the places in the SMT solver which distinguish how operations
are performed depending on whether you are on the scope of a binder must be extended
for the presence of λ-abstractions as well.

Another important preprocessing step makes all applications of interpreted sym-
bols total: terms h(t̄m) where h : τ̄n → τ is a symbol of the background theory with
n > m are converted to λx̄n−m. h(t̄m, x̄n−m), which is then λ-lifted, according to
the procedure above, to an uninterpreted symbol f defined by the quantified formula
∀ȳ∀x̄n−m. f(x̄n−m) ' h(t̄m, x̄n−m) where ȳ collects the free variables of t̄m. Thus,
the partial application of h is handled via the newly introduced uninterpreted function
f, keeping the theory solver responsible for h agnostic to its partial application.

3.2 Extending the ground solver to QF_HOSMT

Since we operate after preprocessing in a λ-free setting in which only uninterpreted
functions may occur partially applied, lifting the ground solver to QF_HOSMT amounts
to extending the EUF solver to handle partial applications and extensionality.

The decision procedure for ground EUF generally adopted by SMT solvers is based
on the classical congruence closure algorithm developed by Downey et al. [28] and
Nelson and Oppen [39]. For better performance its implementation in most SMT solvers
assumes that function symbols are fully applied. Instead of redesigning the solver to
accommodate partial applications, we apply a lazy applicative encoding, in which only
such applications are converted with the applicative encoding, whereas the traditional
applicative encoding would convert every term in the formula.

Concretely, during term construction, all partial applications are converted to total
applications via the binary @ symbols, while fully applied terms are kept in their regular
representation. Determining the satisfiability of a set of EUF constraints E containing
terms in both representations is done in two phases: if E is determined to be satisfiable
by the regular first-order procedure, we introduce equalities between regular terms (i.e.,
fully applied terms without the @ symbol) and their applicative counterpart and recheck
the satisfiability of the resulting set of constraints. However, we only introduce these
equalities for regular terms which interact with partially applied ones. This interaction
is characterized by function symbols appearing as members of congruence classes in the

6 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

t ∈ T(E)
REFL

t ' t

t ' u
SYM

u ' t

s ' t, t ' u
TRANS

s ' u

t̄n ' ūn f(t̄n), f(ūn) ∈ T(E)
CONG

f(t̄n) ' f(ūn)

t ' u, t 6' u
CONFLICT

⊥

f(t̄n), f ∈ T(E)
APP-ENCODE

f(t̄n) ' @(. . . (@(f, t1), . . .), tn)

f 6' g f, g : τ̄n → τ n > 0
EXTENSIONALITY

f(sk1, . . . , skn) 6' g(sk1, . . . , skn)

where sk1, . . . , skn are fresh symbols of respective sorts τ1, . . . , τn.

Fig. 1: Derivation rules for checking satisfiability of QF_HOSMT constraints in EUF.

E-graph, the congruence closure of E built by the EUF decision procedure. A function
occurs in an equivalence class if it is an argument of an @ symbol or if it appears in
an equality between function symbols, and thus as part of a partial application. The
equalities between regular terms and their applicative encodings are kept internal to the
E-graph, therefore not affecting other parts of the ground decision procedure.

Example 1. Given f : τ × τ → τ , g, h : τ → τ and a : τ , consider the set of constraints
E = {@(f, a) ' g, f(a, a) 6' g(a), g(a) ' h(a)}. We have that E is initially found
to be satisfiable. However, since f and g occur partially applied, we augment the set of
constraints with a correspondence between the HO and FO applications of f, g:

E′ = E ∪ {@(@(f, a), a) ' f(a, a), @(g, a) ' g(a)}

When determining the satisfiability of E′ the equality @(@(f, a), a) ' @(g, a) will be
derived by congruence and hence f(a, a) ' g(a) will be derived by transitivity, leading
to a conflict. Notice that we do not require equalities between fully applied terms whose
functions do not appear in the E-graph and their equivalent in the applicative encoding.
In particular, the equality h(a) ' @(h, a) is not introduced in this example. •

We formalize the above procedure via the calculus in Figure 1. The derivation rules
operate on a current set E of constraints. A derivation rule can be applied to E if its
premises are met. A rule’s conclusion either adds an equality literal to E or replaces it
by ⊥ to indicate unsatisfiability. A rule application is redundant if its conclusion leaves
E unchanged. A constraint set is saturated if it admits only redundant rule applications.
The rules are applied to increase an initial set of constraints E0 until ⊥ is derived or
until saturation.

Rules REFL, SYM, TRANS, CONG and CONFLICT are standard for EUF decision
procedures based on congruence closure, i.e., the smallest superset of a set of equations
that is closed under entailment in the theory of equality. The rule APP-ENCODE equates
a full application to its applicative encoding equivalent, and it is applied only to appli-
cations of functions which occur as subterms in E. As mentioned above, this can only

Extending SMT Solvers to Higher-Order Logic (Technical Report) 7

be the case if the function itself appear as an argument of an application, which happens
when it is partially applied (as argument of @ or ').

Rule EXTENSIONALITY is similar to how extensionality is handled in decision pro-
cedures for extensional arrays [24, 52]. If two non-nullary functions are disequal in E,
then a witness of their disequality is introduced. The extensionality property is char-
acterized by the axiom ∀x̄n. f(x̄n) ' g(x̄n) ⇔ f ' g, for all functions f and g of
same type. The rule ensures the left-to-right direction of the axiom (the opposite one
is ensured by APP-ENCODE together with the congruence closure rules). To simplify
the presentation we assume that, for every term @(. . . (@(f, t1), . . .), tm) : τ̄n → τ ∈
T(E), there is a fresh symbol f ′ : τ̄n → τ such that @(. . . (@(f, t1), . . .), tm) '
f ′ ∈ E. Thus, we do need to define another EXTENSIONALITY rule for terms such as
@(. . . (@(f, t1), . . .), tn1

) 6' @(. . . (@(g, u1), . . .), un2
).

Example 2. Consider the function symbols f, g : τ → τ , a : τ , and the set of constraints
E = {f ' g, f(a) 6' g(a)}. The constraints are initially satisfiable with respect to the
congruence closure rules, however, since f, g ∈ T(E), the rule APP-ENCODE will be
applied twice to derive f(a) ' @(f, a) and g(a) ' @(g, a). Then via CONG, from
f ' g we infer @(f, a) ' @(g, a), which leads to a conflict via transitivity. •

Decision procedure Any derivation strategy for the calculus that does not stop until it
saturates or generates⊥ yields a decision procedure for the satisfiability of QF_HOSMT
constraints in the EUF theory, according to the following results for the calculus.

Proposition 1 (Termination). Every sequence of non-redundant rule applications is
finite.

