
Universidade Federal do Rio Grande do Norte
Centro de Ciências Exatas e da Terra

Departamento de Informática e Matemática Aplicada
Programa de Pós-Graduação em Sistemas e

Computação

Formal verification of PLC programs using
the B Method

Haniel Moreira Barbosa

Natal-RN
Outubro, 2012

Haniel Moreira Barbosa

Formal verification of PLC programs using the B Method

Dissertação apresentada ao Programa de
Pós-Graduação em Sistemas e Computação
do Departamento de Informática e Matemá-
tica Aplicada do Centro de Ciências Exatas
e da Terra da Universidade Federal do Rio
Grande do Norte como requisito parcial para
a obtenção do grau de Mestre em Sistemas e
Computação.

Orientador

Prof. Dr. David Déharbe

Universidade Federal do Rio Grande do Norte — UFRN
Programa de Pós-Graduação em Sistemas e Computação — PPgSC

Natal-RN

Outubro, 2012

Dissertação sob o título Formal verification of PLC programs using the B Method apresen-
tada por Haniel Moreira Barbosa e aceito pelo Programa de Pós-Graduação em Sistemas e
Computação do Departamento de Informática e Matemática Aplicada do Centro de Ciên-
cias Exatas e da Terra da Universidade Federal do Rio Grande do Norte, sendo aprovado
por todos os membros da banca examinadora abaixo especificada:

Prof. Dr. David Déharbe
Orientador

Departamento de Informática e Matemática Aplicada
Universidade Federal do Rio Grande Norte

Prof. Dr. Marcel de Oliveira
Departamento de Informática e Matemática Aplicada

Universidade Federal do Rio Grande do Norte

Prof. Dr. Alexandre Mota
Centro de Informática

Universidade Federal de Pernambuco

Natal-RN, primeiro de Novembro de dois mil e doze.

Àqueles que amo. E às derrotas, porque nada me ensinou tanto quanto elas.

Agradecimentos

Agradeço aos meus pais, que tanto me apoiaram, que tanto me elevaram... e que por
tanto tempo não tiveram o reconhecimento devido.

Aos meus professores, que tanto me ensinaram, positiva ou negativamente.

A David, que me aguentou. A Thierry, que me deu uma oportunidade que tentei
aproveitar ao máximo.

Aos meus amigos, pela força, pelos puxões de orelha, pelo necessário escapismo, pela
esperança.

E a uma certa pixototinha, que sabe muito bem o porquê, mas principalmente pelo
sorriso.

Muad’Dib learned rapidly because his first training was in how to learn. And the first
lesson of all was the basic trust that he could learn. It’s shocking to find how many

people do not believe they can learn, and how many more believe learning to be di�cult.
Muad’Dib knew that every experience carries its lesson.

Dune, by Frank Herbert

Contents

List of Figures

List of Tables

List of Codes

Resumo

Abstract

1 Introduction p. 20

1.1 Goals . p. 23

1.2 Structure of the dissertation . p. 23

2 Related work p. 24

2.1 Approaches using theorem proving . p. 25

2.2 Approaches using model checking . p. 27

2.3 Approaches using simulation . p. 29

2.4 Considerations . p. 30

3 Context and techniques p. 33

3.1 Programmable Logic Controllers . p. 33

3.1.1 IEC 61131 . p. 34

3.1.2 PLC programming . p. 36

3.1.2.1 Program Organization Units p. 36

3.1.2.2 Variables and Data Types p. 37

3.1.2.3 IL . p. 38

3.1.2.4 ST . p. 40

3.1.2.5 Graphical languages p. 40

3.1.2.6 FBD . p. 42

3.1.2.7 LD . p. 43

3.1.2.8 SFC . p. 45

3.2 PLCopen . p. 51

3.2.1 Variables and Data types . p. 51

3.2.1.1 Data Type . p. 52

3.2.1.2 Value . p. 54

3.2.2 POUs . p. 55

3.2.2.1 Interface . p. 56

3.2.2.2 Body . p. 56

3.2.3 Additional Data . p. 62

3.3 B Method . p. 62

3.3.1 AMN notation . p. 63

3.3.2 Substitutions . p. 67

3.3.3 Proof Obligations . p. 69

3.3.4 Example . p. 71

3.3.5 Decomposition . p. 73

3.3.6 Tools . p. 77

4 Method p. 79

4.1 Reading the PLC programs . p. 81

4.1.1 PLC Object . p. 81

4.1.2 IEC reader . p. 83

4.1.2.1 IEC parser . p. 84

4.1.2.2 PLC Example . p. 88

4.1.3 PLCopen Reader . p. 93

4.2 Generating the B Model . p. 94

4.2.1 Architecture of the B model . p. 94

4.2.2 Translation Process . p. 96

4.2.2.1 ST . p. 96

4.2.2.2 FBD . p. 103

4.2.2.3 LD . p. 106

4.2.2.4 SFC . p. 109

4.2.3 B Writer . p. 112

4.2.3.1 Static information and structuring p. 113

4.2.3.2 State . p. 115

4.2.3.3 Behaviour . p. 119

4.3 Inserting the safety constraints . p. 132

4.3.1 Example . p. 133

4.4 Restrictions of the approach . p. 134

5 Case Study p. 137

5.1 Application description . p. 137

5.1.1 Doors subsystem . p. 138

5.1.2 Central Door Controller . p. 139

5.1.2.1 PLC program for CDC p. 141

5.2 Applying the method . p. 144

5.2.1 B model . p. 144

5.2.2 Safety constraints . p. 148

5.3 Results . p. 151

5.3.1 Proof obligations verification . p. 151

5.3.2 Model checking . p. 153

5.4 Conclusions . p. 154

6 Conclusion p. 156

References p. 160

Appendix A -- Textual languages constructs p. 163

A.1 IL Constructs . p. 163

A.2 ST constructs . p. 164

Appendix B -- Textual declarations in IEC 61131-3 p. 165

B.1 POU declaration . p. 165

B.2 SFC declaration . p. 167

Appendix C -- PLC object extra information p. 168

C.1 Class diagramas to the PLC Object . p. 168

Appendix D -- CDC extra information p. 171

D.1 CDC interface . p. 171

D.2 Doors system elements . p. 172

D.3 B models . p. 175

List of Figures

Chapter 2: Related work p. 24

1 Verification techniques . p. 31

2 Approach’s automation . p. 31

Chapter 3: Context and techniques p. 33

3 A PLC system. p. 35

4 The five languages of the IEC 61131-3 standard for PLC programming. p. 36

5 Block corresponding to the IL function seen in Section 3.1.2.3. p. 42

6 Block corresponding to the ST function seen in Section 3.1.2.4. p. 42

7 FBD program example . p. 43

8 Example of a program in the LD language. p. 45

9 LD diagram making use of FBD elements. p. 45

10 A sequence of SFC steps connected by transitions. p. 47

11 Valid step’s connections. p. 47

12 Valid transition’s connections. p. 47

13 SFC program with selection structures. p. 48

14 SFC program with simultaneous structures. p. 49

15 A SFC program wrongly using the simultaneous convergence element. . p. 49

16 SFC program presenting the discussed elements p. 50

17 Architecture of a B model with decomposition p. 76

Chapter 4: Method p. 79

18 Illustration of the complete method. p. 79

19 Framework we built to implement our method. p. 80

20 The main elements of Types . p. 82

21 Types object built. p. 91

22 POU object built. p. 91

23 Interface of the POU sfcSimple. p. 91

24 DataTypeElements built. p. 92

25 Body of “sfcSimple”. p. 92

26 BodyLD and BodyLD . p. 93

27 Architecture of the B model generated. p. 94

28 FBD program to be translated to B notation p. 106

29 LD program to be translated to B notation p. 108

30 SFC example modified. p. 110

31 Action2, in LD . p. 110

32 B translation for SR function block . p. 134

Chapter 5: Case Study p. 137

33 Overall structure of a train’s door subsystem. p. 138

34 Central Door Controller, system view. p. 140

35 Central Door Controller, SFC program. p. 141

36 POU functions used by the CDC. p. 142

37 POU function blocks used by the CDC. p. 142

38 B model for the CDC. p. 145

Chapter C: PLC object extra information p. 168

39 PLC Object — Class diagram . p. 168

40 SFCObjects — Class diagram . p. 169

41 ActionBlock — Class diagram . p. 169

42 LDObjects — Class diagram . p. 170

43 FBDObjects — Class diagram . p. 170

Chapter D: CDC extra information p. 171

44 Doors system — Class diagram . p. 172

45 Doors system — Class diagram . p. 173

46 Doors system — Class diagram . p. 173

47 Doors system — Class diagram . p. 173

48 Doors system — Class diagram . p. 173

49 Doors system — Class diagram . p. 174

50 B model for the instance of the Define_ButtonEmergency function block. p. 175

51 B model for the instance of the Define_MechEmergency function block. p. 175

List of Tables

Chapter 2: Related work p. 24

1 List of related works . p. 31

Chapter 3: Context and techniques p. 33

2 Elementary types. p. 38

3 I/O Table for IL example. p. 39

4 I/O Table for ST example. p. 40

5 Common elements to IEC 61131 graphical languages p. 41

6 Graphical elements of the FBD language p. 44

7 Graphical elements of the LD language p. 44

8 Graphical elements of the SFC language p. 46

9 I/O Table for SFC example. p. 50

10 Rules of Substitution in B . p. 67

Chapter 4: Method p. 79

11 ST operations and their equivalent B notations p. 97

Chapter 5: Case Study p. 137

12 Invariants inserted into the B model for CDC. p. 150

13 Proof obligations generated to verify the B model for CDC. p. 151

14 Model checking over the CDC model with 100 enabling operations . . . p. 154

15 Model checking over the CDC model with 1000 enabling operations . . p. 155

Chapter A: Textual languages constructs p. 163

16 Elements of the instructions in IL. p. 163

17 ST operations and their symbols . p. 164

18 ST statements and examples of their usage. p. 164

Chapter D: CDC extra information p. 171

19 CDC — Interface . p. 171

20 Interface of Test_Opening . p. 171

21 Interface of Test_Closing . p. 171

22 Interface of Define_MechEmergency . p. 172

23 Interface of Define_ButtonEmergency p. 172

List of Codes

Chapter 3: Context and techniques p. 33

1 Example of a IL program. p. 39

2 Example of a ST program. p. 41

3 Action1, in ST . p. 50

4 XML element to a Variable . p. 52

5 XML representation of a boolean variable p. 52

6 XML representation of a new type based on the Enumeration data type. p. 53

7 XML element for the Array Type . p. 54

8 XML representation of an array variable p. 54

9 XML representation of an array variable with an initial value associated. p. 55

10 Interface of a POU in PLCopen. p. 56

11 Block in PLCopen . p. 58

12 SFC POU in PLCopen — Interface , Actions and Transitions p. 60

13 SFC POU in PLCopen — Body . p. 61

14 Example of use of the Add Data feature p. 62

15 Basic structure of a B machine . p. 63

16 Basic structure of a B refinement . p. 65

17 Example of a B machine. p. 71

18 Necessary alteration for invariant compliance p. 71

19 Example of a B refinement . p. 73

20 Example of a B including machine . p. 76

21 Example of a B seen machine . p. 76

Chapter 4: Method p. 79

22 Algorithm for the PLC reading . p. 83

23 Algorithm for the PLC reading . p. 85

24 Algorithm for the SFC Body construction p. 86

25 Algorithm for the Action parsing . p. 87

26 Algorithm for the Transition parsing p. 88

27 Textual representation of some Data Type Elements declaration. p. 89

28 Textual representation of a POU function in ST declaration p. 89

29 Textual representation of a POU program implemented with SFC + ST. p. 89

30 B generation from ST function block invocation p. 98

31 B generation from ST function invocation p. 99

32 B generation from ST function block invocation p. 100

34 B generation from ST assignments . p. 102

35 B generation from ST ’IF’ statements p. 103

36 B generation from ST example . p. 103

38 B generation from FBDTest example p. 106

40 B generation from LD example . p. 108

41 B generation from a SFC body . p. 109

42 B generation from LD example . p. 110

43 B precondition generation from Step connections p. 111

44 Guidelines for generating POU functions translations. p. 122

45 B generation from ST code in a POU function p. 122

46 Abstract operation from FBD1 body p. 124

47 Abstract operations from LD body . p. 125

48 Abstract step operations from SFC body. p. 126

49 Abstract simultaneous divergence operation from SFC body. p. 127

50 Refinement operation from FBD1 body. p. 128

51 Refinement operations from LD body p. 129

52 Refinement step operations from SFC body p. 131

53 Refinement simultaneous divergence operation from SFC body p. 132

Chapter 5: Case Study p. 137

54 Action Evaluate Closing, at Step3 . p. 142

55 POU function Test Closing’s ST body. p. 142

56 Action Evaluate Emergency, at Step8 p. 143

57 Function block Define_MechEmergency. p. 144

58 B operation for Step8 . p. 146

59 B operation for POU function Test Closing p. 147

60 B operation for POU function block instance test_MEmg p. 147

Chapter B: Textual declarations in IEC 61131-3 p. 165

61 Production rules for the textual declaration of a PLC program p. 165

62 Production rules for the textual declaration of a POU function p. 165

63 Production rules for the textual declaration of a POU function block . . p. 166

64 Production rules for the textual declaration of a POU program p. 166

65 Production rules for the textual declaration of a SFC program p. 167

Formal verification of PLC programs using the B
Method

Autor: Haniel Barbosa
Orientador: Prof. Dr. David Déharbe

Resumo

Controladores Lógico Programáveis (PLCs — Programmable Logic Controllers, em inglês)
desempenham funções de controle, recebendo informações do ambiente, processando-as e
modificando este ambiente de acordo com os resultados obtidos. São comumente utilizados
na indústria nas mais diversas aplicações, do transporte de massa à indústria do petróleo,
gás e energias renováveis. Com o crescente aumento da complexidade dessas aplicações e
do seu uso em sistemas críticos, faz-se necessária uma forma de verificação que propicie
mais confiança do que testes e simulação, padrões mais utilizados na indústria, mas que
podem deixar falhas não tratadas. Métodos formais podem prover maior segurança a este
tipo de sistema, uma vez que permitem a sua verificação matemática. Neste trabalho
fazemos uso do Método B, que é usado com sucesso na indústria para a verificação de
sistemas críticos, possui amplo apoio ferramental e suporte à decomposição, refinamento
e verificação de corretude em relação à especificação através de obrigações de prova. O
método desenvolvido e apresentado aqui consiste em gerar automaticamente modelos B
a partir de programas para PLCs e verificá-los formalmente em relação a propriedades
de segurança, estas derivadas manualmente a partir dos requisitos do sistema. O escopo
do trabalho são as linguagens de programação para PLCs do padrão IEC 61131-3, mas
sistemas com linguagens que apresentem modificações em relação ao padrão também são
suportados. Esta abordagem visa facilitar a integração de métodos formais na indústria
através da diminuição do esforço para realizar a verificação formal de PLCs.

Palavras-chave: PLC, IEC 61131-3, Método B, métodos formais, sistemas críticos.

Formal verification of PLC programs using the B
Method

Author: Haniel Moreira Barbosa
Advisor: Prof. Dr. David Déharbe

Abstract

PLCs (acronym for Programmable Logic Controllers) perform control operations, re-
ceiving information from the environment, processing it and modifying this same environ-
ment according to the results produced. They are commonly used in industry in several
applications, from mass transport to petroleum industry. As the complexity of these ap-
plications increase, and as various are safety critical, a necessity for ensuring that they
are reliable arouses. Testing and simulation are the de-facto methods used in the indus-
try to do so, but they can leave flaws undiscovered. Formal methods can provide more
confidence in an application’s safety, once they permit their mathematical verification.
We make use of the B Method, which has been successfully applied in the formal verifi-
cation of industrial systems, is supported by several tools and can handle decomposition,
refinement, and verification of correctness according to the specification. The method we
developed and present in this work automatically generates B models from PLC programs
and verify them in terms of safety constraints, manually derived from the system requi-
rements. The scope of our method is the PLC programming languages presented in the
IEC 61131-3 standard, although we are also able to verify programs not fully compliant
with the standard. Our approach aims to ease the integration of formal methods in the
industry through the abbreviation of the e�ort to perform formal verification in PLCs.

