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Abstract. The abduction problem asks whether there exists a predicate that is
consistent with a given set of axioms that when added to these axioms suffices to
entail a goal. We propose an approach for solving the abduction problem that is
based on syntax-guided enumeration. For scalability, we use a novel procedure that
incrementally constructs a solution in disjunctive normal form that is built from
enumerated predicates. The procedure can be configured to generate progressively
weaker and simpler solutions over the course of a run of the procedure. Our
approach is fully general and can be applied over any background logic that is
handled by the underlying SMT solver in our approach. Our experiments show
our approach compares favorably with other tools for abductive reasoning.

1 Introduction

The abduction problem for theory T , axioms A and goal G asks whether there exists a
formula ϕ such that: (i) A ^ ϕ is T -satisfiable and (ii) A ^ ϕ |ùT G. In other words,
ϕ is a possible formula that when added to the set of axioms allows the goal to be
proven. Abductive reasoning has gained a multitude of applications recently, including
for extending knowledge bases for failed verification conditions [16] and invariant
generation [17, 20]. Despite the multitude of applications, general tools for automatic
abductive inference are not yet mainstream, although some tools have been developed,
including GPID [19] and EXPLAIN [15].

Meanwhile, a number of high-performance general purpose tools for syntax-guided
synthesis (SyGuS) have also been developed in the past decade. These solvers been
applied successfully in a number of domains, including implementation of network
protocols [36], data processing [22], and code optimization [29]. The performance of
these solvers is evaluated in a yearly competition, where considerable progress has been
noted in recent years [4].

In this paper, we investigate scalable approaches to solving the abduction problem
using (enumerative) syntax-guided synthesis techniques. We make no assumptions about
the background theory, other than it must be one supported by an existing SMT solver
and is amenable to syntax-guided synthesis. Our goal is to leverage the scalability
of syntax-guided synthesis solvers and apply them to applications where abductive
reasoning is required. Our longer term goal is to standardize the interface for these
solvers for abduction problems and make them freely available to users of program
analysis and automated reasoning who would benefit from high performance automated
reasoning systems for abduction.



Contributions
– We introduce a novel procedure for solving abduction problems using enumerative

syntax-guided synthesis. Our procedure can be applied for any background theory
where syntax-guided synthesis can be applied.

– We give an extension of the procedure that is capable of generating weaker solutions
to the abduction problem over the course of a run of the procedure.

– We implement these techniques in the state-of-the-art syntax-guided synthesis solver
CVC4 [31], and design several experiments to test its effectiveness. We show that
it has compelling advantages with respect to existing approaches for abduction
including EXPLAIN [15] and GPID [19].

2 Preliminaries

We work in the context of many-sorted first-order logic with equality (») and assume
the reader is familiar with the notions of signature, terms, and so on (see, e.g., [21]).
A theory is a pair T “ pΣ, Iq where Σ is a signature and I is a non-empty class of
Σ-interpretations, the models of T , that is closed under variable reassignment (i.e., every
Σ-interpretation that differs from one in I only in how it interprets the variables is also
in I) and isomorphism. A Σ-formula ϕ is T -satisfiable (respectively, T -unsatisfiable) if
it is satisfied by some (resp., no) interpretation in I . A satisfying interpretation for ϕ is a
model ϕ. A formula ϕ is valid in T (or T -valid ), written |ùT ϕ, if every model of T is
a model of ϕ. We write ϕrxs for a tuple x of distinct variables to indicate that the free
variables of ϕ occur in x. Given ϕrxs, we write ϕrts to denote the result of replacing
every occurrence of every variable of x in ϕ with the corresponding term in t.

Syntax-Guided Synthesis (SyGuS) Syntax-guided synthesis [2] is a recent paradigm
for automated synthesis that combines semantic and syntactic restrictions on the space
of solutions. In detail, a SyGuS problem for a function f in a theory T consists of
1. semantic restrictions, a specification given by a (second-order) T -formula of the

form Df.@x. ϕrf,xs, and
2. syntactic restrictions on the solutions for f , given by a context-free grammar R.

The grammar R is a triple ps0, S,Rq where s0 is an initial symbol, S is a set of symbols
with s0 P S, and R is a set of production rules of the form sÑ t, where s P S and t is a
term built from the symbols in the signature of theory T , free variables, and symbols from
S. The rules define a rewrite relation over such terms, also denoted byÑ, as expected.
We say a term t is generated by R if s0 Ñ˚ twhereÑ˚ is the reflexive-transitive closure
of Ñ and t does not contain symbols from S. For example, the terms x, px ` xq and
pp1`xq`1q are all generated by the grammar R “ pI, tIu, tIÑ x, IÑ 1, IÑ pI` Iquq.
A solution for the SyGuS problem for f is a lambda term λx.e of the same type as f
such that piq @x. ϕrλx.e, xs is T -valid and piiq e is a first-order term generated by R.