Proof. The congruence closure rules do not introduce new terms, therefore their non-
redundant applications are bounded by the number of terms in E. Applications of APP-
ENCODE are bounded by the number of function symbols in T(E). These are bounded
by the number of partially applied functions initially inE and, ultimately, by the number
of total applications in T(E), which is also finite. Applications of EXTENSIONALITY
are bounded by the number of disequalities between function symbols in E. Appli-
cations of EXTENSIONALITY do not introduce such disequalities, as the introduced
disequalities are in terms of total applications. Since only a finite number of function
symbols may be added toE by APP-ENCODE, there is a finite number of applications of
EXTENSIONALITY to be made for any E. Thus, as the last two rules are the only ones
that introduce new terms and both have a bounded number of applications, the calculus
is terminating.

Proposition 2 (Refutation Soundness). A constraint set is unsatisfiable if ⊥ is deriv-
able from it.

Proposition 3 (Solution Soundness). Every saturated constraint set is satisfiable.

3.3 Model generation for ground formulas

When our decision procedure for QF_HOSMT saturates, it can produce a first-order
model M as a witness for the satisfiability of its input. Typically, the models generated

8 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

by SMT solvers for theories in first-order logic map uninterpreted functions f : τ̄n → τ
to functions, denoted M(f), of the form

λx̄n. ite(x1 ' t11 ∧ . . . ∧ xn ' t1n, s1,
. . . , ite(x1 ' tm−11 ∧ . . . ∧ xn ' tm−1n , sm−1, sm) . . .)

abusing notation to refer to the interpretation of M(tij) as tij , in which every entry but
the last corresponds to an application f(ti1, . . . , t

i
n), modulo congruence, occurring in

the problem. In other words, functions are interpreted in models M as almost constant
functions.

In the presence of partial applications, this scheme can sometimes lead to functions
with exponentially many entries. For example, consider the satisfiable formula

f1(a) ' f1(b) ∧ f1(b) ' f2
∧ f2(a) ' f2(b) ∧ f2(b) ' f3
∧ f3(a) ' f3(b) ∧ f3(b) ' c

in which f1 : τ × τ × τ → τ , f2 : τ × τ → τ , f3 : τ → τ , and a, b, c : τ . To produce the
model values of f1 as a list of total applications with three arguments into an element
of the interpretation of τ , we would need to account for 8 cases. In other words, we
require 8 ite cases to indicate f1(x, y, z) ' c for all inputs where x, y, z ∈ {a, b}. The
number of entries in the model is exponential on the “depth” of the chain of functions
that each partial application is equal to, which can make model building unfeasible if
just a few functions are chained as in the above example. This is a pattern we have seen
in practice in problems originating from interactive theorem provers.

To avoid such an exponential behavior, model building assigns values for functions
in terms of the other functions that their partial applications are equated to. In the above
example f1 would have only two model values, depending on its application’s first argu-
ment being a or b, by using the model values of f2 applied on its two other arguments.
In other words, we construct M(f1) as the term:

λxyz. ite(x ' a, M(f2)(y, z), ite(x ' b, M(f2)(y, z), _))

whereM(f2) is the model for f2 and _ is an arbitrary value. The model value of f2 would
be analogously built in terms of the model value of f3. This guarantees a polynomial
construction for models in terms of the number of constraints in the problem in the
presence of partial applications.

Extensionality and finite sorts Model construction assigns different values to terms not
asserted equal. Therefore, if non-nullary functions f, g : τ̄n → τ occur as terms in
different congruence classes but are not asserted disequal, we ensure they are assigned
different model values by introducing disequalities of the form f(s̄kn) 6' g(s̄kn) for
fresh s̄kn. This is necessary because model values for functions are built based on their
applications occurring in the constraint set. However, such disequalities are only always
guaranteed to be satisfied if τ̄n, τ are infinite sorts.

Example 3. Let E be a saturated set of constraints s.t. p1, p2, p3 : τ → o ∈ T(E) and
E 6|= p1 ' p2 ∨ p1 ' p3 ∨ p2 ' p3 ∨ p1 6' p2 ∨ p1 6' p3 ∨ p2 6' p3. In the congruence

Extending SMT Solvers to Higher-Order Logic (Technical Report) 9

closure of E the functions p1, p2, p3 each occur in a different congruence class but are
not asserted disequal, so model construction would, in order to build their model values,
introduce disequalities p1(sk1) 6' p2(sk1), p1(sk2) 6' p3(sk2), and p2(sk3) 6' p3(sk3),
for fresh sk1, sk2, sk3 : τ . However, if τ has cardinality one these disequalities make E
unsatisfiable, since sk1, sk2, sk3 must be equal and o has cardinality 2. •

To prevent this issue, whenever the set of constraints E is saturated, we introduce,
for every pair of functions f, g : τ̄n → τ ∈ T(E) s.t. n > 0 and E 6|= f ' g ∨ f 6' g,
the splitting lemma f ' g ∨ f 6' g. In the above example this would amount to add the
lemmas p1 ' p2 ∨ p1 6' p2, p1 ' p3 ∨ p1 6' p3, and p2 ' p3 ∨ p2 6' p3, thus ensuring
that the decision procedure detects the inconsistency before saturation.

3.4 Extending the quantifier instantiation module to HOMST

The main quantifier instantiation techniques in SMT solving are trigger-based [25],
conflict-based [7, 45], model-based [30, 47], and enumerative [44]. Lifting any of them
to HOSMT presents its own challenges, often related to performing HO unification. We
focus here on extending the E-matching [23] algorithm, the keystone of trigger-based
instantiation, the most commonly used technique in modern SMT solvers. In this tech-
nique, instantiations are chosen for quantified formulas ϕ based on triggers. A trigger is
a term (or set of terms) containing the free variables occurring in ϕ. Matching a trigger
term against ground terms in the current set of assertions E results in a substitution that
is used to instantiate ϕ.

The presence of higher-order constraints poses several challenges for E-matching.
First, notice that the @ symbol is an overloaded operator. Applications of this sym-
bol can be selected as terms that appear in triggers. Special care must be taken so that
applications of @ are not matched with ground applications of @ whose arguments
have different types. Second, functions can be equated in higher-order logic. As a con-
sequence, a match may involve a trigger term and a ground term with different head
symbols. Third, since we use a lazy applicative encoding, our ground set of terms may
contain a mixture of partially and fully applied function applications. Thus, our indexing
techniques must be robust to handle combinations of the two. The following example
demonstrates the last two challenges.

Example 4. Consider E containing the equality @(f, a) ' g and the term f(a, b) where
f : τ × τ → τ and g : τ → τ . Notice that g(x) is equivalent modulo E to the term
f(a, b) under the substitution x 7→ b. Such a match is found by indexing all terms
that are applications of either @(f, a) or g in a common term index. This ensures that
when we find matches for g(x), the application f(a, b), whose applicative counterpart
is @(@(f, a), b), is considered.