Keywords: PLC, IEC 61131-3, b method, formal methods, safety critical systems

20

1 Introduction

Programmable Logic Controllers (from now on, PLCs) perform control operations in
a system, running in execution cycles: they receive information from the environment as
inputs, process them and a�ect this environment with the resulting outputs, controlling
some aspects of it. This work deals with discrete-time PLCs, which receive and process
signals with fixed values, so they are always defined given a particular time instant, in
opposite to a continuous-time signal, a function defined at every time in an interval.

In many fields (Lahiri and Bryant, 2003), such as mass transport and petroleum in-
dustry, it is very common to use PLCs to handle control applications. Those are mos-
tly programmed according to IEC 61131-3 (IEC, 2003), an international standard that
specifies the five standard PLC programming languages, namely: LD (Ladder Diagram)
and FBD (Function Block Diagram) as graphical languages; IL (Instruction List) and ST
(Structured Text) as textual languages; and SFC (Sequential Function Chart), that shows
the structure and internal organization of a PLC. It is not rare that a variation of such
languages is employed too.

As the complexity of the PLC applications increases, and as various are critical, it
is important to ensure their safety (KRON, 2003). Since testing and simulation, the de-
facto methods in many industries to perform verification, can leave flaws undiscovered,
which may be intolerable given the level of risk acceptance of a system, another strategy
is necessary. A mean to fulfill this requirement is with formal methods, mathematical
approaches to software and system development which support the rigorous specification,
design and verification of computer systems (FME, 2012). However, they are di�cult to
integrate with the industrial process (AMEY, 2004), since most control engineers are not
familiarized with formal verification (PARNAS, 2010).

In this work we use the B Method (ABRIAL, 1996) as the formal method to charac-
terize our proposal, since it is successfully applied in safety-critical applications, e.g. in
the railway industry (LECOMTE et al., 2007), besides having a strong support of tools

21

such as development environment, theorem provers, model checkers and animators, etc.
Another positive point is the B language itself, which is very expressive, including first
order logic, integers and set theory, and on top of that it can handle decomposition, refine-
ment, verification of correctness according to the specification and generation of certified
code (LECOMTE et al., 2007). Nonetheless, the di�erence in expressivity between B and
the PLC languages, like the lack of float numbers in the former, lead to restrictions on
how much of the PLC programs we can cover.

Our approach consists of developing a tool that receives a PLC program based on
the IEC 61131-3 standard and automatically builds an intermediary object from it. From
this object a formal model in the B notation is generated, also automatically. The cor-
rectness of this translation, between the PLC program and the B model representing it,
is not mathematically verified, its confidence relying on expertise and simulations over
the model’s behaviour. Safety constraints are then manually inserted into the B model
and verified using theorem proving, which allows us to cover the full behavior set of the
problem in unlimited depth. We can verify structural properties, such as deadlock freedom,
performing model checking in the model, although some adaptations may be necessary
in the model, like restricting its state space, due to the di�erent nature of the verifica-
tion techniques. We use the ProB (LEUSCHEL and BUTLER, 2003) Model Checker to
analyze the model, which also supports the definition and verification of new properties
using Linear Temporal Logic (BLACKBURN et al., 2001), such as liveness; animation of
the model is available as well, providing visual validation. Our approach is thus able to
verify that the PLC is presenting the expected behaviour in its execution cycle.

Automation is a key aspect of our work since it is essential for the success of a
verification technique to be used by engineers, in our case PLC developers, that it insures
viability, allowing the formalism to be mostly hidden from them. Although the safety
constraints have to be manually inserted in the model, given that they were already
available one would have only to run the tool implementing the method over the PLC
programs to perform formal verification on them, allowing error management. In order to
keep the formalism hidden from them also during the error management phase the results
of the verification should be presented in a readable way for the engineers, but that is still
between the limitations of our approach.

In order to include all the IEC 61131-1 languages, we based our intermediary structure
(from now on called “PLC Object”) in the PLCopen (PLCOPEN, 2009) standard. The
standard provides an interface representing all such languages in an XML-based format,

22

working also as documentation and sometimes being required by Stakeholders. This PLC
Object stands between the PLC programs and the formal models to be generated, hence
reducing the semantic gap between PLCs and B, and defining a unique representation for
di�erent PLC languages (FARINES et al., 2011). The process also involves the develop-
ment of a customizable parser, so we can treat PLC programs that do not strictly follow
the IEC standard; as numerous legacy systems deviate from the standard, our approach
would thus be able to handle them.

Being able to deal with legacy systems is a very useful feature once there are nu-
merous existing PLC programs not amenable to be formally treated except with formal
methods (FREY and LITZ, 2000). Reverse engineering can be performed in these pro-
grams so a PLCopen documentation can be generated, a desirable feature as well, as an
equivalent program, easier to understand and maintain, is acquired.

We also present a case study in a real safety-critical railway system: the Central Door
Controller (from now on, CDC), part of the doors subsystem of a train. We show the step
by step automatic generation of the formal specification from its PLC program and, after
defining the safety constraints, perform a full formal verification in the application, at the
end exhibiting the results.

Thus, the main contributions in our work are:

1. The automatic generation of formal models from PLC programs, facilitating the
insertion of formal methods in the industrial process.

2. To have correctness, according to the specification, as a realistic and achievable goal
in PLC development, with the verification of safety constraints by theorem proving.

3. Allowing the structural and behavioral verification of the PLC programs through
model checking, LTL checking and animation over the formal model.

4. Evaluation of the proposed approach in a case study.

Despite the importance of these contributions, our approach has relevant restrictions:
as previously said, the translation from the PLC programs to the B models is not mathe-
matically verified — its validity has been attested solely by simulation and expertise;
since our method covers only the PLC programs we do not check the whole system, just
its control software — the environment in which the PLC is inserted is not considered.
These issues compose part of our future work, as well as other subjects, such as dealing
with time, treating the yet uncovered IL language and overcoming restrictions concerning

23

the covered elements of the PLC languages due to restrictions of the B language. A full
account of the limitations of our approach may be found in Chapter 4, at Section 4.4.

1.1 Goals

In a nutshell, our goals in this work are:

1. Automatically build an intermediary structure instance representing the information
in the PLC programs.

2. Reduce the semantic gap between the PLC programs and the formal models through
an intermediary structure.

3. Provide documentation to PLC programs using PLCopen.

4. Automatically generate B models from the intermediary structure.

5. Insert safety constraints, extracted from the requirements of the PLC system, in the
B models generated.

6. Perform formal verification through theorem proving and model checking over the
B models generated.

7. Evaluate the method developed to accomplish the previous goals through a case
study in a real industrial setting.

1.2 Structure of the dissertation

In Chapter 2 we discuss some related work in the area of PLC verification. Chapter 3
presents in more detail PLCs, PLCopen and the B method. In Chapter 4 we have the
description of the di�erent phases of our method, how they are performed and were imple-
mented. Chapter 5 contains the case study we performed, with the detailed application of
our method and the results. Finally, Chapter 6 concludes the dissertation, also presenting
the future work that lies ahead of us.

24

2 Related work

As stated in (FREY and LITZ, 2000), there are several reasons for the application of
formal methods in PLC programming:

• “The growing complexity of the control problems, the demand for reduced develop-
ment time1, and the possible reuse of existing software modules result in the need
for a formal approach in PLC programming.”

• “The demand for high quality solutions and especially the application of PLC
in safety-critical process need verification and validation procedures, i.e. formal
methods to prove specific static and dynamic properties of the programs, as for
example liveness, unambiguity or response times.”

In this chapter we present some works that have been trying to tackle these issues,
categorizing them, as in (FREY and LITZ, 2000), based on the method applied to do so:

• Model checking: “It is an automatic technique for verifying finite-state reactive
systems, such as sequential circuit designs and communication protocols. Specifi-
cations are expressed in temporal logic, and the reactive system is modeled as a
state-transition graph. An e�cient search procedure is used to determine whether
or not the state-transition graph satisfies the specifications” (CLARKE et al., 1999).
While testing and simulation explore only some of the possible behaviours of sys-
tems, model checking makes an exhaustive exploration of all possible behaviours,
checking the validity of a given property and providing counter examples when the
system does not satisfy it. This exhaustive search, however, leads to one of the main
disadvantages of model checking, the state-explosion problem — since the number
os states grows exponentially in the number of system’s variables, the procedure

1Relative to tasks that would take much longer if not done with formal methods, like checking the
validity of hundreds of boolean properties in a given system.

25

may be prevented from terminating timely. Then it is usually limited to some bound,
in order to avoid this issue, reducing its coverage.

• Theorem Proving: It proves that an implementation satisfies a specification by
mathematical reasoning, without the need of searching all possible states in a model,
as expected properties are formalized using some mathematical logic. A Theorem
Prover assists the user in formulating the proof. One of its greatest advantages is the
avoidance of the state-explosion problem, as this approach allows one to deal with
the full behavior set of a problem in unlimited depth. Between its disadvantages are
the considerable technical expertise and understanding of the system required, as
well as the fact that if the proof of a property fails, the prover will not tell whether
the property is indeed unprovable or whether it is lacking information to complete
the proof, relying on the user the task of verifying what is the scenario.

After presenting the approaches to formal verification we show some semi-formal ap-
proaches, tackling the verification e�ort with simulation techniques, where the validation
is made against an informal specification. Its problem is that it is never complete and it
takes considerable time and e�orts (FREY and LITZ, 2000).

These works deal with PLC programs according to the IEC 61131-3 standard, but
most are focused only in a subset of the standard five languages (SFC, LD, FBD, ST, IL):
to the best of our knowledge, only one related work, on formal verification, considers the
whole standard, and it also uses PLCopen, like our proposed approach.

2.1 Approaches using theorem proving

(SÜFLOW and DRECHSLER, 2008)

The approach presented in (SÜFLOW and DRECHSLER, 2008) proposes the auto-
matic translation of an IL program into a SystemC model, so a high level representation
of the former is obtained, which is then compared, through Equivalence Checking using
SAT solvers, with a reference model specification, showing that they are functionally
equivalent.

SystemC is a C++ class library that provides cycle accurate simulation and di�erent
levels of abstraction in the system’s description — from software down to the hardwire
description level; decomposition can also be handled, since each module can be partitioned

26

into several modules. Through a series of rules a transformation takes place from IL
programs to a semantic equivalent SystemC model, which can then be formally verified.

SAT solvers evaluate a given boolean formula and determine if it is satisfiable2. In
this approach it is used to perform equivalence checking between the SystemC resulting
translation of the IL program and a given reference specification.

The variables, basic statements and control flow statements of IL are covered by this
approach, as well as call statements. It is a wide-ranging one in terms of IL. Nonetheless,
as properties checking is not performed, only the validation of the translation process with
a reference model — which has to be manually constructed —, the contribution of the
work has still to be increased.

(CAVALCANTI et al., 2011)

A strategy to translate Simulink diagrams into Circus and to prove that
a parallel ADA implementation refines this Circus specification is presented
in (CAVALCANTI et al., 2011). Simulink is a block-based language for control appli-
cations, similar to FBD (Function Block Diagram); although it is not used in PLCs their
principals are much alike. Circus is a notation that combines Z, CSP, and a refinement
calculus, thus capable of formal modeling and analyzing the data structures (Z) and com-
munication and concurrency features (CSP) of a system.

The approach consists of validating and extending existing industrial tools that trans-
late discrete-time Simulink diagrams into Ada implementations. This is done by proving
the correctness of the translation by verifying that a Circus model for the Simulink di-
agram is refined by another Circus model for the generated Ada implementation. The
approach makes use of the ClawZ tool, that generates bits of Z and CSP models from
Simulink diagrams and, by a series of refinements, obtain a Circus model capable of being
verified by the theorem prover ProofPower, proving whether this model refines the one
for its respective Simulink diagram.

Time-related issues are not covered in this work, but parallelism is easily handled by
CSP, as well as other features such as the dependency between the order in which the
inputs are received by a block and its resulting outputs. Simulink has a library of standard
blocks to whom a corresponding library of translated specifications is available in ClawZ.

2“f is valid” — always true, a theorem — if and only if “not f is unsatisfiable” if and only if not “f is
satisfiable”.

27

A setback in the work is the lack of automation, but the authors state they are going
to carry this out as future work — the steps of the approach have already been proven
correct and are automatable. E�orts to produce a toolset are being made, so a powerful
resource in the analysis of control diagrams and their implementations can be obtained,
aiming error management as well.

(VÖLKER and KRÄMER, 1999)

In (VÖLKER and KRÄMER, 1999) the proposed approach deals with PLC function
blocks implemented using FBD, SFC or ST. It aims to prove the correctness of the compo-
nents independently, so the applications who use them may have their verification process
considerably simplified, since only the component’s integration has to be checked.

Higher order logic (HOL) is used for verification purposes. It provides abstraction and
quantification, which makes it a very expressive mechanism, suited for the description of
complex theories. HOL serves as a logical glue that connects di�erent programming and
specification formalisms and allows their integration and analysis within the framework.
The Isabelle tool3 is used for theorem proving automation.

The process described in the paper embodies a subset of the ST language in HOL, thus
representing its syntax and semantics. Subsets of SFC and FBD are interpreted in terms
of ST and therefore also taken into account. Requirements derived from the controller
specification are inserted into the model in Linear Temporal Logic.

Results claim that small examples are easily handled by the verification toolchain,
however larger specifications need alterations in the translation tactics for the generation
of the HOL theories, so the verification can be eased. How much of the SFC, FBD and
ST languages are present in the subsets covered by the approach is not specified, neither
how much of the process of the HOL theories derivation is automatic.

2.2 Approaches using model checking

(RAUSCH and KROGH, 1998)

The approach presented in (RAUSCH and KROGH, 1998) aims to perform formal
3http://www.cl.cam.ac.uk/research/hvg/isabelle/

28

verification over PLC programs by converting them to SMV, state transition systems,
once the latter allows the engineer to verify the behavior of the control program over all
possible operating conditions.

SMV is a language used to describe Mealy automata, synchronous or asynchronous
networks and deterministic or non-deterministic process. As it provides modular descrip-
tions it is suitable to retain the structure of the original control program, thus keeping
traceability between the formal verification and the original PLC program. The verifica-
tion of the SMV modules is made through model checking over its Computational Tree
Logic (CTL) (BLACKBURN et al., 2001) specification, evaluating if this CTL specifica-
tion is true and providing a counter-example otherwise.

Each state transition in the SMV model corresponds to one scan of the PLC program,
so the transient behavior of the PLC during its execution is represented in the model.
The language in the scope of this approach was only LD. Although the process is e�cient
to perform formal verification of PLC programs it is not automatic, despiste the fact that
integration with other tools was also intended.

(SOLIMAN and FREY, 2009)

In (SOLIMAN and FREY, 2009) a method is proposed to verify applications using
Safety Function Blocks with timed-automata through model-checking and simulation.

Safety Function Blocks (SFBs) are a special kind of function block whose presentation
is divided in three parts: firstly, a graphical description of its internal state and behavior;
then a list of its properties in natural language, that, with the other part being composed
of timing diagrams describing its temporal behavior, for some specific scenarios, may be
used to verify its safety.