A number of recent approaches for the syntax-guided synthesis problem exist that tar-
get specific fragments, including programming-by-examples [22], single invocation con-
jectures [32], and pointwise specifications [27, 5]. General purpose methods for solving
the syntax-guided synthesis problem are generally based on enumerative counterexample-
guided inductive synthesis (CEGIS) [34, 35]. An enumerative approach uses a grammar
to generate candidate solutions based on some ordering, typically term size (e.g., the
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number of non-nullary function applications in the term). These candidate solutions
are then tested for correctness using a verification oracle (typically an SMT solver).
This process is accelerated by the use of counterexamples for previous candidates, i.e.,
valuations for the input variables x, or points, that witness the failure of those candidates
to satisfy the specification. Despite its simplicity, enumerative CEGIS is the de-facto
approach for solving the general class of SyGuS problems, as implemented in a several
recent tools, notably CVC4 [31] and the enumerative solver ESOLVER [3]. Its main
downside not scaling when the required solution is very large. As we will show in
Section 4, we present a scalable procedure for the abduction problem that builds on top
of enumerative CEGIS and is capable of quickly finding (conjunctive) solutions to the
abduction problem.

3 The Abduction Problem

Informally, the abduction problem for a set A of axioms and a goal G is the problem of
finding a formula S that is consistent with A and, together with A, entails the goal. We
refine the problem by restricting it to a given background theory T and also considering
syntactic restrictions on the solution S. We refer to this as the syntax-restricted abduction
problem, which we formalize in the following definition.

Definition 1 (Abduction Problem). The (syntax-restricted) abduction problem for a
theory T , a conjunction Arxs of axioms, a goal Grxs and a grammar R, where axioms
and goal are first-order formulas, is that of finding a first-order formula Srxs such that:
1. A^ S |ùT G,
2. A^ S is T -satisfiable, and
3. S is generated by grammar R.

In practice, as in SyGuS, syntactic restrictions on the solution space may be used
to capture user-requirements on the desired shape of a solution. They can also be used
as a mechanism for narrowing the search space to one where one believes the solver is
likely to find a solution. Observe that the formulation of the problem includes the case
with no syntactic restriction as a trivial case of a grammar that accepts all formulas in
the signature of the theory. In the abduction solver we have developed for this work, the
syntax restriction is optional. When it is missing, a grammar generating the full language
is constructed internally automatically.

Syntax-restricted abduction bears a strong similarity to SyGuS.3 In our approach
to it, we exploit this similarity by leveraging much of the technology we developed for
SyGuS, with the goal of achieving generality and scalability.

Normally, an abduction problem admits many solutions. Thus, it may be useful
to look for solutions that optimize certain criteria, such as generality with respect to
entailment in T , or minimality with respect to size or number of free variables. Our
evaluation contains several case studies where we explore this aspect in further detail.

Recent applications Abduction has a long history in logic and automatic reasoning
(see, e.g., [24]). More recently, it has found many useful applications in program analysis.

3 In fact, it could be readily recast as SyGuS, if one ignored Condition 2 in Definition 1.
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It has been used for identifying the possible facts a verification tool is missing to either
discharge or validate a verification condition [16], inferring library specifications that are
needed for verifying a client program [37], and synthesizing specifications for multiple
unknown procedures called from a main program [1]. Other applications includes loop
invariant generation [17, 20], where abduction is used for iteratively strengthening
candidate solutions until they are inductive and strong enough to verify a program, and
compositional program verification [25], where abduction is used for inferring not only
loop invariants but preconditions required for the invariants to hold. Abductive inference
has also been applied to modular heap reasoning [12], and the synthesis of missing
guards for memory safety [18].

4 Abduction via Enumerative Syntax-Guided Synthesis

In this section, we fix a theory T and describe our approach for solving the abduction
problem in T using enumerative syntax-guided synthesis. We first present a basic
procedure for abduction in the following section, and then extend this procedure so that
it generates (conjunctive) solutions in a highly scalable manner. We then describe how
either approach can be extended to an incremental onr that constructs solutions that are
logically weaker over time. For simplicity, we restrict ourselves to abduction problems
where axioms, goals, and solutions are quantifier-free.

Requirements on T We assume that the T -satisfiability of quantifier-free formulas is
decidable. For each sort of T , we also assume a distinguished set of variable-free terms
of that sort which we call values (e.g., numerals and negated numerals in the case of
integer arithmetic) such that every T -satisfiable formula is satisfied by a valuation of its
free variables to sort elements denoted by values. Finally, we require the availability of a
computable function Eval that takes a first-order formula ϕrxs and a tuple p of values of
the same length as x, and returns J if ϕrps is T -satisfiable and K otherwise. This is the
case for most theories used in SMT.