We extended the regular first-order E-matching algorithm of CVC4 with the extensions
mentioned in this section. Extensions to the other instantiation techniques of CVC4,
such as model-based quantifier instantiation, are left as future work.

10 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

Extending expressivity via axioms Even though not synthesizing λ-expressions prevents
us from fully lifting the above instantiation techniques to HOL, we remark that, as we
see in Section 5, this pragmatic extension very often can prove HO theorems, many
times even at higher rates than full-fledged HO provers. Nevertheless, success rates can
be improved by using well-chosen axioms to prove problems that otherwise cannot be
proved without synthesizing λ-expressions.

Example 5. Consider the ground formula ϕ = a : τ 6' b : τ and the quantified formula
ψ = ∀F,G : τ → τ . F ' G. Intuitively ψ establishes that all functions of sort τ → τ
are equal. However, this is inconsistent with ϕ, which forces τ to contain at least two
elements and therefore τ → τ to contain at least four functions. For a prover to detect
this inconsistency it must apply the instantiation {F 7→ (λw. a), G 7→ (λw. b)} to ψ,
which requires performing HO unification. However, adding the axiom

∀F : τ → τ , x, y : τ. ∃G : τ → τ . ∀z : τ. G(z) ' ite(z ' x, y, F (z)) (SAX)

makes the problem provable without the need to synthesize λ-expressions. •

We denote the above axiom as the store axiom (SAX) because it simulates how
arrays are updated via the store operation. As we note in Section 5, introducing this
axiom for all functional sorts occurring in the problem often allows our pragmatically
extended solver to prove a problem that it would not otherwise been able to.

Extensionality and quantifiers We note that even though we handle extensionality in a
complete way in the extended ground solver the same guarantees cannot be made when
quantifiers are present, even without functional quantification. The following example
shows that not only HO unification is necessary to address incompleteness of SMT
solvers in extensional HOL.

Example 6. The constraint set {h(f) ' b, h(g) 6' b, ∀x. f(x) ' a, ∀x. g(x) ' a},
with h : τ → τ → τ, f, g : τ → τ, a, b : τ , is unsatisfiable since it establishes, via
the quantified formulas, that f ' g, but also, via the ground constraints, that f 6' g.
However only a ground decision procedure closed under entailment w.r.t. disequalities,
which SMT solvers are well known not to implement, would derive the disequality
f 6' g, which, via an application of the extensionality rule, would lead to the derivation
of f(sk) 6' g(sk) and the subsequent instantiation of the quantified formulas that would
lead to a conflict.

Towards higher-order E-matching. Let p, q : τ → o and f : τ × τ → τ and consider
the constraints

E = {q(f(a, b)), ¬p(k(a, a))}
Q = {∀(F : τ × τ → τ) (y, z : τ). p(F (y, z)) ∨ ¬q(f(b, y))}

The above problem can be found unsatisfiable with e.g. the instantiation {F 7→ λw1w2.f(a, w1), y 7→
a, z 7→ a}. First-order E-matching is not capable of finding instantiations as the one
above, since it does not derive new lambda expressions. To address this issue we have

Extending SMT Solvers to Higher-Order Logic (Technical Report) 11

developed an extension ofE-matching based on Huet’s algorithm to higher-order match-
ing [32]. In this extension, when given a match for a trigger whose head is a function
variable, we obtain variations of the match based on permuting the arguments of the
value of the head in the match. Considering again the above formula ϕ, first-order
E-matching for the pair 〈F (y, z), f(a, a)〉 would find the substitution {F 7→ f, y 7→
a, z 7→ a}. Our procedure may then generate the following instantiations for F :

F 7→ λw1w2. f(w1, w2) (1)
F 7→ λw1w2. f(w2, w1) (2)
F 7→ λw1w2. f(a, w1) (3)
F 7→ λw1w2. f(w1, a) (4)
F 7→ λw1w2. f(a, w2) (5)
F 7→ λw1w2. f(w2, a) (6)
F 7→ λw1w2. f(a, a) (7)

in which (2) − (7) are variations obtained by permuting the function arguments with
constants according to the match that was found. Note that (3) is the instantiation for F
we gave as example above to prove ϕ unsatisfiable.

We have yet to evaluate the effectiveness of this technique in our pragmatic ap-
proach.

4 Redesigning a solver for HOSMT

As we discussed earlier, the main difficulties in extending an SMT solver to higher-
order logic come from partially applied functions and function symbols as arguments
of other functions or as quantified variables. In the previous section we saw how to use
the applicative encoding approach inside SMT solvers. An alternative is redesigning
the SMT solver to cope with these HO features without explicitly using the applicative
encoding. This approach however requires much more work in the core data structures
and algorithms, and is better suited for lightweight solvers. We propose below such a
redesign. We assume the solver operates on λ-free terms, which can be obtained via
preprocessing as in Section 3.1, and, without loss of generality, that only uninterpreted
functions are partially applied, following Section 3.2.

4.1 Redesigning the core ground solver for HOSMT

Efficient implementations of the congruence-closure decision procedure operate on
UNION-FIND data structures and have asymptotic time complexity O(n log n). To
accommodate partial applications natively, we propose a simpler algorithm which op-
erates straightforwardly on a graph where nodes are terms, and edges relations (equal-
ity, congruence, disequality) between them. An equivalence class is a connected com-
ponent without disequality edges. All operations (incremental addition of new con-
straints, backtracking, conflict analysis, proof production) are straightforward to imple-
ment. This simpler implementation comes at the cost of complexity (the algorithm is

12 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

quadratic) but better integrates with various other features such as term addition, in-
jective functions, rewriting or even computation, in particular for β- and η-conversion,
which could be done during solving rather than preprocessing. In the redesigned ap-
proach the solver keeps two term representations, a curried and a regular one. In the
regular term representation partial and total applications are distinguished by type in-
formation. The curried representation is used only by the congruence closure algorithm.
It is integrated with the rest of the solver via an interface with translation functions be-
tween the two different representations, e.g. curry(f(t̄n)) = (. . . ((f, t1), . . .), tn)
and uncurry((. . . ((f, t1), . . .), tn)) = f(t̄n), with the latter only being defined for
curried applications whose counterpart is a total application.