Timed automata (TA) model timed systems as state-transition systems, with explicit
variables representing time and being incremented according to the transitions performed,
as in a discrete-event simulation. A TA in the Uppall tool language is generated from the
SFB graphical description. The temporal behavior is validated through simulation over
the model and comparison with the given timing diagrams. The textual properties are
formalized in LTL and verified through model checking in the TA built. The process of
building the TAs is manual, made through the graphical interface of the Uppall tool, based
on the specification of SFBs. The formalization of the LTL properties is also manually
executed.

29

All the twenty SFBs defined by PLCopen were successfully formalized following this
approach. The challenge faced by the method was with networks, several SFBs inter-
connected, assuring that the overall system would be compliant to the safety conditions
as well as the independent components. The approach presented is useful, however the
automation is still in their future works, and the scope is limited only to the SFBs.

(FARINES et al., 2011)

A model-driven engineering approach is used in (FARINES et al., 2011) to generate
models in a FIACRE (Intermediate Format for the Embedded Distributed Component
Architectures) language from LD programs. The work makes use of an intermediary model
to reduce the semantic gap between the LD programs and the Timed Transition System
(TTS) models that are verified through the toolkit TINA (TImed petri Net Analyzer); it
is inserted in the context of the TOPCASED project4, which aims the development of an
environment for embedded systems, based on Model-Driven Engineering (MDE).

The accuracy of the model transformation in the approach is grounded on the use of
metamodel hierarchy in the representation of Domain Specific Modeling Languages. The
FIACRE intermediary model is generated from the LD programs in the XML format of
PLCopen. Then, a Frac compiler, of the TOPCASED project, is used to generate the
TTS model for verification. LTL formulas, written by the PLC program designer, will be
used to represent the system properties to be validated through model checking.

The strength of the approach is in the use of the FIACRE intermediary language to
model the PLC, as a PLC model is automatically generated from the LD programs and
FIACRE eases the inclusion of verification tools such as TTS. Extension to the other
languages of IEC 61131-3 standard is intended for this project.

2.3 Approaches using simulation

(PARK et al., 2008)

In (PARK et al., 2008) an approach to perform visual verification of PLC programs
through the modeling of a 3D plant where they run is performed. Not only the control

4http://www.topcased.org/index.php?idd_projet_pere=77

30

software is analyzed, but the whole system where it is inserted, with the environment
being taken into account, a very interest feature that helps the validation of PLCs.

A PLC programming environment is presented along with a methodology for the
construction of a plant model based on the DEVS (Discrete Event Systems Specification)
formalism. This plant model is used for visual validation of PLC programs through si-
mulation, taking into account also how the program interacts with its environment and
if the actuation performed in it is as expected. The use of the DEVS formalism in the
modeling of an environment adaptable to di�erent configurations allows the generation
of state transition systems representing the di�erent tasks executable in the plant, which
are also considered when simulating the PLC programs.

(WANG et al., 2012)

The application of a technique to validation of PLCs through simulation is described
in (WANG et al., 2012) through a case study in a PLC-controlled system. The Behavior-
Interaction-Priority (BIP) component framework is used to model a gate control system in
a real industry application, also taking into account real-time constraints and the system
with whom the control software interacts, making the validation through simulation.

The requirements of the system where modeled as monitors that during system com-
ponent’s simulation checked if any transition to a not allowed behaviour occurred. Each
property was checked independently through random and controlled set behaviours for
the system model, eventually finding erros that helped the correction of the original PLC
application.

Major setback, as well as in the previous approach, is the dependency of confidence
in the modeling and simulation processes, as only visual validation is performed in the
system. Nonetheless the decomposition support is of great help for mastering complexity;
the ability to deal with time constraints and the approach’s overall expressivity also
contribute to make it a powerful resource.

2.4 Considerations

We make use of several mechanisms also used in these works, such as an intermediary
structure to reduce the semantic gap, like in (FARINES et al., 2011), although ours is en-
tirely based on the PLCopen standard and implemented in C++; the decomposition sup-

31

port through B mechanisms, helping us to master complexity, as in (WANG et al., 2012);
the construction of a verification environment based on theorem proving but that supports
other techniques, like model checking, as intended by (VÖLKER and KRÄMER, 1999)
and its HOL use; visual validation through animation provides simular results as the si-
mulation approaches in (WANG et al., 2012) and (PARK et al., 2008), although without
the expressivity claimed by them.

Our approach begins intended to tackle the verification of PLC programs in
all the languages of the standard, through PLCopen, something intended only
by (FARINES et al., 2011). We also automatically generate the formal models to be veri-
fied, something only a few of the presented approaches make, to the best of our knowledge.

Number Related work
[1] Our work
[2] (SÜFLOW and DRECHSLER, 2008)
[3] (VÖLKER and KRÄMER, 1999)
[4] (RAUSCH and KROGH, 1998)
[5] (SOLIMAN and FREY, 2009)
[6] (FARINES et al., 2011)
[7] (CAVALCANTI et al., 2011)
[8] (WANG et al., 2012)
[9] (PARK et al., 2008)

Table 1: List of related works

In Table 1 a list with the covered related works is presented, with Venn Diagrams
below, in Figures 1 and 2, relating the verification techniques and the level of automation
of them with our work, whose reach is depicted in light gray.

[2, 3] [7]

[1]

Theorem Proving

[8, 9]

Simulation

[4, 6]

[5]

Model Checking

Figure 1: Verification techniques

[4,5,8,9]

[1, 6]

Manual

Automatic

[3, 7]

Semi-automatic

Figure 2: Approach’s automation

We chose to focus on these criteria because they show that regardless that three

32

di�erent verification techniques have been used by the distinct approaches, automation,
a key attribute to the adoption of there works by industry, is mostly neglected. The
study of these works, nonetheless, has helped us in the overall design for our approach,
identifying the good mechanisms to use and which obstacles to consider first.

33

3 Context and techniques

In this chapter we present the basic concepts of Programmable Logic Controllers
(PLCs), of the PLCopen standard and of the B Method, the basic elements of our work.

For the PLCs we introduce how they are organized and programmed, according to the
international standards. We present the PLCopen standard in detail, with its XML based
format. For the B method we make a whole presentation of its notation and features.

3.1 Programmable Logic Controllers

Programmable Logic Controllers are digitally operating electronic systems designed
for use in an industrial environment. They use a programmable memory for the internal
storage of user-oriented instructions in order to implement specific functions such as logic,
sequencing, timing, counting and arithmetic, to control, through digital or analogue inputs
and outputs, various types of machines or processes. Both the PLC and its associated
peripherals are designed so that they can be easily integrated into an industrial control
system and easily used in all their intended functions (IEC, 2003).

PLCs have become very common in control applications throughout the industry,
from the mass transport field to the beverage factories. Being applied in many di�erent
fields and situations, however, led to the existence of several di�erences in the way they
were constructed, as in I/O addressing, memory organization and instruction sets, for ins-
tance. Aiming a standardization, the IEC (International Electrotechnical Commission), a
worldwide organization for standardization comprising all national electrotechnical com-
mittees, defined the 61131 standard, which establishes the definitions and identifies the
main characteristics relevant to the selection and application of programmable logic con-
trollers and their associated peripherals (IEC, 2003).

In Section 3.1.1 we introduce the 61131 standard and which aspects of it will be
pertinent to our work. Then, in Section 3.1.2, we show the languages defined in the

34

standard for PLC programming.

3.1.1 IEC 61131

The IEC 61131 embodies a series of standards over PLCs, from their general infor-
mation and equipment requirements to their programming and use, as seen below:

1. General information

2. Equipment requirements and tests

3. Programming languages

4. User guidelines

5. Communications

6. Reserved

7. Fuzzy-control programming

8. Guidelines for the application and implementation of programming languages for
programmable controllers

In this section we present in detail the standards IEC 61131-1 and IEC 61131-
3 (IEC, 2003), which present the general information and the programming languages
for PLCs, respectively. The general structure of a PLC, as an embedded system, is depic-
ted in Figure 3.

The main part is the one responsible for signal processing, the CPU of the PLC. It
consists of the application program storage, the data storage, the operating system, and
the execution of the application program functions. The CPU function processes signals
obtained from sensors as well as internal data storage and generates signals to actuators
as well as internal data storage in accordance with the application program.

The operating system is responsible for the management of internal PLC interde-
pendent functions, like configuration control, diagnostics and memory management. The
application program storage supplies memory locations for storing the instructions of the
PLC program, as well as initial values for the program data. The application data sto-
rage provides memory locations to store the I/O image table, where information about

35

Figure 3: A PLC system.

inputs and outputs is temporarily stored and updated until the end of execution of the
application program, as well as data required by it.

A PLC program is generally executed repeatedly as long as the controlled system is
running. An application program may consist of a number of tasks, while the execution
of each task is accomplished sequentially, one programmable function at a time until the
end of the task. The initiation of a task, periodically or upon the detection of an event
(interrupt condition), is under the control of the operating system.

The interface with sensors and actuators provides information and data from the ma-
chines/processes that will be transmitted to the I/O system of the PLC, as decisions and
results determined by its processing function are transmitted to these very machines/pro-
cesses.

36

The communication function provides data exchange with other systems, such as
other PLCs, computers, etc. The human-machine interface (HMI) makes the interaction
between the operator, the signal processing function and the machine/process. The pro-
gramming, debugging, testing and documentation functions are responsible for supplying
auxiliary features to the PLC; the programming functionality is specially important to us,
since it is the one used to build the key element of the CPU: the application program, a
logical assembly of all the programming language elements and constructs necessary for
the intended signal processing required by a PLC. The programming languages defined
in the IEC 61131-3 standard are presented in the next section.

3.1.2 PLC programming

The Part 3 of the IEC 61131 standard, IEC 61131-3, defines five languages for PLC
programming, which are classified as shown in Figure 4. ST and IL are textual languages,
while FBD and LD are graphical languages. SFC, besides its own elements, can be used in
conjunction with any of the textual and graphical languages. They are described in detail
below, with the languages’ elements summarized, examples presented and applications
hinted.

Figure 4: The five languages of the IEC 61131-3 standard for PLC programming.

3.1.2.1 Program Organization Units

The PLC programs are composed of POUs — Program Organization Units. These
elements are implemented using the languages of the standard and are divided in three
categories:

• The POU functions, when executed, produce exactly one value, typed according to
the possible data types in the standard, the function result, and arbitrarily many
additional outputs. These POUs are stateless: they contain no state information,

37

i.e., invocation of a function with the same arguments shall always produce the
same result.

• The POU function blocks produce one or more values as result. The state of a
function block persists from one execution to the next — they are stateful — ,
therefore invocation with the same arguments may produce di�erent results.

• The POU programs are defined as a “logical assembly of all the programming
language elements and constructs necessary for the intended signal processing re-
quired for the control of a machine or process by a programmable controller sys-
tem” (IEC, 2003). Their declaration and usage is equivalent to the function blocks.
It also may use the previous two POU types as auxiliary elements.

3.1.2.2 Variables and Data Types

Each POU has an I/O table associated, in which the variables declared for its use are
summarized. They can be of the following categories:

• Local: Internal variables of the POU.

• Inputs: Received from the environment; they cannot be modified within the POU.

• Outputs: Supplied by the POU to the environment.

• Inouts: Both received and supplied; they can be modified within the POU.

• External: Makes reference to a global variable of the PLC, which can be modified
within the POU.

• Temporary: Temporary storage for variables in POU function blocks and programs.

Keyword Data type

Bit string

BOOL Boolean
BYTE Bit string of length 8
WORD Bit string of length 16

DWORD Bit string of length 32
LWORD Bit string of length 64

Integer

SINT Short Integer
INT Integer

DINT Double Integer
LINT Long Integer

38

Keyword Data Type

Unsigned Integer

USINT Unsigned Short Integer
UINT Unsigned Integer

UDINT Unsigned Double Integer
ULINT Unsigned Long Integer

Floating point
REAL Real numbers

LREAL Long reals

Strings
STRING Variable-length single-byte character string

WSTRING Variable-length double-byte character string
Table 2: Elementary types.

Those variables are typed according to the PLC Data Types. They are either elemen-
tary types or derived types. The elementary types are summarized in Table 2; the derived
types are:

• Array: it has base type (any data type) and a set of dimensions (each a subrange).

• Enumeration: a list of enumerated identifiers; the data element with this type can
have only one of them as value at a time.

• Derived: References types that can be defined. The POU functions and function
blocks are included in this category.

• Struct: the data elements of this type shall contain sub-elements of specified types
which can be accessed by their specified names.

• Subrange: the value of any data element of this type can only take on values
between and including the specified lower and upper limits. It is either signed or
unsigned.

3.1.2.3 IL

Instruction List is a textual programming language that uses instructions for represen-
ting an application program for a PLC. It is a low level language, with syntax resembling
assembly, being recommended for small applications or code optimization. The language
basic elements, instructions, are composed of an operator with optional modifiers and, if
necessary, operands separated by commas. A summary of the IL commands is presented
in appendix A.

39

1 LD Y1
2 SUB Y2 (* Substract Y2 from Y1 *)
3 ST Temp (* Store Y1-Y2 in Temp *)
4 MUL Temp (* Multiply by Temp to square *)
5 ADD(X1 (* Defer ADD *)
6 SUB X2 (* Substract X1 from X2 *)
7 ST Temp (* Store X1-X2 in Temp *)
8 MUL Temp (* Multiply by Temp to square *)
9)

10 SQRT (* Call Square root fun *)
11 ST ILTest (* Setup function result *)
12 GT TMax (* Greater than TMax ? *)
13 JMPC ERR (* Yes, Jump to Error *)
14 S ERROR (* Set ERROR *)
15 RET (* Normal return *)
16 ERR: RET (* Error return, ENO not set *)

Code 1: Example of a IL program.

In Code 1 we have an example of a program in the IL language, implementing a POU
function, to perform a simple mathematic operation: verify if the distance between two
given points X and Y — with the coordinates (X1, X2) and (Y1, Y2) — is greater than
another given value — TMax. If it is the code will jump to its end with the ERROR
variable not set, representing that an error occurred in the execution. Otherwise it will
set to 1 the ERROR output, then executing the normal return. In this case ERROR

works as a release output ENO (enable output) signal, that needs to have the signal
state 1 to represent that the function is carried out as expected. The function result is
the calculated distance, of the REAL type.

The I/O table of the IL program can be seen in Table 3, summarizing its inputs,
outputs and local variables with their respective types and initial values (if any).

Name Type Class Initial Value
X1 REAL Input
X2 REAL Input
Y1 REAL Input
Y2 REAL Input
TMax REAL Input
Temp REAL Local
ERROR BOOL Output

Table 3: I/O Table of the IL program.

40

3.1.2.4 ST

Structured text is a textual programming language that uses assignment, subpro-
gramme control, selection and iteration statements to represent an application program
for a PLC. It is a high level language, more flexible and expressive than IL, with a syntax
similar to Pascal.

A summary of the language operators and statements can be viewed in Tables 17
and 18 in Appendix A, respectively. The operators are, from top to bottom, in order of
precedence, from higher to lowest, with the elements in the same row presenting the same
precedence. The definition of the statements is recursive: each construction may present
the others or itself inside itself if it makes use of general statements.

Name Type Class Initial Value
base INT Input
exponent INT Input
auxBase INT Local
i INT Local
j INT Local
mult INT Local
exponentiation INT Output
ERROR BOOL Output FALSE

Table 4: I/O Table of the ST program.

An example of a complete ST program, implementing a POU function block, can be
viewed in Code 2, and its correspondent I/O table can be seen in Table 4. The program
receives a base and an exponent value, returning the result of the respective exponentiation
calculated through sum operations. The execution is easier to follow than the IL program
since ST is, as it name hints, a structured programming language.