4.1 Enumerative Counterexample-Guided Inductive Synthesis for Abduction

We start with a basic CEGIS-style synthesis procedure for solving the syntax-
restriction abduction problem where points that represent counterexamples for candidate
solutions are cached and used to discard subsequent candidates. The procedure is pre-
sented in Figure 1. It takes as input axioms A, goal G and grammar R, and maintains an
internally set P of points that satisfy the axioms and falsify the goal. On line 3, we invoke
the stateful subprocedure NextEnumpRq which enumerates the formulas generated by
grammar R based on enumerative techniques used in SyGuS solvers. We will refer to
the return formula c as the current candidate solution. Then, using the (fast) evaluation
function Eval, we check online 4 whether c is falsified by all the points in P. If the check
fails then we discard c and loop back to line 3 because adding c to A would definitely
be not enough to entail G. Otherwise, we check, on line 5, whether c ^ A ^  G is
T -unsatisfiable. If it is T -satisfiable, we obtain a witness point p for the satisfiability, we
add it to our set of points P on line 10 and discard c. If the test on line 5 succeeds we
check that c is consistent with A before returning it as a possible solutions.
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GetAbductBasicpaxioms Arxs, goal Grxs, grammar Rq
1: Let P “ H // set of points
2: loop
3: Let crxs “ NextEnumpRq
4: if Evalpc, pq “ K for all p P P then
5: if c^ A^ G is T -unsatisfiable then
6: if c^ A is T -satisfiable then
7: return c
8: end if
9: else

10: P := PY tpu with p such that Evalpc^ A^ G, pq “ J
11: end if
12: end if
13: end loop

Fig. 1. Basic procedure for the abduction problem for axioms A, goal G and grammar R.

Example 1. Let T be the theory of integer linear arithmetic with the usual signature. Let
A be the set ty ě 0u and let G be the set tx` y ` z ě 0u, and assume R is a grammar
generating all linear arithmetic atomic formulas over the variables x, y, z. The results
of the procedure are summarized in the table below. We provide, for each iteration,
the candidate c generated by syntax-guided enumeration on line 3, the value of the
conditions on lines 4,5 and 6 of the procedure when applicable , and the point added
to P in when the condition on line 5 evaluates to false. The last column specifies the
solution returned on that iteration if any.

# c line 4 line 5 p P P line 6 return
1 x ě 0 J K p0, 0,´1q
2 x ă 0 J K p´1, 0, 0q
3 y ě 0 K

4 y ă 0 J J pq K

5 z ě 0 K

6 z ă 0 K

7 x` y ě 0 K

8 x` y ă 0 K

9 x` z ě 0 J J pq J x` z ě 0

On the first iteration, the syntax-guided enumeration generates the predicate x ě 0 as
the candidate solution c. This fails to imply the goal, namely the goal is false but the
axioms and this candidate are true on the point where px, y, zq “ p0, 0,´1q. The second
candidate fails for similar reasons for the point p´1, 0, 0q. The check on line 4 fails for
five of the next six candidates, the exception being the candidate y ă 0. This candidate
evaluates to false for both points in P but must be discarded since it is inconsistent with
our axioms on line 6. Finally, on the ninth iteration, the candidate x` z ě 0 is generated
which is a solution for this abduction problem. [\
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GetAbductUCLpaxioms A, goal G, grammar Rq
1: Let E,P,U “ H
2: loop
3: E += tNextEnumpRqu
4: Let C “ H
5: while EnsureCexFalsifypC, E, P, Uq do
6: if C^ A^ G is T -unsatisfiable then
7: Let Cmin Ď C such that Cmin ^ A^ G is T -unsatisfiable
8: if Cmin ^ A is T -satisfiable then
9: return Cmin

10: else
11: U += tuu for some u Ď Cmin such that u^ A is T -unsatisfiable
12: C -= e for some e P u
13: end if
14: else
15: P += tpu where EvalppC^ A^ Gq, pq “ J
16: end if
17: end while
18: end loop
EnsureCexFalsifypcandidate C, predicates E, points P, cores Uq
1: while EvalpC, pq “ J for some p P P do
2: if Evalpe, pq “ K for some e P E and u Ę CY teu for all u P U then
3: C += teu
4: else
5: return false
6: end if
7: end while
8: return true

Fig. 2. Procedure for the abduction problem for A, G and R based on unsat core learning.

4.2 A Procedure for Abduction based on Unsat Core Learning

This section extends the procedure from Figure 1 with techniques that make it scalable
when the intended solution to the abduction problem is a conjunction of enumerated pred-
icates. The procedure is applicable to cases where the grammar R admits conjunctions
of the predicates it enumerates. More precisely, the procedure in this section requires
that s0 Ñ s0 ^ s0 is a production rule in R where s0 is the start symbol of R.

This procedure is presented in Figure 2. Similar to the basic procedure from the
previous section, this procedure maintains a set of points P that satisfy the axioms and
falsify the goal. Additionally, this procedure maintains a set of enumerated predicates
E, U is a set of subsets of E that are inconsistent with the axioms. The procedure adds
to each of these three sets during the course of its run. Each loop iteration attempts to
construct a set of formulas C whose conjunction is a solution to the abduction problem.
This is in contrast to the basic procedure from Figure 1 which considers only single
predicates as candidate solutions.
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To construct the candidate set C, the procedure uses a helper function EnsureCexFalsify
which ensures that (i) the conjunction of the predicates in C is false for all points in P
and (ii) no subset of C exists in U. If the former condition were to be violated, then C
along with our axioms would not suffice to show the goal. If the latter condition were
to be violated, then we would know that C is inconsistent with our axioms. If we are
able to successfully construct a candidate solution set C, then line 6 checks whether
that candidate indeed suffices when added to the axioms to show the goal. If it does
not, we add a point to P. If it does, we construct a (ideally minimal) subset of Cmin of
C that also suffices to show the goal. This information can be readily computed by an
SMT solver [10] with support for unsatisfiable core generation [13], a feature common
to many modern solvers such as CVC4. We then check whether Cmin is consistent with
our axioms. If it is, then it is a solution to the abduction problem. If it is not, then we add
some subset of it to U that is also inconsistent with our axioms, where again this can be
computed by an SMT solver with support for unsatisfiable cores. In other words, here we
have learned that some subset u should never be included in future candidate solutions.
To maintain the invariant that no subset of C occurs in U, we remove one enumerated
predicate e P u from C on line 12. In the case where a point is added to P (line 15)
or when an unsat cores is added to U (line 11), we run the method EnsureCexFalsify
starting from the current resultant set C. This will force the procedure to construct a new
candidate solution if possible based on the set E. When this method fails to construct
a candidate, the inner loop terminates and the next predicate is added to E based on
syntax-guided enumeration.