Example 7. Given f : τ × τ → τ , g, h : τ → τ and a : τ , consider the constraints {f(a) '
g, f(a, a) 6' g(a), g(a) ' h(a)}. The congruence closure module will operate on
{(f, a) ' g, ((f, a), a) 6' (g, a), (g, a) ' (h, a)}, thanks to the curry translation. •

The calculus from Figure 1 can be adapted to operate on curried terms only. Formally,
given a set of constraints E and its set of terms T(E), we define the set of curried
constraints Ecurr as:

Ecurr = {curry(f(t̄n)) ' curry(g(s̄m)) | f(t̄n) ' g(s̄m) ∈ E}

and the set of curried terms Tcurr(E) as

Tcurr(E) =

{⋃
i ∈ [0, n]

curry(f(t̄n), i) | f(t̄n) ∈ T(E)

}
in which we overload the informal definition above of curry now as a binary function
such that

curry(f(t̄n), k) = (. . . ((f, curry(t1 : τ̄n1
→ τ1, n1)), . . .), curry(tk : τ̄nk

→ τk, nk))

Note that if k = 0 the result is f itself.

Example 8. Consider a set of terms T = {f(a, g(b, c)), g(b, c), a, b, c}, with a, b, c :
τ and f, g : τ × τ → τ , then

Tcurr = {curry(f(a, g(b, c)), i)}2i=0 ∪ {curry(g(b, c), i)}2i=0

∪ {curry(a, 0)} ∪ {curry(b, 0)} ∪ {curry(c, 0)}

with
curry(f(a, g(b, c)), 2) = ((f, curry(a, 0)), curry(g(b, c), 2))
curry(f(a, g(b, c)), 1) = (f, curry(a, 0))
curry(f(a, g(b, c)), 0) = f

curry(g(b, c), 2) = ((g, curry(b, 0)), curry(c, 0))
curry(g(b, c), 1) = (g, curry(b, 0))
curry(g(b, c), 0) = g

curry(a, 0) = a
curry(b, 0) = b
curry(c, 0) = c

Extending SMT Solvers to Higher-Order Logic (Technical Report) 13

t ∈ Tcurr(E)
REFLCURR

t ' t ∈ Ecurr

t ' u
SYM

u ' t ∈ Ecurr

s ' t, t ' u
TRANS

s ' u ∈ Ecurr

t ' u t′ ' u′ (t, t′), (u, u′) ∈ Tcurr(E)
CONGCURR

(t, t′) ' (u, u′) ∈ Ecurr

t ' u, t 6' u
CONFLICT

⊥

t ' u uncurry(t) or uncurry(u) is shared with theory T
THEORY-PROP

uncurry(t) ' uncurry(u) ∈ E

t, u ∈ Tcurr(E) t, u : τ̄n → τ, n > 0
EXT-AX

∀F,G : τ̄n → τ. F 6' G⇒ F (sk1, . . . , skn) 6' G(sk1, . . . , skn) ∈ Q

where sk1, . . . , skn are fresh symbols of respective sorts τ1, . . . , τn.

Fig. 2: Adapted derivation rules for EUF.

such that

Tcurr = {((f, a), ((g, b), c)), (f, a), (g, b), ((g, b), c), f, g, a, b, c}

is the resulting set of subterms. •

We adapt the rules specified in Figure 1 by providing the following calculus in Fig-
ure 2. The calculus operates on the curried constraints Ecurr and relies on the set of
curried subterms Tcurr(E). The APP-ENCODE rule is not necessary anymore since all
deductions are done in the same (curried) representation.

SMT solvers generally perform theory combination via equalities over terms shared
between different theories. Given the different term representations kept between the
congruence closure and the rest of the solver, to ensure that theory combination is done
properly, the procedure keeps track of terms shared with other theory solvers. Therefore,
whenever an equality is inferred on a term whose translation is shared with another
theory, a shared equality is sent out in terms of the translation. This is modeled by the
THEORY-PROP rule, which assumes an awareness of which original uncurried terms
were shared with other theories.

Example 9. Consider the function symbol f : Int→ Int, a, b, c1, c2, c3, c4 : Int, the pred-
icate symbol p : Int→ o and the set of arithmetic constraints E = {a ≤ b, b ≤
a, p(f(a) − f(b)), ¬p(0), c1 ' c3 − c4, c2 ' 0} and the set of equality constraints
E′ = {(p, c1), ¬(p, c2), c3 ' (f, a), c4 ' (f, b)} obtained after translation. First, the
arithmetic module deduces a ' b yielding the new constraint E′ = E′ ∪ {a ' b}. By
CONG it follows that (f, a) ' (f, b) and, as c3 ' (f, a) and c4 ' (f, b) are keeping
track that they are shared, c3 ' c4 is propagated, where c3, c4 were the representatives
of the former merged classes. Therefore, E = E ∪ {c3 ' c4} and c1 ' c2 is deduced
producing the unsatisfiable constraint set E′ = E′ ∪ {a ' b, c1 ' c2}. •

Extensionality The pragmatic extension handles extensionality via the dedicated rule
EXTENSIONALITY in Figure 1, which suffices for ground reasoning, but has shortcom-

14 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

ings when quantifiers, even only FO quantifiers, are considered, as shown in Example 6.
An alternative is to handle extensionality via axioms, which we chose for the redesigned
solver.

Example 10. Consider again the constraint set {h(f) ' b, h(g) 6' b, ∀x. f(x) ' a,
∀x. g(x) ' a}, with h : τ → τ → τ, f, g : τ → τ, a, b : τ . The pragmatic solver
can prove this problem unsatisfiable only with a ground decision procedure closed un-
der entailment w.r.t. disequalities, as f 6' g is necessary to derive f(sk) 6' g(sk), via
extensionality, and the subsequent instantiations that would lead to a conflict. But SMT
solvers are well known not to propagate all disequalities. However, with the axiom
∀F,G : τ̄n → τ. F 6' G ⇒ F (sk1, . . . , skn) 6' G(sk1, . . . , skn), the instantiation
{F 7→ f, G 7→ g}, which may be derived e.g. via enumerative instantiation as both
f, g ∈ T(E), provides the splitting lemma f ' g∨ f(sk) 6' g(sk). The case E∪{f ' g}
leads to a conflict via pure ground reasoning, while the case E ∪ {(f, sk) 6' (g, sk)}
leads to a conflict via the aforementioned instances f(sk) ' a, g(sk) ' a. •

4.2 Instantiation module

The challenge for E-matching here lies in the different term representations within the
solver, particularly between the E-graph and the instantiation module. Extending the
term index to queries on type, to obtain the correct corresponding term translations,
between curried and regular representations, allowing us to apply the algorithm as ex-
pected.