3.1.2.5 Graphical languages

In the IEC 61131-3 standard there are elements that apply to both the graphical
languages, LD and FBD, as well as to the graphic parts of SFC. These common elements
are depicted in Table 5.

Lines are used to draw the graphical elements and to represent the connections
between them, while a block is a graphical object that represents a call statement, and

41

1 IF exponent > 0 THEN (* Tests if the exponent if positive *)
2 auxBase := base; (* Sets the value to be multiplicated *)
3 FOR i := 2 TO exponent DO: (* Iterates from 2 to exponent’s value *)
4 mult := 0; (* Sets the accumulator to 0 *)
5 FOR j := 1 TO base DO: (* Sums the current value ’base’ times *)
6 mult := mult + auxBase;(* Accumulates the multiplication’s value*)
7 END_FOR; (* Ends the current multiplication *)
8 auxBase := mult; (* Updates the value to be multiplicated *)
9 END_FOR; (* Ends the exponentiation *)

10 exponentiation := auxBase; (* Sets the output *)
11 ELSIF exponent = 0 THEN (* Tests whether the exponent is zero *)
12 exponentiation := 1; (* Expontiation always result in 1 *)
13 ELSE (* Exponent is negative *)
14 ERROR := TRUE; (* Sets output controlling ERROR *)
15 END_IF; (* End of execution *)

Code 2: Example of a ST program.

the connectors are graphical objects which represent a variable, literal or the side of an
expression (their counterpart are the continuations).

The set of interconnected graphic elements will form a network. Graphical languages
are used to represent the execution flow through one or more networks. These flows are
conceptually di�erent, depending on the language implementing them:

• Power flow: analogous to the flow of electric power in an electromechanical system.
This is the default flow in a Ladder Diagram (LD), going from left to right.

• Signal flow: analogous to the flow of signals between elements of a signal processing
system. This is the default flow in the Function Block Diagrams (FBD), that will
be from the output (right-hand) side of a function or function block to the input
(left-hand) side of the function or function block so connected.

• Activity flow: analogous to the flow of control between elements of an organization,
or between the steps of an electromechanical sequencer. This is the default flow in
a Sequential Function Chart (SFC), going from the bottom of a step through the
appropriate transition to the top of the corresponding sucessor step(s).

Lines and connections Block Connector

Table 5: Common elements to IEC 61131 graphical languages

42

Besides the restrictions of flow direction, the evaluation of a network must not start
before the states of the inputs have been read and shall not be completed until the state
of the outputs have been defined.

The graphical languages and SFC are shown in detail in the next sections.

3.1.2.6 FBD

FBD is a graphical programming language that uses function block diagrams for repre-
senting an application program for a PLC. It is based on circuit diagrams, a conventional
graphical representation of electric circuits, and the language basic elements are the blocks.

The blocks are a graphical representation of a call statement, encapsulating the al-
gorithm and putting in evidence the information flow through the inputs and outputs:
the block is activated as its input signals are received in the left-side, processes them and
emits the results as outputs in the right-side.

A block may be defined from a set of predefined function blocks — such as timers,
counters, etc. — or from POUs, functions or function blocks, defined in the PLC, using
any of the other standard languages. For instance, we can see the blocks corresponding
to the IL function and ST function block, presented in the previous sections, in Figures 5
and 6.

Figure 5: Block corresponding to the IL
function seen in Section 3.1.2.3.

Figure 6: Block corresponding to the ST
function seen in Section 3.1.2.4.

Blocks may also be instantiated from the original definition of POU function blocks,
since they are stateful objects. The blocks instantiated from the same type will have
di�erent names and independent states, being, indeed, variables of the program they are
inserted into. A whole POU defined in FBD may as well be seen as a function block to
be instantiated as a block in other programs.

Another feature of blocks is the parametrization of the number of inputs and outputs
that some types may present. For example, a block of a function ADD could have from
two up to an arbitrary, but allowable, number of inputs and as output the result of the
summation of all the inputs.

43

Besides the elements common to graphical languages, FBD introduces some new ele-
ments of its own. They can be seen in Table 6. An example of a complete FBD program
is depicted in Figure 7.

Figure 7: FBD program example

In the example, a FBD program determines the value of the output variable OUT
from the output produced by a Set_Reset Flip Flop (SR) block, whose inputs are the
evaluation results of blocks AND and OR, who receives in turn the FBD program inputs
IN1, IN2 and IN3 to be evaluated. A connector/continuation is used for the IN3 input,
Input3.

3.1.2.7 LD

LD is a graphical programming language using ladder diagrams for representing an
application program for a PLC. It is based on relay logic, with horizontal rungs between
vertical power rails executing sequentially.

The rungs represent the sentences of the language, with the inputs in the left and the
outputs in the right; the variables are seen as contacts to be energized, evaluation going
left to right, top to bottom. Thus a ladder diagram emulates the energy flow between the
power rails through the relays. The graphical elements introduced by the language can be
seen in Table 7.

An example of a LD program is shown in Figure 8. The diagram is equivalent to the
sentence LDTest := (¬IN1 ‚ (IN3 · ¬IN4)) · IN2. The execution goes as follows: firstly,
the contact correspondent to IN1 is closed if this input is not energized; then the state

44

FBD element Description
Variable, expression or literal

used as producer
Variable, expression or literal

used as consumer
Variable, expression or literal

used as producer and consumer
A graphical object representing

a jump statement
A graphical object representing

a jump label
A graphical object representing

a return label

Table 6: Graphical elements of the FBD language

LD element Description

Left power rail

Right power rail

A contact, closed whenever its
corresponding coil or an input
which controls it is energized.

A “not” contact, open whenever its
corresponding coil or an input
which controls it is energized.

A coil, energized whenever its rung
is closed. Represents outputs or

local variables.
A “not” coil, energized whenever

its rung is open.

Table 7: Graphical elements of the LD language

45

of the contact corresponding to IN3 is determined, next analyzing the contact of IN4.
If IN1’s contact is closed or the contacts of IN3 and ¬IN4 are closed, the rung will be
closed if IN2’s contact is also closed. LDTest’s coil will be energized only if the rung is
closed.

Figure 8: Example of a program in the LD language.

LD also has support for the elements of FBD, so a LD program can make use of
producers and consumers, as well as blocks. This way the complexity and expressivity of
the language can be increased. In Figure 9 we have an example of a more complex ladder
diagram, where whether the rungs are closed or not will also depend on the evaluation
realized in a FBD block, with inputs (var3 and var4) received independently of the rung’s
execution flow.

Figure 9: LD diagram making use of FBD elements.

3.1.2.8 SFC

Sequential function chart is a graphical and textual notation for the representation of
the structure of a POU program or function block for a PLC. It is based on three main
elements: steps, transitions and actions. Execution goes from step to step according to the
validation of the transition between them; at each step, actions may be performed, which
are implemented in the other languages of the standard. In Table 8 the SFC elements are
summarized.

46

SFC element Description
A single step in a SFC sequence, with actions associated.

The initial step is marked by a double border.
An action block is a set of actions associated to a step,

whose implementations may be in IL, ST, FBD or LD.
A macro step is a step that embodies another SFC

program.
A transition between SFC elements, with a boolean

condition associated.
A jump to a step, macro step or simultaneous divergence.

Acts like a step, as its predecessor must be a transition.
A selection divergence is used to select one of several
partial sequences depending on as many conditions, each

contained in a transition.
Selection convergences of sequences continue several

partial sequences in a common one. Each of the alternate
sequences must have a transition to the first step of the

common one.
A simultaneous divergence is used to activate several

partial sequences after transitions.
Simultaenous convergences combine over a single

transition sequences from several steps.

Table 8: Graphical elements of the SFC language

A sequence of steps can be seen in Figure 10. We have S1 as the initial step, and
thenceforth the transitions and steps must be organized in such a way that any two steps
are connected by one single transition, as well as two transitions must always be separated
by one step. As shown in Table 8 there are special elements to aggregate more than one
transition, either to (convergences) or from (divergences) a step, which is either of a
selection or simultaneous nature, with the former selecting one of several execution paths
and the latter activating or combining multiple execution paths. Thus, considering these
convergence and divergence elements, one has that the valid predecessor elements of a step
are the ones presented in Figure 11, while the valid predecessor elements of a transition
can be seen in Figure 12.

When the activity flow of the SFC program reaches a step, this one is set as active,
being reset as not active when its successor transition is discharged. Its time of activation is
also controlled. These variables, controlling activation and time of activation, are implicit
to each step, and can only be read.

47

Figure 10: A sequence of SFC steps connected by transitions.

Figure 11: The valid circumstances in which a step can be reached in a SFC program.

Figure 12: The valid circumstances in which a transition can be reached in a SFC program.

Transitions

Associated to each transition there is a logic condition, which will control the deactiva-
tion of its predecessor steps and the activation of the successors. The transition is cleared
when its condition is equal to TRUE, so this condition has to be a boolean expression
or a function with a boolean result — statements in IL or ST, or networks in FBD or
LD, as long as their evaluation is equal to a boolean expression.

48

Flow control

Using the convergence or divergence elements it is possible for the SFC program to
alter how the activity flow runs over the sequences of steps. With the selection structures
the program may choose between several partial sequences from a step, depending on
which of the transitions will be validated — divergence; or represent the alternate sequen-
ces that may lead to a step — convergence. With the simultaneous structures, the activity
flow may be split in several partial sequences simultaneously or they can combine to a
single transition the flow coming from numerous steps — divergence and convergence,
respectively.

Figure 13: A SFC program using selection convergence and selection divergence.

We can see the use of the selection structures in Figure 13. From Step1 the execution
will go to one, and only one, of the possible three sequences depending on which of the
transitions’s conditions is valid. The default sequence of evaluation is from left to right,
but it is possible to associate a priority to a transition, in which case the evaluation
order will be from the highest to the lowest priority, being the lowest numbered branch
the one with higher precedence; the first transition to be valid will guide the activity flow
to the step it is connected to. The selection convergence will simply mark that Step7 can
be reached after the validation of T3, T5 or T8.

49

Figure 14: A SFC program using simultaneous convergence and simultaneous divergence.

In Figure 14, however, where we have a similar network but with the simultaneous
structures, from Step1, after T1 is validated, the three partial sequences will be executed,
simultaneously. Then, only when all the predecessors steps of the simultaneous convergence
are active, the activity flow will converge to the evaluation of transition T4.

Figure 15: A SFC program wrongly using the simultaneous convergence element.

This necessity of all the predecessors steps’ activation so the execution of the POU
may continue can lead to errors. Figure 15 presents a case where the execution can never
go further than the simultaneous convergence, since always only Step2 or only Step3 will
be active, never both, due to the selection divergence after Step1. Therefore a deadlock
situation is present in the SFC program.

50

Actions

They can contain either a boolean variable, statements in IL or ST, or networks
in FBD or LD, like the transitions’ conditions. Associated with each action there is a
qualifier : an attribute that may alter the way in which the action is performed — if
repeatedly while the respective step is active, if only once, if during some time, and so
on; its default value is N, where no modification occurs.

Example

Name Type Class Initial Value
n1 INT Input
n2 INT Input
in1 BOOL Input
answers ANSWER Local [YES, NO]
higher RESULT Output UNDETERMINED

Table 9: I/O Table of the SFC program.

An example in which actions are associated to steps can be seen in Figure 16; its I/O
table is presented in Table 9, with these variables being used in the SFC transitions and
actions. ANSWER and RESULT are new types declared for use in the SFC program, the
former derived from the Array type and the latter from the Enumeration type.

Figure 16: SFC program presenting
the discussed elements

1 TRANSITION FROM Start TO Step1
2 := in1;
3 END_TRANSITION
4

5 ACTION Action1 :
6 IF isHigher(n1, n2) THEN
7 higher := answers[1);
8 ELSE
9 higher := answers[2);

10 END_IF;
11 END_ACTION

Code 3: Action1, in ST

In Code 3 the ST implementations for the transition and the action present in the SFC
program are exhibited. The TRANSITION construct marks the connection between the
steps Start and Step1, and the activity flow may go from the former to the latter when

51

its logic condition, the value of the boolean input in1, is equals to TRUE. The action
Action1 is associated to Step1, so it will be executed once the activity flows reaches this
step. It evaluates whether, from two integer inputs, the first is higher than the second,
producing as output the answer YES or NO. A calling to the POU function isHigher is
made in line 6; its implementation will be seen in the next Chapter, when this example
will be retrieved.

3.2 PLCopen

The PLCopen standard (PLCOPEN, 2009) is an e�ort of the PLCopen Technical
Committee to gather all the information of the five di�erent languages of the IEC 61131-3
standard and provide an interface with their supporting tools, as well as the ability to
transfer information between di�erent platforms. It is an XML-based standard able to
store not just the textual, but also the graphical information of a PLC project, allowing
complete translation from a representation to another.

The PLCopen standard structures PLCs in three specific parts: the Project structure,
with headers containing general information about the project; the Instance specific part,
representing the configurations of the environment in which the PLC may operate; and
the Type specific part, where we have the Program Organization Units (POUs) and the
Data Type Elements.

In this section we present Types and other elements of the PLCopen’s XML format
in detail.

3.2.1 Variables and Data types

In PLCopen a variable is an element whose main attributes, besides its name, are its
type and the values it might receive. The XML element of a variable in PLCopen can
be seen in Code 4:

From lines 9 to 11 one can see the attributes of the variable element: its name, its
address — optional information about the direct representation of an element — and its
globalId — optional id of the variable in the project. Between lines 3 to 8 are the items of
higher complexity in a variable — the previous mentioned type and initial value, as well
as additional information (covered in detail in Section 3.2.3) and documentation.

52

1 <xsd:element name="variable" minOccurs="0" maxOccurs="unbounded">
2 <xsd:complexType>
3 <xsd:sequence>
4 <xsd:element name="type" type="ppx:dataType"/>
5 <xsd:element name="initialValue" type="ppx:value" minOccurs="0"/>
6 <xsd:element name="addData" type="ppx:addData" minOccurs="0"/>
7 <xsd:element name="documentation" type="ppx:formattedText"

minOccurs="0"/>
8 </xsd:sequence>
9 <xsd:attribute name="name" type="xsd:string" use="required"/>

10 <xsd:attribute name="address" type="xsd:string" use="optional"/>
11 <xsd:attribute name="globalId" type="xsd:ID" use="optional"/>
12 </xsd:complexType>
13 </xsd:element>

Code 4: XML element to a Variable

3.2.1.1 Data Type

It is represented as an XML complex type, so it can be assigned to elements, like the
type element in the variable, for instance. Three di�erent groups of possible data types
are embodied:

• Elementary types: with the exception of the string types, which have the length
information as an attribute, the other types contain in the XML element only the
name of the type: BOOL, INT, UINT, etc.

• Derived types: In this category are the types of higher complexity, the same
ones mentioned in Section 3.1.2.2, corresponding to the Derived types for PLC
programming.

• Extended: In addition to the IEC 61131-3 standard, a datatype can be of the type
POINTER. A pointer is defined by its required base type.

Elementary types

1 <variable name="boolVar">
2 <type>
3 <BOOL/>
4 </type>
5 </variable>

Code 5: XML representation of a boolean variable

53

A boolean variable boolVar, according to the previous code, Code 4, showing an XML
variable element, would be of the form presented in Code 5.

Data type elements

New types can be created based on the standard ones. These elements have a name
(the name of the new type), the type it is based on (a Data Type) and the initial value
associated to the type (a Value). Variables can be typed according to this new type.

A new type, SIDE, based on the data type Enumeration, can be seen in Code 6. In
line 1 the name of the new data type is stated, while from lines 2 to 10 the type itself
is constructed. In line 3 it is defined its derivation form the Enumeration type, with the
definition of the possible values an enumeration of the SIDE type may assume made in
lines 5-7.