We now revisit Example 1. As demonstrated in this example, GetAbductUCL is
often capable of generating solutions to the abduction problem faster than the one from
Figure 1, albeit those solutions may be logically stronger.

Example 2. We revisit Example 1, where A is the set ty ě 0u and G is tx` y` z ě 0u.
A run of the procedure from Figure 2 is summarized in the table below. We list iterations
of the outer loop of the procedure (lines 2-18) in the first column of this table. For each
iteration, we provide the predicate that is added to our pool E (line 3), the candidate
set C we are considering upon a successful call to EnsureCexFalsify. Notice that the
inner loop of the procedure may consider multiple candidates C for a single iteration
of the outer loop. For each candidate, when applicable, we give the evaluation of the
condition on line 6, the point p added to P if that condition is false (line 15), the minimal
candidate set Cmin constructed on line 7, the evaluation of the condition on line 8, the set
of predicates added to our set of unsatisfiable cores if that condition is false (line 11),
and finally the formula (if any) returned as a solution (line 9).

# e P E C line 6 p P P Cmin line 8 u P U return
1 x ě 0 tx ě 0u K p0, 0,´1q
2 x ă 0 tx ă 0u K p´1, 0, 0q

tx ă 0, x ě 0u J C K tx ă 0, x ě 0u
3 y ě 0
4 y ă 0 ty ă 0u J C K ty ă 0u
5 z ě 0 tx ě 0, z ě 0u J C J x ě 0^ z ě 0
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We assume the same ordered list of predicates enumerated from Figure 1. On the first
iteration, we add x ě 0 to our pool of enumerated predicates E. The helper function
EnsureCexFalsify constructs the set C “ tx ě 0u since (vacuously) it is true for all
points in P. Similar to the first iteration of Figure 1, on line 6 we learn that x ě 0 does not
suffice with our axioms to show the goal; a counterexample point is px, y, zq “ p0, 0,´1q
which is added to P. Afterwards, EnsureCexFalsify is not capable of constructing another
C since there are no other predicates in E. In contrast to Figure 1 which discards the
predicate x ě 0 at this point, here it remains in E and can be added as part of C in future
iterations.

On the second iteration, we add x ă 0 to our pool. We check the candidate set C “
tx ă 0u, which fails to imply the goal for counterexample point px, y, zq “ p´1, 0, 0q.
To construct the next candidate set C, we must find an additional predicate from E that
evaluates to false on this point (or otherwise we again would fail to imply our goal).
Indeed, x ě 0 P E evaluates to false on this point, and thus EnsureCexFalsify returns
the set tx ă 0, x ě 0u. This set suffices to prove the goal given the axioms, that is, the
condition on line 6 succeeds; the unsatisfiable core Cmin computed for this query is the
same as C. However, on line 8, we learn that this set is inconsistent with our axioms
(in fact, the set by itself is equivalent to false). On line 11, we add tx ă 0, x ě 0u
to U. In other words, we learn that any solution that contains both these predicates
is inconsistent with our axioms. Learning this subset will help prune later candidate
solutions. The procedure on this iteration proceeds by removing one of these predicates
from our candidate solution set C. Subsequently the helper function EnsureCexFalsify
cannot construct a new candidate subset due to tx ă 0, x ě 0u P U and since no other
predicates occur in E.

On the third iteration, y ě 0 is added to our pool. However, no candidate solution
can be constructed, where notice that y ě 0 evaluates to J on both points in P. On the
fourth iteration, y ă 0 is added to our pool and the candidate solution set ty ă 0u is
constructed, where notice that this predicate evaluates to K on both points in P. This
predicate suffices to show the goal from the axioms, but is however inconsistent with
our axioms. Thus, ty ă 0u is added to our set of unsatisfiable cores U. In other words,
we have learned that no solution C should include the predicate y ă 0 since it is alone
inconsistent with our axioms.