Example 11. Consider the symbols g : τ → τ , f : τ × τ → τ , a, b : τ , and the set of
constraints E = {f(a, b) 6' g(b)} and Q = {∀F. F (a) ' g}. The original T(E) does
not contain f(a), but it belongs in the curried set of subterms of the congruence closure
since is it understood as E′ = {((f, a), b) 6' (g, b)}. Then the instantiation module
get the following set of terms {(f, a), g} by querying the sort τ → τ to the congruence
closure module in order to match the trigger F (a). It follows by applying E-matching
the unsatisfiable set of constraints E′ = {((f, a), b) 6' (g, b), (f, a) ' g}. •

5 Evaluation

We have implemented the above techniques in the state-of-the-art CVC4 solver and
in the lightweight veriT solvers. We distinguish between two main versions of each
solver: one that performs a full applicative encoding (Section 2) into FOL a priori,
denoted @cvc and @vt, and another that implements the pragmatic (Sections 3) or re-
designed (Section 4) extensions to HOL within the solvers, denoted cvc and vt. Both
CVC4 modes eliminate λ-expressions via λ-lifting. Neither veriT configuration sup-
ports benchmarks with λ-expressions. The CVC4 configurations that employ the “store
axiom” (Section 3.4) are denoted by having the suffix -sax.

We use the state-of-the-art HO provers Leo-III [51], Satallax [20,29] and Ehoh [49,
57] as baselines in our evaluation. The first two have refutationally complete calculi
for extensional HOL with Henkin semantics, while the latter only supports λ-free HOL
without first-class Booleans. For Leo-III and Satallax we use their configurations from

Extending SMT Solvers to Higher-Order Logic (Technical Report) 15

the CASC competition [55], while for Ehoh we report on their best non-portfolio con-
figuration from Vukmirović et al, [57], Ehoh hb.

We split our report between proving HO theorems and reporting countermodels for
HO conjectures, which require different strengths from the considered solvers. Only
a handful of the above solvers are considered for the second evaluation: Leo-III and
veriT do not provide models and Ehoh is not model-sound w.r.t. Henkin semantics,
only w.r.t. λ-free Henkin semantics. Therefore, we only consider CVC4 and Satallax
for the countermodels evaluation. We ran our experiments on a cluster equipped with
Intel E5-2637 v4 CPUs running Ubuntu 16.04, providing one core, 60 seconds, and
8GB RAM for each job. The full experimental data is publicly available.1

We consider the following sets2 of HO benchmarks: the 3188 monomorphic HO
benchmarks in TPTP [54], split into three subsets: the 530 problems which are both λ-
free and without first-class Booleans (TH0); the 743 which are only λ-free (oTH0); and
the 1915 that are neither (λoTH0). The next sets are Sledghammer (SH) benchmarks
from the “Judgment Day” test harness [18], consisting of 1253 provable goals manu-
ally chosen from different Isabelle theories [41] and encoded into λ-free monomorphic
HOL problems without first-class Booleans. The encoded problems are such that if they
are provable so is the original goal. These problems are split into four subsets, JD32

lift,
JD32

combs, JD512
lift , and JD512

combs, depending, respectively on whether they have 32 or 512
Isabelle lemmas, or facts, and whether λ-abstractions are removed via λ-lifting or via
SK-style combinators. The last set, λoSH1024, has 832 SH benchmarks from 832 prov-
able goals randomly selected from different Isabelle theories, encoded with 1024 facts
and preserving λs and first-class Booleans. Considering a varying number of facts in the
SH benchmarks emulates the needs of increasingly larger problems in interactive verifi-
cation, while different λ handling schemes allow us to measure from which alternative
each particular solver benefits more.

We point out that our extensions to CVC4 and veriT do not compromise their FO
solving performance. The pragmatic extension of CVC4 has virtually the same per-
formance as the original solver on SMT-LIB [9], the standard SMT test suite. The re-
designed veriT does suffer a significant impact on FO performance. While it is, for
example, three times slower on the QF_UF category of SMT-LIB due to its simpler
ground solver, it still performs better on this category than CVC4, which shows its flex-
ibility cost does not prevent the solver from being a suitable basis for handling HO
formulas.

5.1 Proving HO theorems

The number of theorems proved by each solver configuration per benchmark set is given
in Table 1. Grayed out cells represent unsupported benchmark sets. Figure 3 compares
benchmarks solved per time. It only includes benchmark sets supported by all solvers
(namely TH0 and the JD benchmarks).

1 http://homepage.divms.uiowa.edu/~hbarbosa/papers/hosmt/
2 Since veriT does not parse TPTP, its reported results are on the equivalent benchmarks as

translated by CVC4 into the HOSMT language [6].

http://homepage.divms.uiowa.edu/~hbarbosa/papers/hosmt/

16 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

Solver Total TH0 oTH0 λoTH0 JD32
lift JD32

combs JD512
lift JD512

combs λoSH1024

9032 530 743 1915 1253 1253 1253 1253 832

@cvc 4318 384 344 940 457 459 655 667 412
@cvc-sax 4348 390 373 937 456 457 655 668 412
cvc 4232 389 342 865 463 447 667 654 405
cvc-sax 4275 389 376 883 458 443 667 654 405
@vt 2556 370 332 404 396 525 529
vt 2671 369 346 426 424 550 556
Ehoh 2631 394 489 481 637 630
Leo-III 4410 402 452 1178 491 482 609 565 231
Satallax 3961 392 457 1215 394 390 407 404 302

Table 1: Proved theorems per benchmark set. Best results are in bold.

1400 1600 1800 2000 2200 2400 2600
10 1

100

101
@cvc-sax
Ehoh
@cvc
cvc
cvc-sax
Leo-III
vt
@vt
Satallax

Fig. 3: Comparison on 5543 benchmarks, from TH0 and JD, supported by all solvers.

As expected, the results vary significantly between benchmark sets. Leo-III and Sa-
tallax have a clear advantage on TPTP, which contains a significant number of small
logical problems meant to exercise the HO features of a prover. Considering the TPTP
benchmarks from less to more expressive, i.e., including first-class Booleans and then
λs, we see the advantages of these systems only increase. We also observe that both
@cvc and cvc, but specially the latter, benefit from -sax as more complex benchmarks
are considered in TPTP, showing that the disadvantage of not synthesizing λs can some-
times be offset by well-chosen axioms. Nevertheless, the results on λoTH0 show that
only this axiom is far from enough to offset the gap between @cvc and cvc, with cvc
giving up more often from lack of instantiations to perform.

Sledghammer-generated problems stem from formalization efforts across different
applications. As others note [53, 57], the bottleneck in solving these problems is often
scalability and efficient FO reasoning, rather than a refined handling of HO constructs,
specially as more facts are considered. Thus, the advantages gained by synthesizing λs
are not sufficient to offset the scalability issues as more facts are considered, and Ehoh
and CVC4 extensions eventually surpass the native HO provers. In particular, in the
largest set we considered, λoSH1024, both @cvc and cvc have significant advantages.