1 <dataType name="SIDE">

2 <baseType>

3 <enum>

4 <values>

5 <value name="right_side"/>

6 <value name="no_side"/>

7 <value name="left_side"/>

8 </values>

9 </enum>

10 </baseType>

11 </dataType>

Code 6: XML representation of a new type based on the Enumeration data type.

Derived types

In the interest of space we show in detail only the information about the derived
type Array, so the logic behind the data types representation can be understood. The
complete specification for all the PLCopen elements is available in the standard.

The Array type is depicted in Code 7. The baseType element defines the data type
of the array items, while the dimension element determines the size of each dimension

54

in terms of a range.

1 <xsd:element name="array">

2 <xsd:complexType>

3 <xsd:sequence>

4 <xsd:element name="dimension" type="ppx:rangeSigned" maxOccurs="

unbounded"/>

5 <xsd:element name="baseType" type="ppx:dataType"/>

6 </xsd:sequence>

7 </xsd:complexType>

8 </xsd:element>

Code 7: XML element for the Array Type

Thus, an array declared as arrayVar : ARRAY [1..10] OF INT; would be represented
in PLCopen as:

1 <variable name="arrayVar">

2 <type>

3 <array>

4 <dimension lower="1" upper="10"/>

5 <baseType>

6 <INT/>

7 </baseType>

8 </array>

9 </type>

10 </variable>

Code 8: XML representation of an array variable

3.2.1.2 Value

The Value element is organized similarly to Data Type, as it embodies the three
di�erent kinds of values that can be assigned to a variable:

• Simple Value: the values that can be represented as a single attribute: the value
itself as a string. It is used for the variables with elementary types.

• Array Value: values as a list of {repetitionV alue ∆ value} objects, so that
repeated sequential values in the array do not need to be presented redundantly; the
default value of repetitionValue is 1. The values are represented as Value elements.

55

• Struct Value: values as a list of {member ∆ value} objects, so that each value
is associated to the name of the element it belongs to in the struct. These values
are represented as Value elements.

The declaration

arrayVar : ARRAY [1..10] OF INT := {1, 2, 5(3), 3(4)}; 1

would result in the value {1, 2, 3, 3, 3, 3, 3, 4, 4, 4} to arrayVar. The XML whole repre-
sentation of arrayVar can be seen in Code 9:

1 <variable name="arrayVar">
2 <type>
3 <array>
4 <dimension lower="1" upper=

"10"/>
5 <baseType>
6 <INT/>
7 </baseType>
8 </array>
9 </type>

10 <initialValue>
11 <arrayValue>
12 <value>
13 <simpleValue value="1"/>
14 </value>

15 <value>
16 <simpleValue value="2"/>
17 </value>
18 <value repetitionValue="5">
19 <simpleValue value="3"/>
20 </value>
21 <value repetitionValue="3">
22 <simpleValue value="4"/>
23 </value>
24 </arrayValue>
25 </initialValue>
26 </variable>

Code 9: XML representation of an array variable with an initial value associated.

3.2.2 POUs

A POU is an element whose main attributes, besides its name, are its POU type,
its interface and its body. The first defines if it is a POU program, function block or
function; the second represents the I/O table of the POU, a list of the variables that are
used in it; the last is the “implementation” of the POU, in one of the five languages of
the IEC standard.

In additional to those elements, there are action and transition elements associated
to a POU: they represent the key components of SFC; each has a body associated.

1The underlined numbers are the repetition values: the number inside the parentheses is repeated the
specified times in the array.

56

3.2.2.1 Interface

The Interface element of the POU is composed of lists of variable elements. Each list
represents one of the variable categories summarized in Section 3.1.2.2 — Locals, Inputs,
etc. Besides these lists there is an element returnType, which is required by the POU
functions, and represented as a Data Type element.

We can see the XML format of an Interface looking to how the I/O table of the IL
example in Section 3.1.2.3 is represented in PLCopen, depicted in Code 10.

1 <interface>
2 <returnType>
3 <REAL/>
4 </returnType>
5 <inputVars>
6 <variable name="X1">
7 <type>
8 <REAL/>
9 </type>

10 </variable>
11 <variable name="X2">
12 <type>
13 <REAL/>
14 </type>
15 </variable>
16 <variable name="Y1">
17 <type>
18 <REAL/>
19 </type>
20 </variable>
21 <variable name="Y2">
22 <type>
23 <REAL/>
24 </type>
25 </variable>

26 <variable name="TMax">
27 <type>
28 <REAL/>
29 </type>
30 </variable>
31 </inputVars>
32 <localVars>
33 <variable name="Temp">
34 <type>
35 <REAL/>
36 </type>
37 </variable>
38 </localVars>
39 <outputVars>
40 <variable name="ERROR">
41 <type>
42 <BOOL/>
43 </type>
44 </variable>
45 </outputVars>
46 </interface>

Code 10: Interface of a POU in PLCopen.

3.2.2.2 Body

The Body element of a POU may be of one in the following four types, depending of
the language it corresponds to:

• Textual: The IL and ST implementations are represented as text, with no special
XML modularization.

• FBD: The FBD implementations, represented as a collection of common graphical
objects and FBD objects.

57

• LD: The LD implementations, represented as a collection of common graphical
objects, FBD objects, and LD objects.

• SFC: The SFC implementations, represented as a collection of common graphical
objects, FBD objects, LD objects and SFC objects.

Common features

The following items are common to all the graphical objects, providing their identifi-
cation and graphical information:

• Local Id: Attribute that uniquely identifies the graphical object in the context of
that POU.

• Height: Attribute representing the height of the graphical object.

• Width: Attribute representing the width of the graphical object.

• Position: It presents the attributes x and y, defining a graphical position with (X,
Y) coordinates. This position is where the top-left corner element of the object is
situated: the other points of the object are implied in conjunction with the width
and height attributes.

Regarding the interaction between these graphical objects, the following elements may
be used:

• Connection Point Out: It represents an output pin, marking, through a Po-
sition element, the relative position2 of this pin to the graphical object it refers
to. The extension Connection Point Out Formal Parameter has the attribute
formalParameter, which identifies the output pin, useful when an object has more
than one.

• Connection Point In: It represents an input pin, being the counterpart of the
Connection Point Out element. However, it has as subelement a collection of
Connection elements, describing the graphical couplings between the data consu-
ming element, with the input pin, and another elements.

2These positions are relative to the top-left corner of the graphical object, the origin (0, 0).

58

• Connection: It describes a connection between two elements and may have a
collection of Position elements to mark the path of this connection. The attribute
refLocalId identifies the element where the connection starts, with formalParameter,
if any, indicating from which output pin.

1 <block localId="10" width="76" height="120" typeName="ILTest">
2 <position x="107" y="109"/>
3 <inputVariables>
4 <variable formalParameter="X1">
5 <connectionPointIn>
6 <relPosition x="0" y="30"/>
7 </connectionPointIn>
8 </variable>
9 <variable formalParameter="X2">

10 <connectionPointIn>
11 <relPosition x="0" y="50"/>
12 </connectionPointIn>
13 </variable>
14 <variable formalParameter="Y1">
15 <connectionPointIn>
16 <relPosition x="0" y="70"/>
17 </connectionPointIn>
18 </variable>
19 <variable formalParameter="Y2">
20 <connectionPointIn>
21 <relPosition x="0" y="90"/>
22 </connectionPointIn>
23 </variable>
24 <variable formalParameter="TMax">
25 <connectionPointIn>
26 <relPosition x="0" y="110"/>
27 </connectionPointIn>
28 </variable>
29 </inputVariables>
30 <outputVariables>
31 <variable formalParameter="">
32 <connectionPointOut>
33 <relPosition x="76" y="30"/>
34 </connectionPointOut>
35 </variable>
36 <variable formalParameter="ERROR">
37 <connectionPointOut>
38 <relPosition x="76" y="50"/>
39 </connectionPointOut>
40 </variable>
41 </outputVariables>
42 </block>

Code 11: Block in PLCopen

59

FBD objects

The BodyFBD element is composed of a collection of the FBD objects. These objects
are the same as the FBD language elements in Table 6, at page 44, besides the Block
element, defined as part of BodyFBD.

The XML representation of the block corresponding to the IL example from Sec-
tion 3.1.2.3, shown in Figure 5, at page 42, is depicted in Code 11. The typeName attribute
identifies the type of the block, in this case the name of the POU, so the block imple-
mentation can be retrieved. As it is a POU function there is no instantiation, what would
be represented by the addition of the attribute instanceName. The variable elements in a
block correspond to its input, inOut or output variables; thus, each possess either a Con-
nection Point In, a Connection Point Out or both, respectively. Also, each variable
element has a formalParameter attribute, defining the name of the respective variable in
the corresponding POU’s interface; the exception is at line 31, whose variable element
without a formalParameter marks the return of the POU function being represented.

LD objects

The BodyLD element is composed of a collection of LD objects. These objects are
the same as the LD language elements in Table 7, at page 44. The objects present in
BodyFBD can also be used as elements of BodyLD.

The power rail elements are composed, besides their identification and graphical in-
formation elements, of collections of connection point out or connection point in elements
— the left and right ones, respectively.

The contact and coil elements present input and output pins, as well as a variable
element to indicate to which variable the graphical object is associated. Attributes such
as negated establishes whether it is a not contact or a not coil.

SFC objects

The BodySFC element is the more complex one in PLCopen. It contains the objects
presented in Table 8, at page 46, with the SFC language elements, as well as the elements
in BodyFBD and BodyLD.

60

The Step element has as attributes its name and whether it is an initial step. It
may present an input pin — mandatory if it is not an initial step —, an output pin —
mandatory if its not a final step – and/or an output action pin, which will connect the
step to its Action Block.

The Action Block elements are collections of Action elements, each one containing
the implementation of an action through a Body element, as well as a string attribute to
identify the action’s qualifier.

Regarding the Transition elements, their main items are the attribute priority —
optional feature that may be used in case of the transition being part of a selection
divergence —, the input and output pins (both mandatory) and the Condition element.
This element represents the logic condition of the transition; its attributes are whether
the condition is negated and the implementation of the condition itself through a Body
element.

1 <pou name="sfcSimple" pouType="program">
2 <interface>
3 <inputVars>
4 <variable name="n1"> ... </variable>
5 <variable name="n2"> ... </variable>
6 <variable name="in1"> ... </variable>
7 </inputVars>
8 <localVars>
9 <variable name="answers"> ... </variable>

10 </localVars>
11 <outputVars>
12 <variable name="higher">
13 </outputVars>
14 </interface>
15 <actions>
16 <action name="Action1"> ... </action>
17 </actions>
18 <transitions>
19 <transition name="T1"> ... </transition>
20 </transitions>

Code 12: SFC POU in PLCopen — Interface , Actions and Transitions

In terms of the XML representation, there is little di�erence between the convergence
and divergence elements, either simultaneous or selection. The convergences present a col-
lection of input pins and an output pin, while the divergences an input pin and a collection
of output pins. The Simultaneous Divergence element presents a name attribute, since
it may be a target of a Jump Step element.

For the SFC example shown in the end of the SFC section (3.1.2.8), depicted in

61

Figure 16, at page 50, we have the PLC representation in Codes 12 and 13:

Each of the POU’s variable listed in Table 9 is represented as a variable element in
the interface element. They are divided in lists corresponding to the variable categories
— inputVars for inputs (line 3), localVars for locals (line 8) and outputVars for outputs
(line 11). Only the names of the variables are listed here, for clarity; the structure of each
variable element is according to the PLCopen representation of variables shown in the
previous sections. Each action and transition in a SFC POU is listed in a corresponding
element; the action element for Action1 (line 16) will contain its ST code, as well as the
transition element for T1 (line 19) will contain its ST logic condition.

21 <body>
22 <SFC>
23 <step localId="1" height="27" width="38" name="Start"

initialStep="true"> ... </step>
24 <transition localId="2" height="2" width="20">
25 ...
26 <condition>
27 <reference name="T1"/>
28 </condition>
29 </transition>
30 <step localId="3" height="23" width="38" name="Step1"> ... </step>
31 <actionBlock localId="4" width="100" height="30">
32 <connectionPointIn>
33 <connection refLocalId="3"> ... </connection>
34 </connectionPointIn>
35 <action localId="0">
36 <reference name="Action1"/>
37 </action>
38 </actionBlock>
39 </SFC>
40 </body>
41 </pou>

Code 13: SFC POU in PLCopen — Body

Code 13 has the body of the SFC program in the example. In lines 23 and 30 the
common features of the steps are exhibited, with 24 showing them for the transition.
Line 33 shows the link of the action block to its respective step, marked by the refLocalId
being the same as the localId of Step1 ; the reference of the implementation of the action
inside the action block (line 36) is the same as for the transition’s condition code (line
27): they indicate the name of the action and trasition elements in lines 16 and 19 from
the previous Code, respectively.

62

3.2.3 Additional Data

1 <addData>
2 <data name="http://www.anyVendor.org/Vendor_AddData" handleUnknown=

"implementation">
3 <AddDataRoot>
4 <FirstElement ExampleAttribute1="PLCopen_extention" />
5 <SecondAttribute/>
6 </AddDataRoot>
7 </data>
8 </addData>

Code 14: Example of use of the Add Data feature

The AddData elements represent the additional data of an application that does
not fit the defined structure of the XML schema. This feature may be used to represent
extensions to the IEC 61131-3 standard, or information from legacy systems deviating
from the standard.

The element is structured as a collection of Data elements, each one consisting of a
collection of free XML elements, that can be constructed based on the application needs,
in attributes, content and sub-elements.

An example of the application of this technique can be seen in Code 14.

3.3 B Method

The B Method (ABRIAL, 1996) is a formal approach for the specification and deve-
lopment of software. It includes a first-order logic with integers and sets, substitutions and
refinement rules. It is based on the Abstract Machine Notation (AMN), which provides
a unique language for the construction of machines, refinements and implementations,
thus representing the di�erent levels of abstraction that a specification of a system may
take. Besides, the language supports decomposition, since it is based around the concept
of layered development and the construction of larger components from collections of
smaller ones.

Despite the features provided by its language there are some elements of the PLC
programs that cannot be represented with B by default, like real numbers. In Chapter 4,
where the translation method is described, these limitations are discussed in detail.

Nevertheless, the B Method provides a unified pragmatic and usable development

63

methodology based on the concept of refinement, requiring the consistency verification
for each transformation of the specification from the abstract level towards the concrete
one. This, along with the generation and verification of proof obligations to guarantee
the consistency of the initial model, makes correctness according to the specification a
realistic and achievable goal throughout system development.

3.3.1 AMN notation

As previously said, the AMN notation provides three di�erent elements of abstrac-
tion to represent the formal specification, containing pieces of information describing the
model. Their structure is detailed below.

MACHINE

1 MACHINE n
2 SETS S
3 CONSTANTS C
4 PROPERTIES P
5 VARIABLES V
6 INVARIANT I
7 INITIALISATION T
8 OPERATIONS
9 outputs <-- op (inputs) =

10 PRE preconditions
11 THEN substitutions
12 END ;
13 ...
14 END

Code 15: Basic structure of a B machine

The machines are the most abstract component of the B specifications, being the base
for the refinements towards a more concrete level. They are suitable for describing what
behaviour is performed in a system, with relationships between states. The basic structure
of a B machine is presented in Code 15.