On the fifth iteration, z ě 0 is added to our pool. The only viable candidate that
falsifies all points in P and does not contained a subset from U is tx ě 0, z ě 0u. This
set is a solution to the abduction problem and the formula x ě 0^z ě 0 is returned. Due
to our assumption that R admits conjunctions, this formula meets the syntax restrictions
of our grammar. A run of this procedure required only 5 predicates to be enumerated
before finding a solution whereas the basic one in Figure 1 required 9. [\

While the solution in the previous example x ě 0 ^ z ě 0 was found in fewer
iterations, notice that it is logically stronger than the solution x ` z ě 0 produced in
Example 1, since x ě 0 ^ z ě 0 entails x ` z ě 0 but not vice versa. We remark
that the main advantage of procedure Figure 2 is that is typically capable of generating
any feasible solution to the abduction problem faster than the procedure from Figure 1.
This is especially the case if the only solutions to the abduction problem consist of a
large conjunction of literals of small term size `1 ^ . . .^ `n. The basic procedure does
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GetAbductIncpaxioms A, goal G, grammar Rq
1: Let S “ K
2: loop
3: Let C “ GetAbduct˚

pA,G,Rq.
4: if C^ A^ S is T -satisfiable then
5: S :“ S_ C
6: print Weakest solution so far is S
7: else
8: // Exclude tuu for some u Ď C such that u^ A^ S is T -unsatisfiable
9: end if

10: end loop

Fig. 3. Incremental abduction procedure for axioms A, goal G and grammar R.

not scale to this case, since it would require waiting until the conjunction above was
enumerated as a predicate.

Regardless, the user may be interested in obtaining a solution to abduction problem
that maximizes some criteria and is not necessarily the first one discovered by (either
of) the aforementioned procedures. In the next section, we describe an extension to
our approach for abduction that maintains the advantage of returning solutions quickly
while still seeking to generate the best solution in the long run. Namely, we extend these
procedures so that it generates solutions to the abduction problem based on the above
procedures, and moreover generates additional solutions over time that are maximize
some criteria such as logical weakness.

4.3 Incremental Weakening for Abduction

We remark that it is straightforward to extend enumerative syntax-guided approaches for
abduction to generate multiple solutions. In particular, we are interested in an approach
that generates solutions over time that are progressively better in terms of some metric.
We briefly give an overview of how the above procedures can be extended in this way
and discuss some relevant details regarding this extension. We focus on the problem of
generating the logically weakest solution to the abduction problem in this section.

Figure 3 presents an incremental procedure for generating (multiple) solutions to a
given abduction problem. The procedure requires that R admits disjunctions, i.e. that
s0 Ñ s0 _ s0 is a production rule in R where s0 is the start symbol of R. It maintains a
formula S, which when not K, represents the logically weakest solution to the abduction
problem known so far. In the main loop of the procedure, it calls one of the procedures
for generating single solutions to the abduction problem (written GetAbduct˚) as a
subprocedure on line 3. Line 4 of the procedure then checks whether a new solution can
be constructed that is logically weaker with respect to the axioms than the current one.
In particular, this is the case if C^ A^ S is T -satisfiable. In other words, there is at
least one point for which the current candidate satisfies that is not satisfied by the current
solution S. If this is the case, the current solution S is updated to S _ C, which is by
construction guaranteed to also be a solution to the abducion problem. If no such point
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can be found, then C is redundant with respect to the current candidate solution since it
does not weaken the current solution. Optionally, we may learn a subset u of C that is
also redundant with respect to the current candidate solution. This subset can be learned
as an unsatisfiable core in the case where we are using the procedure GetAbductUCL as
a subprocedure on line 3.

4.4 Implementation Details

We implemented the above procedures in CVC4 [8], state-of-the-art SMT solver which
has also been extended with several strategies for enumerative syntax-guided synthe-
sis [31]. It supports inputs both in the SMT-LIB version 2.6 format [9], and synthesis
problems in SyGuS version 2.0 format [30]. To specify an abduction problem, we extend
its SMT-LIB version 2.6 parser. SMT-LIB version 2.6 is a scripting language where
assertions may be provided via commands (assert F) where F is a formula. The solver is
invoked to check for satisfiability of its current assertions with the command (check-sat).
We extended CVC4’s parser for this format to support commands of the form (get-abduct
p G R) where p is a symbol (the name of the solution predicate), G is a formula (the
goal of the abduction problem), and (optionally provided) R is a grammar in the SyGuS
version 2.0 format. This command asks the solver to find a predicate that is a solution to
an abduction problem, where the axioms is the solver’s current assertions. The expected
response from the solver is (define-fun p () Bool S) where p matches the symbol name
provided in the first argument of get-abduct and S is a formula that is the solution to the
abduction problem.

Internally, invoking a get-abduct command causes a synthesis conjecture to be con-
structed and passed to the SyGuS solver of CVC4. The SyGuS solver of CVC4 traditionally
accepts conjectures of the form Df.@x̄. ϕrf, x̄s where ϕ is quantifier-free. Thus, we must
pass the abduction problem in two parts: (i) the conjecture DP.@x̄. pP px̄q ^A^ Gq
where x̄ are the free variables of A,G4, stating that P along with our axioms must
imply the goal, and (ii) a side condition Dx̄. P px̄q ^A stating that P must be consistent
with our axioms. The conjecture above is of a form that can be readily handled by the
existing SyGuS solver of CVC4 and processed using its existing techniques. We have
added additionally techniques so that the side condition is considered during solving, as
described in Figures 1 and 2.