Extending SMT Solvers to Higher-Order Logic (Technical Report) 17

Solver Total TH0 oTH0 λoTH0 JD32
lift JD32

combs JD512
lift JD512

combs λoSH1024

9032 530 743 1915 1253 1253 1253 1253 832

all-cvc-port 4616 408 (8) 385 (2) 1001 (26) 482 482 (5) 703 (38) 702 (38) 453 (137)
vt-port 2746 376 (1) 351 (3) 444 (3) 441 (3) 565 569
Ehoh-port 2749 399 (1) 494 (2) 485 (1) 690 (31) 681 (31)
Leo-III 4410 402 (1) 452 (21) 1178 (53) 491 (5) 482 (3) 609 (1) 565 (2) 231 (5)
Satallax 3961 392 457 (18) 1215 (101) 394 390 407 (8) 404 (3) 302 (24)

Table 2: Proved theorems by portfolio configurations of [@]cvc[−ui][−sax], [@]veriT
and Ehoh [a|as|b|hb], per benchmark set. Best results are in bold. Number of bench-
marks solved uniquely are between parenthesis.

Solver Total TH0 oTH0 λoTH0 JD32
lift JD32

combs JD512
lift JD512

combs λoSH1024

9032 530 743 1915 1253 1253 1253 1253 832

@cvc-port 4476 407 (7) 377 (6) 965 (92) 474 (12) 476 (26) 670 (24) 682 (29) 425 (34)
cvc-port 4386 401 (1) 379 (8) 909 (36) 470 (8) 456 (6) 679 (33) 673 (20) 419 (28)

Table 3: Proved theorems by portfolio configurations of @cvc[−ui][−sax], and
cvc[−ui][−sax]. Best results are in bold. Number of benchmarks solved uniquely are
between parenthesis.

As in λoTH0, @cvc also solves more problems than cvc in λoSH1024, which we at-
tribute again to the expressivity difference, as otherwise cvc is often faster than @cvc,
albeit by a small margin.

Both CVC4 configurations dominate JD512, independent of the λ-encoding used,
significantly ahead of Ehoh and Leo-III. Comparing the results between using λ-lifting
or combinators, the former favors cvc and the latter, @cvc. These results, as well as the
previously discussed ones, indicate that the pragmatic extension of CVC4 should not,
in its current state, when it comes to refutations, substitute an encoding based approach,
but complement it. In fact, a virtual best solver of all the CVC4 configurations, as well
as others employing interleaved enumerative instantiation [44] (identified by -ui), in
portfolio, would solve 703 problems in JD512

lift , 702 in JD512
combs, 453 in λoSH1024, and

408 in TH0, the most in these categories, even also considering a virtual best solver
of all Ehoh configurations from [57]. The CVC4 portfolio would also solve 482 prob-
lems in JD32

lift, and 482 in JD32
combs, almost as good as Leo-III, and 1001 problems in

λoTH0, Overall the virtual best CVC4 has a success rate 3 percentage points higher than
@cvc on Sledghammer benchmarks, as well as overall, which represents a significant
improvement when considering the usage of these solvers as backends for interactive
theorem provers. Tables 2 and 3 summarize the results of the portfolio configurations,
including the number of problems solved uniquely by each entry per benchmark set.

Differently from the pragmatic extension in CVC4, which provides more of an alter-
native to the full applicative encoding, the redesigned veriT is an outright improvement,

18 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

Solver Total TH0 oTH0 λoTH0 JD32
lift JD32

combs JD512
lift JD512

combs λoSH1024

9032 530 743 1915 1253 1253 1253 1253 832

@cvc-fmf-sax 224 58 43 80 20 18 1 1 3
cvc-fmf 482 90 17 205 93 73 1 1 2
Satallax 186 72 15 98 0 0 0 0 1

Table 4: Conjectures found countersatisfiable per benchmark set. Best results in bold.

with vt consistently solving more problems and with better solving times than @vt, spe-
cially on harder problems, as seen by the wider separation between them after 10s in
Figure 3. Overall, veriT’s performance, consistently with it being a lightweight solver,
lags behind CVC4 and Ehoh as bigger benchmarks are considered, but it is compa-
rable with the less optimized Leo-III and ahead of Satallax, thus validating the effort
of redesigning the solver for a more refined handling of higher-order constructs and
indicating that further extensions should be beneficial.

5.2 Providing countermodels to HO conjectures

The number of countermodels found by each solver configuration per benchmark set is
given in Table 4. We consider the two CVC4 modes, @cvc and cvc, while performing
finite-model-finding (-fmf) [46]. The builtin HO support in cvc is vastly superior to
@cvc when it comes to model finding, as cvc-fmf greatly outperforms @cvc-fmf-sax.
We note that @cvc-fmf is only model-sound if combined with -sax. Differently from
cvc-fmf, which fails to provide a model as soon as it is faced with quantification over
a functional sort, in @cvc-fmf functional sorts are encoded as atomic sorts. Thus it
needs the extra axiom to ensure model soundness. For example, @cvc-fmf considers
Example 5 satisfiable while @cvc-fmf-sax properly reports it unsatisfiable.

The high number of countermodels in JD32 indicates, not surprisingly, that provid-
ing few facts makes several SH goals unprovable. Note how JD512 and λoSH1024 are
virtually devoid of countermodels. Albeit expected from using only 32 facts it is still
useful to know where exactly the Sledghammer generation is being “incomplete” (i.e.,
making originally provable goals unprovable), which is difficult to determine without
effective model finding procedures. We have also encountered a disagreement between
cvc-fmf and Leo-III on exactly one JD32 benchmark, the only such disagreement across
all of our experiments, with the former reporting a countermodel and the former a va-
lidity proof, and have yet to determine which of the systems is wrong.

6 Related work

Since the dawn of automated reasoning, mathematicians and ATPs developers have
been actively working to improve automation on higher-order theorem proving. The pi-
oneering work of Robinson [48] proposed to do it using a translation to reduce higher-
order reasoning to first-order logic. Tools such as Sledgehammer [43], MizAR [56],