The clause MACHINE states the name of the machine — n —, while SETS and
CONSTANTS define the sets and constants to be used in it, with PROPERTIES
declaring the conditions that must hold on them; they define the static information in a
machine. A little example can be seen below,

64

SETS NAMES = {pedro, paulo, roberto, turin, rafael, antonino}

CONSTANTS capacity

PROPERTIES

capacity : NAT1 &

capacity = 5 &

card(NAMES) > capacity

where a set, NAMES, is defined and has the elements that compose it declared, whose
quantity is bounded by the constant capacity through the property card(NAMES)>

capacity. This property states that NAMES must have more elements than the value of
capacity, which is the case, since the set has six elements and the constant is defined as
a natural number of value five.

As for the state information in a machine, VARIABLES defines the set of variables
V that represents it, with the INVARIANTS clause presenting constraints over this
state, hence over the variables; these constraints must always hold. Using the previous
example, we could define the following information

VARIABLES members

INVARIANT

members <: NAMES & card(members) <= capacity

where a variable members would compose the state of the machine, which must always
be compliant with the invariants, stating that the values member may take are a subset
of NAMES and its number of elements is never higher than capacity.

The INITIALISATION clause specifies the initial state of the machine — the ini-
tial values that its variables take —, and the OPERATIONS define the interface of
the machine with the environment it is interacting with: they may alter the state of the
machine through substitutions (line 11), which specifies the behaviour of the operation —
what it does; an operation can also take inputs and produce outputs (line 9), according
to its statements; preconditions (line 10), if defined, establish the restrictions that must
be fulfilled by the received parameters and the current state of the machine so the opera-
tion may be performed, otherwise its execution being forbidden. Extending the previous
example we can define the following,

65

INITIALISATION members := {paulo, turin}

OPERATIONS

remove_paulo =

PRE paulo : members

THEN

members := members - {paulo}

END

where a set, {paulo, turin}, is defined as the initial value of members and an opera-
tion, remove_paulo, which can remove the element “paulo”, in a scenario where it is part
of members, from this variable. One must notice that these actions have to be compliant
with the invariant, which is the case, since the initial value assigned in the initialisation
is indeed a subset of NAMES and the operation performed does not change the type of
members or makes it exceed the capacity bound.

At the machine level the substitutions are executed only in parallel faction, so they
alter the state of the machine only once: since in this level of abstraction one is not
concerned in how the behaviour of the system is achieved more complex constructs are
hardly necessary.

REFINEMENT

1 REFINEMENT n_r
2 REFINES n
3 SETS S_r
4 CONSTANTS C_r
5 PROPERTIES P_r
6 VARIABLES V_r
7 INVARIANT I_r
8 INITIALISATION T_r
9 OPERATIONS

10 outputs <-- op (inputs) =
11 PRE preconditions_r
12 THEN substitutions_r
13 END ;
14 ...
15 END

Code 16: Basic structure of a B refinement

A refinement takes the specification to a more concrete level, so one may be concerned
in how the behaviour of a system is performed, not simply what it is. Thus some aspects of
the specification, such as the nondeterministic statements, may be addressed di�erently:

66

providing deterministic choices between the possible outcomes of these statements, for
instance. Also, a refinement may enhance the specification providing alternative ways to
deal with aspects of it, which means that the information in the abstract level that is not
directly accessed in the refinement does not need to be represented.

As seen in Code 16 the basic structure of a B refinement is the same of a machine,
di�ering in the kinds of substitutions that may be used inside them, since a refinement has
additional constructs besides the ones present at machine level, like sequential composition:
performing a substitution over the resulting state of a previous substitution in the same
operation — the execution of a statement after another, desirable when modeling the
operations in order to obtain a more concrete specification.

In the clause REFINEMENT the name of the refinement is declared, which is
usually defined as the name of the machine (or refinement) it refines, stated in the clause
REFINES, plus the su�x “_r”. The static information, and their properties, defined must
be di�erent from that in the refined machine, but otherwise its declaration follows the same
guidelines; this restriction is due to the static part of the refined machine being available
for use in the refinement. The state information (the variables) of the abstract machine is
also available for use in the refinement, but it is not visible by the refinement operations,
so it can only be accessed in the INVARIANTS (the so called linking invariants3),
INITIALISATION or operations’ preconditions, connecting the refining with the refined
state. The variables in the refinement’s VARIABLES clause may be used freely, obeying
the same procedures for variables declaration within a machine.

In the INITIALISATION clause the initial state of the variables declared in the
refinement must be given, and it can also use the initial values for the variables of the
refined machine — first the initialisation of the machine is performed, with the substitu-
tions in the refinement being performed over the resulting state. The refining operations
must have the same signature of the refined ones, while new preconditions may be defined
for an operation, but they have to be compliant with the preconditions already stated at
machine level — the same goes for the substitutions composing the body of the refining
operation: the possible behaviours must always be within the behaviour set of the refined
operation.

3Invariants bounding the abstract and the refining state, relating a variable in the former with one
defined in the latter.

67

IMPLEMENTATION

An implementation is a special kind of refinement, from which code can be generated.
It is the maximum of the B method in terms of concreteness, so some restrictions must
be fulfilled in order to achieve this level, like the absence of nondeterminism. Additional
constructs are available in this level as well, like loops.

We do not present this level in depth, since we do not make use of it in this work, but
further details, as well as for the other elements presented in this Chapter, may be seen
in (SCHNEIDER, 2001).

3.3.2 Substitutions

One of the key elements for understanding the B method is the concept of substituti-
ons, since they are the instrument for changing the state of a machine in a specification.

A substitution is the replacement of a free variable (not in the scope of a quantifier) for
an expression inside a predicate, resulting in an equivalent predicate. Formally: P [E/x],
which is read as “P with E for x”. Thus:

(joão œ HUNGRY)[maria/joão] © (maria œ HUNGRY)

A summary of the main rules of substitution available for B specifications is given in
Table 10:

No Name Substitution rule
1 SKIP [skip] Q © Q

2 BEGIN [BEGIN S END] Q © [S]Q
3 PRE [PRE P THEN S END] Q © (P · [S]Q)
4 SIMPLE [x := E]Q © Q[E/x]
5 ARBITRARY [x :: S]Q © ’z.(z œ S ∆ Q[z/x])
6 PARALLEL [x := E Î y := F]Q © Q[E/x, F/y]
7 SEQUENCING [x := E; y := F]Q © Q[E/x; F/y]
8 IF [IF E THEN S ELSE T END] Q © (E · [S]Q) ‚ (¬E · [T]Q)
9 ANY [ANY x WHERE P THEN T END] Q © ’x . (P ∆ [T]Q)
10 VAR [VAR v IN S END] Q © ’v . ([S]Q)

Table 10: Rules of Substitution in B

68

The first rule is the “do nothing” substitution, where the predicate is not altered in
any way: it is equivalent to itself. One of its possible uses for the body of an operation at
abstraction level whose behaviour will be defined only in a following refinement.

BEGIN is a rule used to bracket statements in a block, for clarity — the substitutions
S will be applied in the predicate Q with no restrictions. The PRE rule, however, states
restrictions to the execution of the substitutions S in Q: the validity of P is mandatory
for the performance of S.

The SIMPLE rule states the simple substitution, according to the definition of subs-
titutions: the replacement of an expression for a free variable in a predicate; the symbol
“:=” represents it. Alternatively, with the ARBITRARY rule, a nondeterministic as-
signment may be made to a free variable, in which any element belonging to a set replaces
it in a predicate; this assignment is denoted by the symbol “::”.

A PARALLEL substitution is the simultaneous application of simple substitutions
in a predicate, represented by the symbol “Î”; an important remark is that in a parallel
substitution each variable may be substituted only once, since all the replacements are
simultaneous. Rule number 7 presents the SEQUENCING substitution, which allows a
replacement to be made after another, thus the same variable could be used in di�erent
sequential substitutions, having di�erent states in each of them.

Conditional substitution is defined by the IF rule, which states that either you have
condition E valid and the performance of substitutions S in Q or you have that the
condition E is not valid and the T substitutions are performed in Q. Hence it presents a
deterministic behaviour.

The behaviour of the ANY rule, however, is nondeterministic, as it states that any
value that satisfies a given predicate, P , is used in the substitutions T applied to Q. Thus,
“local variables” are created, with a type and any other arbitrary constraining information
established in predicate P , to be used in the statements in T , which may refer to these local
variables, making its execution dependent on the valuation they received. An interesting
feature is that as new ANY statements may be defined in the T substitutions the local
variables may “propagate”, simulating sequential substitutions even without the rule of
SEQUENCING.

The VAR rule however defines local variables truly, so they can be used is some
context without the need to attach them to the whole state space, as they are discarded
once that context is left — it is very similar to the ANY rule, although deterministic and

69

not so restricted. Some v variables are declared and may be used in S; the restriction is
only that the values of the v variables must be assigned prior to its use in other statements
of S, where they can be freely modified again; therefore, this construct in available only
in refinement level, as sequential compositions are mandatory.

3.3.3 Proof Obligations

Once a B specification is built one has to verify its correctness. This task is carried
out using proof obligations — logic expressions generated from a specification and that
must be validated to guarantee its consistency.

Proof obligations are produced to guarantee that the model never reaches an invalid
state, based on clauses such as INVARIANTS, that defines constraints over the state
of the of the model, asserting that the system always stays within some allowed region.
The key elements for the generation of proof obligations are the substitutions, as they
may change the state of the system: it is necessary to guarantee that an invalid state
is not reached by the substitutions performed in a valid one. Recursively, the basic step
is in the clause INITIALISATION, where the state the system starts in is defined: it
must be compliant to the invariant one. Thus, the proof obligations concerning invariant
preservation are generated for the initialisation and operations executed in the system
according to the following guidelines:

Consistency of INVARIANT

÷v.I

This requires that there is a valid valuation for the variables that satisfy the invariant
clause I in the machine — there is at least one valid state in the machine, so the invariant
is consistent.

Proof obligations for INITIALISATION

[T]I

It is necessary to guarantee that the state resulting from the initialisation satisfies the
invariant — the initial state obtained by the substitutions T establishes I.

70

Proof obligations for OPERATIONS

(P · I) ∆ [S]I

For each operation it is mandatory that its execution does not lead the machine to
an invalid state. Thus, once its preconditions P (if any) are satisfied, establishing the
conditions over the machine’s state in which the operation may be performed, and the
invariant I is valid, specifying that the state before the operation’s performance is valid,
the substitutions S carried out must lead the machine to a state where I is also valid.

The validity of the preconditions before the invocation of an operation must be gua-
ranteed by the one who is making the invocation — the operation is concerned in not
leading the machine to an invalid state only when P holds; its behaviour with P invalid
is not guaranteed in any way. Another characteristic of the operation’s preconditions is
that they are local: they are taking into account only in the proof obligations of the res-
pective operation, hence their consideration in the proof obligations of other machine is
not possible; only the invariants are globally visible by all the proof obligations.

If all the operations in a machine are proven to not lead it to an invalid state from
a valid one, and if its initial state is also valid, then the invariant must indeed hold for
every reachable state in the machine’s execution, thus allowing one to claim the validity
of the full behaviour set of the specification in unlimited depth.

Proof obligations for refinements

Proof obligations are also generated to attest the correctness of a refinement step in
a B specification. These proof obligations will concern the initialisation and operations
of a refinement, as well as the static information (sets and constants) introduced. The
refinement must not initiate in a state that prevents the refined machine of having any
initial state satisfying the invariants that hold between them (the linking invariants).
Also, the substitutions performed in the operations must not lead the refinement to a
state that can not be matched by any execution of the operation in the abstract level.
The operations in the refinement consider the preconditions defined in the abstract level
(if any) to restrict the states in which it can be executed, but new preconditions can also
be defined; in this case these preconditions must hold whenever the operation would hold
within its abstract precondition.

71

3.3.4 Example

To a better understanding of the proof obligations generation and of the previous
features of the B method discussed we present an overviewing example.

The B machine seen in Code 17 models a car transporter: a big truck capable of
carrying fifteen di�erent cars; the truck is initially empty, but can be loaded with cars,
one at a time. The state of the machine is defined by the quantity of cars that are already
loaded in the truck — the variable loadedCars (line 3); this variable needs to be typed, so
in line 2 we have the definition of a set, CARS, a static construct to whom the elements
in loadedCars will belong — hence the variable is a subset of CARS (line 4). Since the
truck transports at most 15 cars the number of loaded cars must be limited, which is
represented by the second conjunct in the invariant in line 4 — the cardinality of the
subset has to be no greater than fifteen. The act of loading a car into the truck is modeled
by the operation in lines 7-11, which receives a variable car as input and adds it to
loadedCars; the precondition of the operation restricts its execution to the states in which
the variable car is a member of CARS and it is not already in the truck (line 8). As the
truck is initially empty its initial state is stated as without any loaded car (line 5).

1 MACHINE CarTransporter
2 SETS CARS
3 VARIABLES loadedCars
4 INVARIANT loadedCars <: CARS &

card(loadedCars) <= 15
5 INITIALISATION loadedCars := {}
6 OPERATIONS
7 loadCar (car) =
8 PRE car : CARS & car /: loadedCars
9 THEN

10 loadedCars :=
loadedCars \/ {car}

11 END
12 END

Code 17: Example of a B machine.

1 loadCar (car) =
2 PRE car : CARS &

car /: loadedCars &
card(loadedCars) < 15

3 THEN
4 loadedCars :=

loadedCars \/ {car}
5 END

Code 18: Necessary alteration for
invariant compliance

Three proof obligations are generated for this model: two for the INITIALISATION
and one for the loadCar operation. They are summarized below:

72

1: {}
?

<: CARS Verify if the initial state of loadedCars is compliant with
the invariant (type)

2: card({})
?

<= 15 Verify if the initial state of loadedCars is compliant with
the invariant (cardinality)

3: card(loadedCars \/ {car})
?

<= 15 Verify if the substitution performed respects the cardi-
nality constraint over loadedCars in the invariant.

The first two are proven correct, as the empty set is a subset of any set and its
cardinality is zero. The third, however, is not; its full structure is:

(
(car : CARS & car/ : loadedCars)
· (loadedCars <: CARS & card(loadedCars) <= 15)

)
?=∆ (card(loadedCars \/ {car}) <= 15)

There is not enough information in the precedents (precondition and invariant) to
assure that the resulting substitution will guarantee the invariant. Thence one possible
solution is strengthening the preconditions of the operation, as seen in Code 18, where the
restriction card(locatedCars) < 15 is added, ensuring that card(loadedCars \/ {car}) is
at most equals to 15, thus satisfying the proof obligation.

Refining

A refinement may be performed over the abstract model to add information, like how
the cars are allocated in the truck. The refinement in Code 19 introduces the variable
allocatedCars (line 4), typed in line 5 as a partial function from SPOTS, a new set
defined in line 3, to CARS, thus biding the loaded cars to the spot they were allocated in
the truck; the restriction that the range of the function must be equal to the loadedCars
variable in the refined machine links the abstract and the refinement state, assuring that
the same behaviour is represented.

The initialisation of the refinement (line 6) states that the no spot has a car allocated,
which represents the same behaviour as in the abstract component — as both variables
are valuated with the empty set the invariant biding them is satisfied. In the refinement
the operation loadCar will nondeterministically cast a spot not yet allocated in the
truck (line 10) and associate it with the car being loaded; since the same preconditions
as in the abstract level are applied this car is not already in the truck and the total

73

1 REFINEMENT CarTransporter_r
2 REFINES CarTransporter
3 SETS SPOTS
4 VARIABLES allocatedCars
5 INVARIANT

allocatedCars : SPOTS +-> CARS & ran(allocatedCars) = loadedCars
6 INITIALISATION allocatedCars := {}
7 OPERATIONS
8 loadCar (car) =
9 BEGIN

10 ANY ss WHERE ss : SPOTS & ss /: dom(allocatedCars) THEN
11 allocatedCars(ss) := car
12 END
13 END
14 END

Code 19: Example of a B refinement

number of cars is at most 15 after the performance of the operation, thus the reachable
states are matchable with the abstract execution of loadCar and the proof obligation
ran(allocatedCars<+{ss ‘æ car}) ?= (loadedCars \/ {car}) is satisfied.