The procedure in Figure 2 is implemented as a strategy on top of the basic enu-
merative CEGIS loop of CVC4. We give some important implementation details here.
Firsty, we use a data structure for efficiently checking whether any subset of C occurs in
our set of unsatisfiable cores U, which keeps the sets in U in an index and is traversed
dynamically as predicates are added to C. We chose enumerated predicates on line 2
of EnsureCexFalsify by selecting first the most recently generated predicate, and then a
random one amongst those that meet the criteria to be included in C. Finally, since the
number of candidate solutions can be exponential in the worst case for a given iteration
of the inner loop of this procedure, we use a heuristic where predicates cannot be added
to C more than once on the same iteration of the loop, making the number of candidate
sets tried on a given iteration linear in the size of E in the worst case.

4 We assume that all free symbols in A and G are variables.
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5 Evaluation

We implemented our approach in the enumerative syntax-guided synthesis solver of
CVC4 [31] and evaluated5 it in comparison with CVC4’s enumerative CEGIS, a general
purpose synthesis approach, as well as with GPID [19] and EXPLAIN [15], state-of-the-
art solvers for similar abduction problems as the one defined here. In the comparison
below, we refer to the basic procedure from Figure 1 as CVC4+B and the one from
Figure 2 as CVC4+U. Experiments ran on a cluster with Intel E5-2637 v4 CPUs, Ubuntu
16.04. Each execution of a solver on a benchmark was provisioned one core, 300 seconds
and 8 GB RAM.

5.1 Benchmarks

Since abduction tools are generally focused on specific application domains, there is
no standard language or benchmark library for evaluation. As here we did not target a
specific application but rather the abduction problem as a whole, we had to generate
our own general benchmark sets. We did so using benchmarks relevant for verification
from SMT-LIB [9], the standard test suite for SMT solvers. We chose as a basis the
SMT-LIB logics QF LIA, QF NIA, and QF SLIA due to their relevance for verification.
For QF NIA, we focus on the benchmark family VeryMax and on kaluza for QF SLIA.
In QF LIA we excluded benchmark families whose benchmarks explode in size without
the let operator. This was necessary to allow a comparison with EXPLAIN, whose parser
does not fully support let, on let-free benchmarks. We considered both benchmarks
that were (annotated as) satisfiable and unsatisfiable for generating abduction problems,
according to the following methodology.

Given a satisfiable SMT-LIB problem ϕ “ ψ1^ ¨ ¨ ¨ ^ψn
6 in the theory T , we see it

as an encoding of a validity problem ψ1 ^ ¨ ¨ ¨ ^ ψn´1 |ù  ψn that could not be proven.
We consider the abduction problem where G is  ψn, A is ψ1 ^ ¨ ¨ ¨ ^ ψn´1, and R is a
grammar that generates any quantifier-free formula in the language of T over the free
variables of G and A. A solution S to this problem allows the validity of ϕ to be proven,
since ϕ^ S is unsatisfiable.

Given an unsatisfiable SMT-LIB problem ϕ, let U “ tψ1, . . . , ψnu be a minimal
unsatisfiable core for this formula, i.e. any conjunctive set U tψu, for some ψ P U ,
is satisfiable. Let ψmax be U ’s component with maximal size. We will call ψmax the
reference to the abduction problem. We consider the abduction problem whose G is ψG,
for some ψG P U and ψG ‰ ψmax, whose axioms A are U tψG, ψmaxu and R as before
is a grammar that generates any predicate in the language of T over the free variables of
G and A. A solution S to this problem allows proving the validity of U tψG, ψmaxu |ù

ψG, since U tψmaxu Y tSu is unsatisfiable. Solving this abduction problem amounts
to “completing” the original unsatisfiable core with the further restriction that this
completion is at least as weak as the reference, as well as consistent with all but one of
the other core components, seen as axioms for the abduction problem.

5 Full material at http://cvc4.cs.stanford.edu/papers/abduction-sygus/
6 SMT-LIB problems are represented as sequences of assertions. Here we considered each ψi as

one of these assertions.
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From satisfiable SMT-LIB benchmarks we generated 2025 abduction problems in
QF LIA, 12214 in QF NIA and 11954 in QF SLIA. For unsatisfiable benchmarks we
were limited not only by the benchmark annotations but also by being able to find
minimal unsatisfiable cores. We used the Z3 SMT solver [14] to generate minimal
unsatisfiable cores with a 120s timeout. Excluding benchmarks whose cores had less
than three assertions (so we could have axioms, a goal and a reference), we ended up
with 97 problems in QF LIA, 781 in QF NIA and 2546 in QF SLIA.

CVC4+B CVC4+U

Logic # Solved Unique Weaker Solved Unique Weaker

QF LIA 2025 721 261 183 594 134 2
QF SLIA 11954 10902 3 466 10980 81 0
QF NIA 12214 1492 171 671 1712 391 45

Total 26593 13329 435 1320 13628 606 47

Table 1. Comparison of abduction problems from originally SAT SMT-LIB benchmarks.