Extending SMT Solvers to Higher-Order Logic (Technical Report) 19

HOLyHammer [35], and CoqHammer [22] build on this idea by automating HO rea-
soning via automatic FO provers. Earlier work as well related to native HO proving are
Andrews’s higher-order resolution [1], Huet’s constrained resolution [32], Jensen and
Pietrzykowski’s ω-resolution [34], Snyder’s higher-orderE-resolution [50], Kohlhase’s
higher-order tableau [36], Backes and Brown’s higher-order analytic tableaux [5] or
Andrews’s connections [2]. Modern HO provers are e.g. LEO-II [14] and Leo-III [51],
respectively implementing HO resolution and HO paramodulation, and Satallax [20],
based on a HO tableau calculus guided by a SAT solver. Another effective prover based
on a focused sequent calculus is the Lindblad’s AgsyHOL [37] prover guided by nar-
rowing. A survey by Andrews [3] and one by Benzmuller and Miller [12] provide
together an extensive overview of higher-order theorem proving techniques. However
such systems are often not effective on first-order problems since they have been built
primarily to solve HO problems. Our approach shares the same goal as recent work by
Blanchette et al. [11, 57] on gracefully generalizing the superposition calculus [4, 40]
to support higher-order reasoning, such that superposition provers can solve higher-
order problems effectively while maintaining their efficiency at first-order ones. Un-
like instantiation-based SMT solvers, however, superposition provers are much more
sensitive to the applicative encoding, which can significantly decrease their perfor-
mance [11]. Therefore, much of their work consists of extending the theoretical grounds
on which a new generation of superposition provers that avoid the applicative encod-
ing can be based on. Extending superposition involves completeness issue and is hard
for full higher-order logic with Boolean subterms. As a preliminary step, Blanchette et
al. have extended superposition calculus for the λ-free fragment of higher-order logic
with completeness results [11]. First, implemented in the Zipperposition prover [21]
and recently, integrated into the E-prover [49] by Vukmirovic et al. [57] demonstrat-
ing competitive results against state-of-the-art HO provers. As a second step, they are
working on extending their calculus to λ-terms while preserving the completeness prop-
erties. A pragmatic extension of a superposition prover is being done by Vampire’s
developers [15], in which they lift-up their prover to higher-order reasoning by us-
ing full applicative translation, besides encoding Booleans and introducing axioms for
Turner combinators to simulate higher-order unification [26]. The main challenge of
their work, which is still in progress, resides in taming the combinator axioms.

7 Conclusions and future directions

We have presented extensions for SMT solvers to handle HOSMT problems. The prag-
matic extension of CVC4, which can be implemented in any state-of-the-art SMT solver
without significant effort, performs similarly to the standard encoding-based approach
despite our limited support for HO instantiation techniques. Moreover, it allows numer-
ous new problems to be solved by CVC4, with a portfolio approach performing very
competitively and often ahead of state-of-the-art HO provers. The redesigned veriT on
the other hand consistently outperforms its standard encoding-based counterpart, show-
ing it can be the basis for future advancements towards stronger HO automation.

The natural extension for both approaches is integrating HO E-matching and E-
unification into the core instantiation algorithms, thus allowing techniques such as

20 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

conflict-based and enumerative instantiation to synthesize λ-terms and allow SMT solvers
to compete with full HO provers in problems containing complex HO constraints.

Acknowledgments We are grateful to Jasmin Blanchette and Pascal Fontaine for nu-
merous discussions throughout the development of this work, for providing funding for
research visits and for suggesting many improvements. We also thank Jasmin for gener-
ating several of the benchmarks with which we evaluate our approach; Simon Cruanes
and Martin Riener for many fruitful discussions on the intricacies of HOL; Andres Nöt-
zli for help with the table and plot scripts; Mathias Fleury, Hans-Jörg Schurr and Sophie
Tourret for suggesting many improvements. This work has been partially supported by
the National Science Foundation under Award 1656926 and by the European Research
Council (ERC) starting grant Matryoshka (713999).

References

1. Peter B. Andrews. Resolution in type theory. J. Symb. Log., 36(3):414–432, 1971.
2. Peter B. Andrews. On connections and higher-order logic. J. Autom. Reason., 5(3):257–291,

1989.
3. Peter B. Andrews. Classical type theory. In John Alan Robinson and Andrei Voronkov,

editors, Handbook of Automated Reasoning, volume II, pages 965–1007. Elsevier and MIT
Press, 2001.

4. Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with selec-
tion and simplification. Journal of Logic and Computation, 4(3):217–247, 1994.

5. Julian Backes and Chad E. Brown. Analytic tableaux for higher-order logic with choice. J.
Autom. Reason., 47(4):451–479, 2011.

6. Haniel Barbosa, Jasmin Christian Blanchette, Simon Cruanes, Daniel El Ouraoui, and Pascal
Fontaine. Language and proofs for higher-order SMT (work in progress). In Catherine
Dubois and Bruno Woltzenlogel Paleo, editors, PXTP 2017, volume 262 of EPTCS, pages
15–22, 2017.

7. Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. Congruence closure with free vari-
ables. In Axel Legay and Tiziana Margaria, editors, TACAS 2017, volume 10206 of LNCS,
pages 214–230. Springer, 2017.

8. Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, CAV 2011, pages 171–177. Springer, 2011.

9. Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The smt-lib standard: version 2.6. Tech-
nical report, Department of Computer Science, The University of Iowa, 2017.

10. Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. Satisfiability modulo
theories. In Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of FAIA, chapter 26, pages 825–885. IOS Press, 2009.

11. Alexander Bentkamp, Jasmin Christian Blanchette, Simon Cruanes, and Uwe Waldmann.
Superposition for lambda-free higher-order logic. In Didier Galmiche, Stephan Schulz, and
Roberto Sebastiani, editors, IJCAR 2018, volume 10900 of LNCS, pages 28–46. Springer,
2018.

12. Christoph Benzmüller and Dale Miller. Automation of higher-order logic. In Jörg H. Siek-
mann, editor, Computational Logic, volume 9 of Handbook of the History of Logic, pages
215–254. Elsevier, 2014.

Extending SMT Solvers to Higher-Order Logic (Technical Report) 21

13. Christoph Benzmüller, Florian Rabe, and Geoff Sutcliffe. THF0 - the core of the TPTP
language for higher-order logic. In Alessandro Armando, Peter Baumgartner, and Gilles
Dowek, editors, IJCAR 2008, volume 5195 of LNCS, pages 491–506. Springer, 2008.

14. Christoph Benzmüller, Nik Sultana, Lawrence C. Paulson, and Frank Theiss. The higher-
order prover LEO-II. J. Autom. Reason., 55:389–404, 2015.

15. Ahmed Bhayat and Giles Reger. Set of support for higher-order reasoning. In Boris Konev,
Josef Urban, and Philipp Rümmer, editors, PAAR-2018, volume 2162 of CEUR Workshop
Proceedings, pages 2–16. CEUR-WS.org, 2018.

16. Jasmin Christian Blanchette. Automatic proofs and refutations for higher-order logic. PhD
thesis, Technical University Munich, 2012.

17. Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban. Ham-
mering towards QED. J. Formaliz. Reas., 9(1):101–148, 2016.

18. Sascha Böhme and Tobias Nipkow. Sledgehammer: judgement day. In Jürgen Giesl and
Reiner Hähnle, editors, IJCAR 2010, volume 6173 of LNCS, pages 107–121. Springer, 2010.

19. Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine. veriT:
an open, trustable and efficient SMT-solver. In Renate A. Schmidt, editor, CADE–22, volume
5663 of LNCS, pages 151–156. Springer, 2009.