3.3.5 Decomposition

The B method provides support for decomposition through the INCLUDES, SEES
and USES clauses, which allow a machine to be expressed by the combination of sub-
sidiary ones, so the complexity of the specification is split among di�erent components.
State information may be separated into a number of di�erent machines, each responsible
for the behaviour performed on that part of the state; this also provides the independent
verification of the internal consistency of these machines, hence reducing the proof e�ort
and also permitting the re-use of these components without the need of new unit verifi-
cations; these machines are defined independently of the composing components, they
have access to no information in them, which permits this independent verification.

The main di�erence between the kinds of possible relationships is regarding the way
they deal with the state information and its access. These di�erences are better explained
below. A characteristic common to all the structuring relationships is that the target
of the relation, the included, seen or used machine, must be at the most abstract level,
without any refinement; this is so because the composing component, may it be a machine
or a refinement, is not interested in how the behaviour is performed inside the composed
component, only in what it is.

74

INCLUDES

In the Includes relationship the static information of the included machine is seen
as if declared in the including component itself, while the restrictions over them, defined
in the PROPERTIES clause, may be increased of constraints defined in the including
component.

The included state is part of the including state — a read-write access is provided,
with direct reading being possible in invariants, preconditions or substitutions; the writing
access is more restricted, possible only through the operations of the included machine.
This restriction is necessary because direct-assignments could lead the included machine
to a state not allowed by its invariant: the included machine can only guarantee that
its invariant always hold if no other component can modify its state except through its
own operations. Proof obligations are generated to ensure that the invocation of these
operations by the including component is performed only when satisfying the operation’s
preconditions.

Constraints over the state in the included machine may be defined in the Invariant of
the including component, so it can be under complete control of the including component
when updated; otherwise updates that send the machine to an inconsistent state (in view
of the including component invariants) would be achievable (if the included machine were
included by other machine that modified it, for instance) — operations of the included
machine are available only for the unique component including it.

The visibility of an included machine’s state is just “one level deep”. A machine in-
cluding a machine that in turn includes another does not have access to the state of the
latter, either for reading the variables or performing its operations. The PROMOTES
clause can be used in the including component to make available the operations of the
included machine for a higher depth of visibility.

SEES and USES

While the Includes relationship forces the included machine to be part of and comple-
tely under control, the Sees/Uses mechanism permits a read-only access between machines.
As there is no alteration of state in the relationship a machine can be related to a number
of others by these relationships.

75

As in the Includes case, the visibility is not transitive, but the absence of more-than-
one-relationship restriction permits the explicit connection of a machine that sees another
to also see the latter and have complete read access to it (the same with the uses relation).

Uses allows requirements on the state of the two related machines, while Sees does
not. INVARIANT and PROPERTIES clauses of a machine using another can relate the
elements of this machine to the elements of the former. That is the sole di�erence between
the two structural constructs.

As these relationships concede read-only access, variables can not be referred to in the
composing components, because if their state could be modified outside the control of the
using/seeing machine, an inconsistent state could be reached away from the considerations
of this machine, as it cannot make any claim about states it does not control. The static
information however can be referenced without any restriction.

A major characteristic of these constructs that must be taken into account is that, as
there can be no state alterations through the Sees/Uses relations, only operations that do
not modify the state of the seen/used machine can be performed in the composing compo-
nent — only operations that have no assignments to its variables among the operation’s
substitutions.

Example

To exemplify the use of decomposition in B we return to the car transporting model.
Imagine that the loading of cars in the truck was made from ships carrying cars, which
unloaded in some docks. Each ship has several cars and the docks control the total number
of cars already unloaded to the car transporter, which must be increased any time a car
is unloaded from a ship into the truck.

The machine representing the docks with the ships is depicted in Code 20. It will in-
clude the machine CarTransporter (line 2), whose state will be directly altered in Docks.
Also, in its INVARIANT clause a binding is made between the value of unloadedCars
and the cardinality of loadedCars (line 6), thence each car loaded in the truck must be ack-
nowledged by the dock’s control. An important remark is that for Docks the way in which
the cars are loaded in the truck is not relevant, only the fact they are loaded, thus the
behaviour represented in the abstract level is enough; the information on how the loa-
ding is made in the truck introduced at refinement level concern only the CarTransporter
component.

76

1 MACHINE Docks
2 INCLUDES CarTransporter
3 SEES Calculator
4 SETS SHIPS
5 VARIABLES shipsWithCars, unloadedCars
6 INVARIANT shipsWithCars : SHIPS +-> POW(CARS) & unloadedCars : INT &

unloadedCars = card(loadedCars)
7 INITIALISATION shipsWithCars := {} || unloadedCars := 0
8 OPERATIONS
9 unloadShip(ship) =

10 PRE ship : dom(shipsWithCars) & card(loadedCars) < 15
11 THEN
12 ANY car WHERE car : shipsWithCars(ship) & car /: loadedCars THEN
13 loadCar(car) ||
14 shipsWithCars(ship) := shipsWithCars(ship) - {car} ||
15 unloadedCars <-- add1(unloadedCars)
16 END
17 END
18 END

Code 20: Example of a B including machine

The operation unloadShip presented from line 9 to 17 takes a ship that has cars to
be unloaded (first conjunct in line 10) and select any of these cars that is not yet in the
truck (line 12), loading it to the car transporter (line 13) and simultaneously unloading
it from the ship (line 14), also acknowledging the loading in the truck (line 15). The
addition in the value of unloadedCars is made in the seen machine Calculator (line 3),
whose stateless structure is shown is Code 21.

1 MACHINE Calculator

2 OPERATIONS

3 res <-- add1(nn) =

4 PRE nn : INT

5 THEN

6 res := nn + 1

7 END

8 END

Code 21: Example of a B seen
machine

Figure 17: Architecture of a B model with decom-
position

The structure of the decomposed model is depicted in Figure 17, with the includes
and sees relationships between the machines.

77

3.3.6 Tools

A strong support of tools is provided for the B Method. We make a quick presentation
of the two tools we use in our work, the AtelierB and the ProB Model Checker, but
other tools are also available, like the Rodin4 platform (for the Event-B notation), the
BRILLIANT platform5 and the BETA test generator6.

Atelier B

The company ClearSy System Engineering7 developed a tool for systems specification
and verification through the B Method called AtelierB8. It provides an integrated deve-
lopment environment for B specifications, assisting the construction of abstract machines,
refinements and specifications, project management and documentation.

A key feature of the tool is its automatic theorem prover, which allows the automatic
verification of the proof obligations generated for a specification. If the prover cannot
solve some proof then an interactive theorem prover can be used to perform an assisted
proof over the proof obligation (if it can be done, of course.)

Currently it is a free multi-platform tool, available for Windows, Linux and OS X.

ProB

The ProB Animator and Model Checker9 is a tool first developed for analyzing B spe-
cifications, but later extended for supporting other formalisms: Event-B, CSP-M, TLA+
and Z.

It allows one to perform model checking over a specification, searching for structu-
ral failures; besides, a step-by-step animation is possible, helping visual validation. The
definition os LTL formulae to be checked through model checking in the model is also
conceded, strengthening the verification endeavour.

Additional features are the exhibition of the specification state graphs, the presenta-
4http://www.event-b.org/install.html
5https://gna.org/projects/brillant/
6http://www.forall.ufrn.br/beta/
7http://www.clearsy.com
8http://www.atelierb.eu
9http://www.stups.uni-duesseldorf.de/ProB

78

tion of the model’s architecture and the ProB Logic Calculator — a solver for predicates
and expressions in the B syntax; the latter may be useful for verifying assumptions that
the AtelierB prover could not handle.

The ProB tool is also free and available for Windows, Linux and OS X.

79

4 Method

Figure 18: Illustration of the complete method.

We are proposing a method to formally verify PLC programs using the B method.
This is done through the automatic generation of formal models from the POUs in the
PLCs, followed by the insertion of the safety constraints in the model and its formal
verification. To ease this process we make use of an intermediary structure, implemented
in C++, based on the PLCopen standard, the PLC Object, to reduce the semantic gap
between the PLC programs and the B language. Therefore, our method consists of three
main phases, also illustrated in Figure 18:

1. gather the information in the PLC programs and store it in an intermediary struc-
ture, either from a standard or hybrid PLC program, or from an XML file in the
PLCopen standard;

2. generate from it a B model that makes possible to check the structural and safety
properties of the project;

80

3. and at last complete the formal model with such safety properties, derived from the
project requirements (manually, for now).

As we explain our method in detail, we also show the framework we built in order to
provide tool support for it. This framework embodies three main components:

• PLC Reader: Module responsible for reading the information in the PLC pro-
grams and building the PLC Object. It is composed by the IEC reader and the
PLCopenXML reader.

• PLC Object: Structure built with the C++ language to store the information in
the PLC programs as delivered by the PLC reader, standing as an intermediary
object between the original programs and the formal models to be generated.

• B Writer: Module responsible for the generation of the B models from the PLC
Object.

The Figure 19 shows the structure of this framework and how the di�erent modules
interact with each other, as well as the artifacts produced by each one.

Figure 19: The framework we built to implement our method. The light gray elements
represent the artifacts used and produced by the modules PLC reader and B Writer.

In the next sections we explain in detail each phase of our method, as well as the
components of our framework that carry them out. Our development has covered the
elements of SFC, ST, FBD and LD. The programs in IL are to be treated in future
works, since their structure demands a very specific handling; nevertheless, some works,
like (MEDEIROS JR, 2009), present guidelines of how to tackle this issue that we could
use in our approach.

81

Also, some restrictions concerning the elements of the covered languages remain, such
as the use of the Struct data type, of loop statements in ST or the overall absence of time
properties in the B models. These have not been dealt with yet due to lack of time, but
are to be overcome in future works, as the range of the approach is expanded.

Limitations coming from the expressiveness of the B Language itself are harder to
tackle, like the impossibility to represent floating numbers as default. We either leave
such issues out of our approach’s reach or try to adapt the PLC program to be written
without the not supported element, with no loss of generality.

In the last section of this chapter we summarize the restrictions of the approach,
categorizing them by their nature.

4.1 Reading the PLC programs

The PLC Object may be built either directly from a PLCopen XML-based repre-
sentation, from the textual IEC programs (ST/SFC)1 or from programs in some hybrid
textual language, not fully compliant to the IEC standard. Such languages are common,
as adaptations to specific domain PLCs may be necessary.

Thus, our PLC reader embodies two components: the PLCopen reader, responsible
for loading the PLC Object from PLCopen XML files; and the IEC reader, that loads the
PLC Object from PLC programs in textual representation.

4.1.1 PLC Object

The intermediary structure of our approach is built based on the PLCopen stan-
dard organization, using the programming language C++ and several features of the QT
framework2.

The structure of the PLC Object consists of several classes associated with each other.
The main class is PLC, which embodies 5 main elements:

1. Class FileHeader : information concerning whom is developing the project.

2. Class ContentHeader : information concerning the development itself of the project.
1See Appendix B for the definitions of the textual representations for SFC and POUs.
2http://qt.nokia.com

82

3. Class Types: Contains collections of DataTypeElement and POU objects.

• Class DataTypeElement: Types defined by the user, based on the standard data
types.

• Class POU : Unities of PLC programs; they are the main elements of the PLC
Object. Here are stored the graphic and architectural information, as well as
the POUs interface and implementation.

4. Class Instances: Contains the configurations of the environment in which the PLC
may operate (resources, tasks, access variables, etc.).

5. Besides, it has the auxiliary class AddData, responsible for storing additional data
in the PLC Object through the class Data, so information not present in the IEC
standard may be covered.

The most important element of PLC is Types, that encapsulates the information in
the PLC programs through the data types defined, the variables and the POUs. We can
see in Figure 20 an excerpt of the PLC Object class diagram, regarding the Data Type
Element and POU classes. The SFC Objects class is shown in Appendix C, as well as the
Action Blocks that may be associated with their Step objects.

Figure 20: The main elements of Types

The Data Type Elements have the new types defined, so they make reference to the
standard data types and the initial value that may be associated to that type.

83

The POUs are associated to an Interface3, containing the variables used in it (see
Section 3.1.2.2, summarizing the PLC data types). This interface may have a return type
(if it is the interface of a POU function), so an association to DataType is present.

The VarList objects inherits from the VarListPlain objects a collection of variables,
besides specifying some attributes, such as if the variables in that collection are cons-
tant, persistent, etc. Each variable, as shown in Section 3.2.2.1, describing the PLCopen
Interface element, is associated to a data type and an optional initial value.

Also associated with the POU are the Body, the Actions and the Transitions. The
Body is the implementation of the POU, and it can be in any of the five languages of the
standard. IL and ST are represented as strings since they only have textual elements, but
LD, FBD and SFC have body objects corresponding to the complex elements they may
use, as shown in Section 3.2.2.2, describing the PLCopen Body element. The Action and
Transition objects represent the actions and transitions in the SFC POUs, as each has an
own Body association. The BodySFC object can be viewed in detail in Appendix C; it
represents the same elements shown in Section 3.2.2.2.

Besides being used as an intermediary structure to the generation of the B models,
the PLC Object can be used to create a PLCopen XML file, as documentation, to the
PLC programs that were not in this format. The process to do so is equivalent to the one
for reading the PLCopen XML files, explained in Section 4.1.3.

4.1.2 IEC reader

The PLC programs that do not have a PLCopen representation are received by our
method as textual files. They will contain POU programs, functions and function blocks
declarations, as well as new types definitions. The IEC Reader will build a PLC Object
with its Types object containing all the information in these textual files — therefore, in
order to analyze them, we built a parser capable of doing so.

1 for each PLC program textual file received:
2 call IEC parser
3 for each POU object in SFC built:
4 generate graphical information
5 build Types object with all the DataTypeElement and POU objects built

Code 22: Algorithm for the PLC reading

3Represents the I/O table of the POU, it does not have the meaning of an interface in an Object
Oriented language like Java.

84

The algorithm representing the execution of the IEC reader module is presented in
Code 22. For each textual file corresponding to a PLC program (line 1), the IEC parser
will be called to treat it (line 2). The result from the parser performance over the file
will be a series of DataTypeElement and POU objects, the latter corresponding to the
POU programs, function blocks and functions in the PLC program. For the POUs in SFC
an additional processing is executed to generate their graphical information, as those are
not present in the textual files. We follow some proper guidelines to set the values of
the common features in the graphical objects, like their width, height, relPosition of
connection pins and the other items mentioned in Section 3.2.2.2 for the Body element in
the PLCopen.

The details of the parser calling are presented in the next Section; the result of the IEC
Reader module is the construction of a Types object with the POU and DataTypeElement
objects built composing it (line 7).

4.1.2.1 IEC parser

The parser we projected is invoked when a PLC program is received by the module.
The parser deals with the elements of the standard languages and may be customized to
specified di�erences, to accommodate new languages. This way we can deal with legacy
programs that are not strictly standard compliant.

We used the tool Coco/R4 to build this parser. Coco/R is a compiler generator, which
takes an attributed grammar of a source language and generates a scanner and a parser
for this language. The scanner works as a deterministic finite automaton, using recursive
descent; resolution of conflicts is also available, carried out by a multi-symbol lookahead
or by semantic checks.

We based the production rules to be used for the compiler generation on the grammars
for the IEC 6113-3 languages presented in the standard (see Appendix B). The parser
makes use of the scanner to do the lexical analysis of the PLC program, then performing
the syntactic analysis on it, while the semantic analysis is made simultaneously, through
instructions we defined in the C++ programming language. This semantic analysis is
used to generate the elements of the PLC Object and, for the ST statements, make
the translation to the B notation representing their elements for when the B model is
generated; these translations are stored in the PLC Object using AddData objects.