5.2 Finding missing assumptions in SAT benchmarks

In this section we evaluate how effective CVC4+B and CVC4+U are in (i) finding any so-
lution to the abduction problem and (ii) finding logically weak solutions. The evaluation
is done on the abduction problems produced from satisfiable SMT-LIB benchmarks as
above. Results are summarized in Table 1. The number of solved problems corresponds
to the problems for which a given CVC4 configuration could find a solution within 300s.
CVC4+U solves a significant number of problems more than CVC4+B in all logics but
QF LIA. In both QF LIA and QF NIA we can see a significant orthogonality between
both approaches. We attribute these both to the fragility of integer arithmetic reasoning,
where the underlying ground solver checking the consistency of candidate solutions
is greatly impacted by the shape of the problems it is given. Overall, the procedure in
CVC4+U leads to a better success rate than the basic procedure in CVC4+B. Solution
strength was evaluated considering the solutions produced according to the incremental
procedures shown in Section 4.3 on commonly solved problems. As expected, CVC4+U
is able to solve more problems but at the cost of often producing stronger solutions than
CVC4+B. This is particularly the case in QF SLIA and QF NIA, in which CVC4+U both
solves many more problems and often finds stronger solutions.

5.3 Completing UNSAT cores

Here we evaluate how effective CVC4+B and CVC4+U are in solving the abduction
problem with the extra restriction of finding a solution that is at least as weak as a given
reference formula. We use the abduction problems produced from unsatisfiable SMT-LIB
benchmarks following the methodology of Section 5.1 as the basis for this evaluation.

The results are summarized in Table 2. CVC4+B significantly outperforms CVC4+U
in QF SLIA, in which the references are very simple formulas (generally with size
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CVC4+B CVC4+U

Logic # Solved Unique Solved Unique

QF LIA 97 6 0 6 0
QF SLIA 2546 2546 32 2514 0
QF NIA 781 86 49 41 4

Total 3424 2638 81 2561 4

Table 2. Comparison of abduction problems from originally UNSAT SMT-LIB benchmarks.

below 3), for which the specialized procedure of CVC4+U is not necessary. Overall, as
in the previous section when checking who finds the weakest solution, CVC4+B has as
advantage over CVC4+U for finding solutions as weak as the reference.

5.4 Comparison with Explain

EXPLAIN [15] is a tool for abductive inference based on quantifier elimination. It accepts
as input a subset of SMT-LIB and we extended it to support abduction problems as
generated in Section 5.1. However, EXPLAIN imposes more restrictions to their solutions,
only producing those with a minimal number of variables and for which every other
solution with those variables is not stronger than it. Their rationale is finding “simple”
solutions, according to the above criteria, which are more interesting to their applications.
Since we do not apply these restrictions in CVC4, nor is in the scope of this paper
incorporating them into our procedure, it should be noted that comparing CVC4 and
EXPLAIN puts the latter at a disadvantage. We considered satisfiable SMT-LIB problems
in the QF LIA logic for our evaluation, as QF LIA is better supported by EXPLAIN.

Solved Unique Total time

CVC4+B 721 261 418849s
CVC4+U 594 125 449424s
EXPLAIN 33 0 532839s

Table 3. Comparison with EXPLAIN in 2025 abduction problems in QF LIA

All problems solved by EXPLAIN are solved by CVC4+U. Of these 33 problems,
CVC4+U, in incremental mode, finds a solution with the same minimal number of
variables as EXPLAIN for 25 of them. Of the 8 problems to which it only finds solutions
with more variables, in 4 of them the difference is of a single variable. All other 4 are in
the slacks benchmark family, which contains crafted problems. A similar comparison
occurs with CVC4+B. This shows that even though CVC4 is not optimized to minimize the
number of variables it its solutions, it can still often finds solutions that are optimal (or
close to optimal) according to EXPLAIN’s criteria, while solving a much larger number
of problems with a fully general approach.

5.5 Comparison with GPiD

We also compared CVC4 with GPID [19], a framework for generating implicates, i.e.
logical consequences of formulas. As Echenim et al. say in their paper, negating the
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implicate of a satisfiable formula ϕ yields the “missing hypothesis” for making ϕ unsatis-
fiable. Therefore GPID solves a similar problem to that of Section 5.2, differing by they
always considering an empty set of axioms and the whole original formula as the goal.
Given this similarity, we compare the performance of GPID in generating implicates for
satisfiable benchmarks and of of CVC4+B and CVC4+U in solving abduction problems
generated from those same benchmarks. We did not consider the benchmarks from the
previous sections because we were not able to produce abduces, which are the syntactic
components GPID uses to find implicates, for other logics using the tools in GPID
public repository7. Thus we restricted our analysis to 400 abduction problems produced,
as per the methodology of Section 5.1, from satisfiable QF UFLIA benchmarks that
were used in [19]. Note however that the CVC4 configurations will require solutions to
be consistent with all but the last assertion in the problems (which are the axioms in the
respective abduction problem). Since that, as far as we know, this is not a requirement
in GPID, effectively CVC4+B and CVC4+U are solving a harder problem than GPID.
We formulated the abduction problem this way, rather than as with all assertions as
goals, to avoid trivializing the abduction problem, for which the negation of the goal
would always be a solution. Also note that the presence of uninterpreted functions in the
abduction problem requires solutions to be generated in a higher-order background logic,
which CVC4 supports after a recent extension [7]. As in [19], we used GPID’s version
with the Z3 backend. We present their results with (GPID-1) and without (GPID) the
restriction to limit the set of abduces to size 1.