20. Chad E. Brown. Satallax: an automatic higher-order prover. In Bernhard Gramlich, Dale
Miller, and Uli Sattler, editors, IJCAR 2012, volume 7364 of LNCS, pages 111–117. Springer,
2012.

21. Simon Cruanes. Superposition with structural induction. In Clare Dixon and Marcelo Finger,
editors, FroCoS 2017, volume 10483 of LNCS, pages 172–188. Springer, 2017.

22. Łukasz Czajka and Cezary Kaliszyk. Hammer for Coq: automation for dependent type the-
ory, 2018.

23. Leonardo de Moura and Nikolaj Bjørner. Efficient e-matching for smt solvers. In Frank
Pfenning, editor, CADE–21, volume 4603 of LNCS, pages 183–198. Springer, 2007.

24. Leonardo de Moura and Nikolaj Bjørner. Generalized, efficient array decision procedures.
In FMCAD 2009, pages 45–52. IEEE, 2009.

25. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52:365–473, 2005.

26. Daniel J. Dougherty. Higher-order unification via combinators. Theoretical Computer Sci-
ence, 114(2):273 – 298, 1993.

27. Gilles Dowek. Higher-order unification and matching. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume II, pages 1009–1062. Else-
vier and MIT Press, 2001.

28. Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpres-
sion problem. J. ACM, 27:758–771, 1980.

29. Michael Färber and Chad E. Brown. Internal guidance for Satallax. In Nicola Olivetti and
Ashish Tiwari, editors, IJCAR 2016, volume 9706 of LNCS, pages 349–361. Springer, 2016.

30. Yeting Ge and Leonardo de Moura. Complete instantiation for quantified formulas in satis-
fiabiliby modulo theories. In Ahmed Bouajjani and Oded Maler, editors, CAV 2009, volume
5643 of LNCS, pages 306–320. Springer, 2009.

31. Leon Henkin. Completeness in the theory of types. J. Symb. Log., 15(2):81–91, 1950.
32. Gerard P. Huet. A mechanization of type theory. In IJICAI 1973, pages 139–146. Morgan

Kaufmann Publishers Inc., 1973.
33. R. J. M. Hughes. Super combinators: a new implementation method for applicative lan-

guages. In Symposium on LISP and Functional Programming, pages 1–10, 1982.
34. D.C. Jensen and T. Pietrzykowski. Mechanizing Omega-order type theory through unifica-

tion. Theoretical Computer Science, 3:123 – 171, 1976.
35. Cezary Kaliszyk and Josef Urban. HOL(y)Hammer: online ATP service for HOL Light.

Math. Comput. Sci., 9(1):5–22, 2015.

22 Barbosa, Reynolds, El Ouraoui, Tinelli and Barrett

36. Michael Kohlhase. Higher-order tableaux. In Peter Baumgartner, Reiner Hähnle, and
Joachim Posegga, editors, TABLEAUX ’95, volume 918 of LNCS, pages 294–309. Springer,
1995.

37. Fredrik Lindblad. A focused sequent calculus for higher-order logic. In Stéphane Demri,
Deepak Kapur, and Christoph Weidenbach, editors, IJCAR 2014, volume 8562 of LNCS,
pages 61–75. Springer, 2014.

38. Jia Meng and Lawrence C. Paulson. Translating higher-order clauses to first-order clauses.
J. Autom. Reas., 40(1):35–60, 2008.

39. Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure. J.
ACM, 27:356–364, 1980.

40. Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In Alan
Robinson and Andrei Voronkov, editors, Handbook of automated reasoning, volume 1, pages
371–443. 2001.

41. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: a proof Assistant
for higher-order logic, volume 2283 of LNCS. Springer, 2002.

42. Kohei Noshita. Translation of turner combinators in O(n log n) space. IPL, 20:71 – 74, 1985.
43. Lawrence C. Paulson and Jasmin Christian Blanchette. Three years of experience with

Sledgehammer, a practical link between automatic and interactive theorem provers. In Geoff
Sutcliffe, Stephan Schulz, and Eugenia Ternovska, editors, IWIL-2010, volume 2 of EPiC,
pages 1–11. EasyChair, 2012.

44. Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. Revisiting enumerative instantia-
tion. In Dirk Beyer and Marieke Huisman, editors, TACAS 2018, volume 10806 of LNCS,
pages 112–131. Springer, 2018.

45. Andrew Reynolds, Cesare Tinelli, and Leonardo de Moura. Finding conflicting instances of
quantified formulas in SMT. In FMCAD 2014, pages 195–202. IEEE, 2014.

46. Andrew Reynolds, Cesare Tinelli, Amit Goel, and Sava Krstić. Finite model finding in SMT.
In Natasha Sharygina and Helmut Veith, editors, CAV 2013, volume 8044 of LNCS, pages
640–655. Springer, 2013.

47. Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters, and Clark Barrett.
Quantifier instantiation techniques for finite model finding in smt. In Maria Paola Bonacina,
editor, CADE–24, volume 7898 of LNCS, pages 377–391. Springer, 2013.

48. John Alan Robinson. Mechanizing higher order logic. Machine Intelligence, 4:151–170,
1969.

49. Stephan Schulz. E - a brainiac theorem prover. AI Commun., 15:111–126, 2002.
50. Wayne Snyder. Higher order E-unification. In Mark E. Stickel, editor, CADE–10, volume

449 of LNCS, pages 573–587. Springer, 1990.
51. Alexander Steen and Christoph Benzmüller. The higher-order prover Leo-III. In Didier

Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, IJCAR 2018, volume 10900 of
LNCS, pages 108–116. Springer, 2018.

52. Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision procedure
for an extensional theory of arrays. In LICS 2001, pages 29–37. IEEE Computer Society,
2001.

53. Nik Sultana, Jasmin Christian Blanchette, and Lawrence C. Paulson. LEO-II and Satallax
on the Sledgehammer test bench. J. Applied Logic, 11:91–102, 2013.

54. Geoff Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reason.,
43:337–362, 2009.

55. Geoff Sutcliffe. The CADE ATP system competition - CASC. AI Magazine, 37:99–101,
2016.

56. Josef Urban, Piotr Rudnicki, and Geoff Sutcliffe. ATP and presentation service for Mizar
formalizations. J. Autom. Reason., 50(2):229–241, 2013.

Extending SMT Solvers to Higher-Order Logic (Technical Report) 23

57. Petar Vukmirović, Jasmin Christian Blanchette, Simon Cruanes, and Stephan Schulz. Ex-
tending a brainiac prover to lambda-free higher-order logic. In Tomas Vojnar and Lijun
Zhang, editors, TACAS 2019, LNCS. Springer, 2019.

	Extending SMT Solvers to Higher-Order Logic (Technical Report)