Solved Unique Total time

CVC4+B 214 0 57290s
CVC4+U 342 0 18735s
GPID 193 0 69s
GPID-1 398 54 1188s

Table 4. Comparison with GPID on 400 abduction problems in the QF UFLIA logic.

Results are summarized in Table 4. CVC4+U significantly outperforms CVC4+B, both
in the number of problems solved and in total time, besides being almost 20% faster
on commonly solved problems. We also see that solution finding in GPID is heavily
dependent on which abduces are considered when building solutions, as it solves almost
all benchmarks when limited to abduces of size 1 but barely half when unrestricted. It
should also be noted that GPID takes pre-computed abduces, whose production time
is not accounted for in the evaluation. Despite this, CVC4+U is only on average 30%
slower on commonly solved problems than GPID-1 and solves many more problems
than GPID. The big variation of GPID results in terms of what pre-determined set of
candidates can be used in the computation is a severe limitation of their tool. Similarly,
while the method proposed in [19] is theory agnostic, their tooling for producing abduces
imposes strong limitations on the usage of GPID for theories other than QF UFLIA.

7 At https://github.com/sellamiy/GPiD-Framework .
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6 Related Work

The procedure introduced in Section 4.2 based on unsat core learning follows a recent
trend in enumerative syntax-guided synthesis solving that aims to improve scalability by
applying divide-and-conquer techniques, where candidate solutions are built from smaller
enumerated pieces rather than being directly enumerated. While previous approaches,
both for pointwise [27, 5] and for unrestricted specifications [6], have targeted general-
purpose function synthesis, we specialize divide and conquer for solving the abduction
problem with a lean (see Section 4.4) and effective (see Section 5) procedure.

Abductive inference tools for the propositional case include the AbHS and AbHS+
tools [26, 33], based on SAT solvers [11] and hitting set procedures [23]. More general
approaches, to which our work bears more resemblance and to which we provided an
experimental comparison in Section 5, are GPiD [19] and Explain [15]. GPiD uses an off-
the-shelf SMT solver as a black box to generate ground implicates. It can be used with any
theory supported by the underlying SMT solver, similarly to our SyGuS-based approach.
While we enumerate predicates that compose the solution for the abduction problem
they use abducibles, which are equalities and disequalities over the variables in the
problem. They similarly build candidates in a refinement loop by combining abducibles
according to consistency checks performed by an underlying SMT solver. They use
an order on abducibles to guide the search, which is analogous to the enumeration
order in enumerative synthesis. Explain on the other hand is built on top of an SMT
solver for the theories of linear integer arithmetic and of equality with uninterpreted
functions, but their abduction inference procedure in principle can work with any theory
that admits quantifier elimination. Their method is based on first determining a subset of
the variables in the abduction problem and trying to build the weakest solution over these
variables via quantifier elimination, while computing minimal satisfying assignments
to ensure that a found solution covers a minimal subset. Their method however is not
complete, as it can miss solutions. Their tool also allows the user to specify costs for
each variable, so that a given minimal set may be favored.

7 Conclusion

We have described approaches for solving the abduction problem using a modern enu-
merative solver for syntax-guided synthesis. Our evaluation shows that procedures based
on enumerative CEGIS scale for several non-trivial abduction tasks, and have several
compelling advantages with respect to other approaches like those used in EXPLAIN and
GPID. In several cases, it suffices to use a basic procedure for enumerative CEGIS to
generate solutions to abduction problems that are optimal according to certain metrics.
Moreover, the generation of feasible solutions can be complemented and accelerated via
a procedure for generating conjunctions of enumerated predicates as shown in Figure 2.

We see a number of promising applications of the new abduction capabilities de-
scribed in this paper. For example, we plan to use abduction to develop conditional
rewrite rules in CVC4. Abduction can be used to generalize a recent approach for the
semi-automated development of rewrite rules [28] by synthesizing (most general) con-
ditions under which two terms are equivalent. This in turn can be used to develop new
solving strategies in the SMT solver based on those rewrite rules.
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[28] A. Nötzli, A. Reynolds, H. Barbosa, A. Niemetz, M. Preiner, C. W. Barrett, and C. Tinelli.
Syntax-guided rewrite rule enumeration for SMT solvers. In Theory and Applications
of Satisfiability Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon,
Portugal, July 9-12, 2019, Proceedings, pages 279–297, 2019.

[29] P. M. Phothilimthana, A. Thakur, R. Bodı́k, and D. Dhurjati. Scaling up superoptimization.
In Proceedings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’16, Atlanta, GA, USA, April
2-6, 2016, pages 297–310, 2016.

[30] M. Raghothaman, A. Reynolds, and A. Udupa. The sygus language standard version 2.0,
2019.
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