4http://ssw.jku.at/Coco/

85

1 for each file received:
2 perform lexical analysis with Scanner
3 for each type declared:
4 build DataTypeElement object with the new type
5 for each POU function declared:
6 create POU object
7 build POU’s interface
8 build POU’s ST body
9 for each POU program declared:

10 create POU object
11 build POU’s interface
12 if ST body then
13 build ST body
14 else
15 buildSFCBody()
16 for each POU function block:
17 create POU object
18 build POU’s interface
19 for each instance:
20 build POU’s instance body

Code 23: Algorithm for the PLC reading

Thus, the algorithm representing the execution of the IEC parser has the structure
shown in Code 23. To each file received (line 1), lexical analysis is performed (line 2), then
the Parser itself will process the sequence of tokens generated, according to the production
rules defined for the SFC and ST languages, Types and POUs declarations. Each type
declaration will be parsed (lines 3-4) to generate a DataTypeElement object with the
respective information: its name, the type it is based on (baseType) and initial value, if
any. From line 5 on, the parsing process takes care of the POU declarations, building
the POU objects following guidelines dependent on the POU type and implementation
language: the POU functions, for being stateless, may have their body only in ST, since
SFC, per definition, requires states to model a PLC program, while the function blocks
and programs may be in ST or SFC, which requires di�erent POU body parsing.

The POU objects are created in the same manner (di�ering on the name and pouType
attributes, clearly) — lines 6, 10 and 17; a distinction will occur only for the POU
functions, whose names will be su�xed by “_op” — this is necessary because the POU
functions have a default return value that is not represented as a variable in its interface,
which, when in the generation of the B model, will require an explicit representation, that
we chose to be named after the POU, thus demanding the changing of the POU object’s
name to avoid naming redundancy when building the B model.

The POU objects’ interfaces are the result of parsing the variables declarations for
each POU, prior to its body parsing: the variables will be categorized according to their

86

class (input, output, etc.), with types and initial values, if any, also being used to build
the Variable objects to be put in the lists of the POU’s Interface object — lines 7, 11
and 18.

As previously said, the POU’s body parsing is language dependent. If the language
is ST, the procedure will consist of processing the statements (assignments, function
invocations, etc.) and generating the equivalent B translations, organized in sequential
compositions; this will be carried out according to the translations rules presented in
the Translation Process Section,4.2.2, later in this chapter. A string with the resulting
B statements is stored in an AddData object in the POU object’s Body, while a string
with the original ST statements is assigned to the Body itself.

Besides language issues, the function blocks also demand additional treatment for their
instantiation feature: for each instance declared in the parsed POUs, a distinct body
parsing is performed over the function block (line 20); the necessity for this arises from
the independency of state between the di�erent instances of a POU function block, thus
naming alterations are made in the output and inOut variables — the elements used by
the POUs instantiating the function blocks: references to these variables in the resulting
B translations for the POU body will be prefixed by the instanceName. The resulting
strings with the B statements will be stored in the AddData object for the POU, with a
Data object for each instance.

1 for each step:
2 build Step object
3 if initial step then
4 set attribute initial
5 map step’s name to associated actions
6 for each action:
7 actionParsing()
8 for each transition:
9 transitionParsing()

10 build BodySFC from built objects

Code 24: Algorithm for the SFC Body construction

SFC parsing

The parsing of a SFC body requires more than just analyzing each statement and
giving its respective B translation, since the SFC body’s organization is not only a textual
sequence of statements, but of several constructs corresponding to graphical elements
associated to other elements. In Code 24 the guidelines for a SFC program parsing, in

87

order to build a BodySFC object, are presented.

The basic organization of a SFC body, as shown in the respective section, Sec-
tion 3.1.2.8, in Chapter 3, is with steps, transitions connecting them to each other and
actions associated with them. Thus, the construction of the POU body’s object is made
by the parsing of these elements: to each step declared a Step object is built (line 2), with
the respective name, and the actions’ names declared as the ones performed when that
step is activated, are acknowledged (line 5); also, if the parsed step is declared as the
initial one, the respective attribute is set in the Step object (line 4).

1 translate action body
2 build an Action object
3 build an ActionCommonObject
4 get respective Step
5 if there is not an ActionBlock associated then
6 build ActionBlock object
7 associate ActionBlock with Step
8 else
9 get ActionBlock associated

10 put ActionCommonObject in ActionBlock
11 put translated statements in Step’s AddData
12 put reference to modified variables in Step’s AddData

Code 25: Algorithm for the Action parsing

The parsing of a SFC action declaration is carried out in Code 25. The action will
consist of its name and its implementation, the action body, which in an IEC textual
file can be only is ST. Once the ST statements are translated to B notation (line 1), an
Action object, named after the SFC action, is built with the original statements (line 2);
this Action is referenced in the ActionCommonObject, graphical element, built (line 3) to
be put into the Step’s ActionBlock (line 10). If the Step does not have an ActionBlock
associated to it, one is created to that purpose (lines 6-7), otherwise it is simply retrieved
(line 9). The B statements resulting from the ST translation are stored in the Step’s
AddData (line 11), as well as the variables that are modified in that action (line 12), a
relevant information when the generation of the B model is carried out.

For the SFC transitions the parsing process, whose structure can be seen in Code 26,
is mostly concerned with the connections made with the steps, both from and to. Firstly,
a TransitionSFC object, representing the graphical element in the SFC language for a
transition, is built (line 1), with its name being generated as “T” + numberTransitionsAl-
readyRead + 1. If the transition is from more than one step, a SimultaneousConvergence
object is built to represent the convergence of several paths into a transition (line 4), while

88

1 build TransitionSFC object
2 if transition has more than one source step then
3 build SimultaneousConvergence object
4 associate TransitionSFC object to SimultaneousConvergence object
5 associate SimultaneousConvergence object with all source Step objects
6 else
7 associate TransitionSFC object with the source step
8 if transition has more than one destination step then
9 build SimultaneousDivergence object

10 associate SimultaneousDivergence object to TransitionSFC object
11 associate destination Step objects with SimultaneousDivergence object
12 else
13 associate destination Step object with TransitionSFC object
14 put translated condition in destination Step’s AddData
15 for each destination Step object built:
16 put translated condition in Steps’s AddData
17 put transition’s source steps names in Step’s AddData
18 build Transition object
19 associate TransitionSFC’s Condition object with Transition object

Code 26: Algorithm for the Transition parsing

if it is to more than one step a SimultaneousDivergence object is built to represent the
divergence of one path into several ones after the transition (line 10); in either case the
object created is associated with the Step objects, for each source step or for each destina-
tion step, respectively, as well as with the TransitionSFC object for the transition, being
its source (line 5) or its destination (line 12); when there is only one source or destina-
tion step the association is done directly between the respective Step and TransitionSFC
objects (lines 8 and 15). Finally, once the structure of the step/transition relations is de-
fined, the transition’s logic condition is parsed, with the original ST statements being put
in the Transition object, and the B translations, as well as the transition’s source steps
names, are put in the AddData object of the respective Step object for each destination
step (lines 15-17).

At last, after the performance of these procedures, a BodySFC object is built with all
the Step, ActionBlock, TransitionSFC, SimultaneousConvergence and SimultaneousDiver-
gence objects built during the parsing of the SFC elements (line 12 of Code 24).

4.1.2.2 PLC Example

The complete textual representation of the SFC program shown as an example for
SFC, in Figure 16, at page 50, with only the partial textual representation presented in
Code 3, at the same page, now as a POU program, can be seen in Code 29. The POU
function declaration for isHigher, used in sfcSimple, is shown in Code 28, while the new

89

types declared for use in the program, RESULT and ANSWER, are presented in Code 27.

1 TYPE
2 RESULT : (YES, NO, UNDETERMINED);
3 ANSWER : ARRAY [1..2] OF RESULT;
4 END_TYPE

Code 27: Textual representation of some
Data Type Elements declaration.

1 FUNCTION isHigher : BOOL
2 VAR_INPUT
3 n1 : INT;
4 n2 : INT;
5 END_VAR
6

7 isHigher := n1 > n2;
8 END_FUNCTION

Code 28: Textual representation of
a POU function in ST declaration

1 PROGRAM sfcSimple
2 VAR_INPUT
3 n1 : INT;
4 n2 : INT;
5 in1 : BOOL;
6 END_VAR
7 VAR
8 answers : ANSWER := [YES,

NO];
9 END_VAR

10 VAR_OUTPUT
11 higher : RESULT :=

UNDETERMINED;
12 END_VAR
13

14 INITIAL_STEP Start:
15 END_STEP

16 TRANSITION FROM Start TO Step1
17 := in1;
18 END_TRANSITION
19

20 STEP Step1:
21 Action1(N);
22 END_STEP
23

24 ACTION Action1 :
25 IF isHigher(n1, n2) THEN
26 higher := answers[1];
27 ELSE
28 higher := answers[2];
29 END_IF;
30 END_ACTION
31

32 END_PROGRAM

Code 29: Textual representation of a POU program implemented with SFC + ST.

The TYPE clause embodies the new types declaration, defining the type name and
the base type it is derived from. The definition of RESULT (line 2) is made from the
Enumerated type, thus its declaration consists of specifying the possible values an enu-
meration RESULT may assume: in this case either “YES”, “NO” or “UNDETERMINED”
(line 2). The same principle goes for the declaration of ANSWER, derived from the Array
type, where an unidimensional array with basetype “RESULT” and dimension “1..2” is
declared (line 2).

For the POU program, in Code 29, the variables declaration is made from lines 2 to
12, with the inputs inside the VAR_INPUT clause (line 2), the locals inside the VAR
clause (7) and the outputs in VAR_OUTPUT clause (line 10); each of the variables
is identified by its name and type, with the local and output also having an initial value

90

assigned (lines 8 and 11). The parsing of these declarations will be responsible for the
POU object’s Interface building, putting the Variable objects in their respective lists.

The two steps in the SFC program are declared using the INITIAL_STEP and
STEP clauses, the former for the initial step (line 14) and the latter for the normal step
(line 20); the body of the declaration is composed by the names of the actions associated
with the respective step, thus Start has none and Step1 has Action1, declared also with
the qualifier definition — N (line 21). The transition that connects both steps is declared
in clause TRANSITION, with FROM specifying the source steps (Start) and TO the
destination steps (Step1), which can be seen in line 16; the condition of the transition is
presented in line 17, indicating that the execution flow may go from Start to Step1 when
the former is activated, its actions (none) performed and in1 is equal to TRUE.

The action associated with Step1 is declared in the ACTION clause (line 24), iden-
tifying the name of the action and its ST code (lines 25 to 29), which makes use, as the
transition’s condition, of the variables in the interface of the POU to execute its behavi-
our, defining the value of the higher output from the value at position 1 (line 26) or 2
(line 28) in the answer local variable, depending on the result of the isHigher function
performance over the n1 and n2 inputs (line 25).

The declaration of isHigher in Code 28 is made just as for SFCSimple, although it is
declared as FUNCTION instead of PROGRAM (line 1) and its body being composed
solely of ST statements — it tests whether the n1 input is higher than the n2 input,
storing the result in the POU function’s return value, named after the POU itself (line
7).

PLC Object generated

The execution of the IEC reader over these textual files will produce the Types object
seen in Figure 215, with its associated POU and DataTypeElement objects. The POU
objects built are for sfcSimple and isHigher, the former with its pouType attribute set as
“program” and the latter as “function”; for the DataTypeElement objects they will
correspond to the new types declared, thus for ANSWER and RESULT.

The POU object built for sfcSimple can be viewed in detail in Figure 22. The original
statements in action Action1 and in transition T1 are stored in the Action and Transition

5The objects are shown with most of their attributes, like the graphical information, hidden, for clarity.

91

Figure 21: Types object built. Figure 22: POU object built.

Figure 23: Interface of the POU sfcSimple.

objects part of the POU, as the result of the operations performed in the Codes 25 and 26,
for action and transition parsing, respectively.

The Interface object built for sfcSimple is depicted in Figure 23, with each VarList
object representing a category of variables declared in Code 29, for the sfcSimple POU
program: locals, inputs and outputs; the access variables represent the ones built for the
return values of the POU function invocations, a matter that will be discussed when we
present the guidelines for the B models generation, in Section 4.2.3.

Only the local and access variables are shown in detail in the Interface object, for cla-
rity. The local variable answers is typed with the new type ANSWER defined, so its type
object is defined as a Derived object, which will make reference to the DataTypeElement
object built for the new type — this DataTypeElement object for ANSWER is depicted
in Figure 24, where its base type (array) is instantiated. The initial value of answers is an
ArrayValue object, as they need to be represented as a list of values corresponding to the
value in each position of the array, being every one a part of the RESULT enumeration,
the base type of ANSWERS. For the return_isHigher_op variable the configuration
is much simpler, as it has no initial value and is of an elementary type, defined as a single
string — BOOL.

92

Figure 24: DataTypeElements built.

The Body object built for sfcSimple is exhibited in detail in Figure 25. It is generated
from the SFC parsing procedure, as shown in Code 24, resulting in a BodySFC object
with Step, TransitionSFC and ActionBlock objects. The components of a Step object for
Step1 are presented in detail, depicting its ConnectionPointIn, whose Connection is with
the element in the Body that possess localId 2 — the TransitionSFC object for t1 ; it can
also be seen that in the connection’s AddData object are stored, in the Source_Transitions
Data object, at the transition1 element, the B translation for its predecessor transition’s
condition and the source steps from this transition, consequently Step1 own source steps
— Start. The AddData object of the Step1 object itself, in the Actions Data object,
specifically in the action1 element, has the B translation for Action1 ’s ST statements.

Figure 25: Body of “sfcSimple”.

93

4.1.3 PLCopen Reader

The other option our method supports is to build the PLC Object from the PLC
programs in the PLCopen XML format. As the organization of our intermediary structure
is entirely based on PLCopen, the process is pretty much straightforward, once we built
an XML reader using the features of the Qt Framework.

That easiness, however, is only for the elements of the graphical languages — LD,
FBD and SFC; when dealing with ST we need to use a parser to process the code and
generate the translated statements to be used in the B models, as well as determine
auxiliary things that have to be present in the PLC Object, such as, when inside of a SFC
action, its modified variables.

We make use of the parser presented in the previous section, but only as an auxi-
liar service for the XML reader, for processing the ST statements present in the Body
elements of PLCopen.

For LD and FBD the parser will produce POU objects in the same manner as for
SFC, only that their Body objects will be composed of BodyLD and BodyFBD objects,
respectively, the former with numerous LDObjects and the latter with FBDObjects. An
excerpt of the PLC Object class diagram for LD and FBD can be seen in Figure 26, while
the several objects they can assume are presented in Appendix C.

Figure 26: BodyLD and BodyLD

94

4.2 Generating the B Model

Once the PLC Object is constructed, our method is able to work independently from
the PLC programs to generate the corresponding B models. This section explains the
architecture of these models and the translation guidelines for the PLC languages; then
it presents the B Writer module, which implements the generation procedure.

The result of the generation process is not a direct formal modeling of the control
algorithm, it is rather built from the result of a reinterpretation procedure from the already
implemented PLC code — the PLC Object (FREY and LITZ, 2000).

4.2.1 Architecture of the B model

A good architecture is essential to generate a good model, as well as to define which
information from the PLC Object will be responsible for which elements of the B mo-
del, so we can keep traceability between the PLC programs and the corresponding B
specifications.

Figure 27: B model representing a POU program and its use of auxiliary function and
function block POUs.

The architecture of this model is depicted in Figure 27. The PLC program is repre-
sented by a series of instances of this model, each one corresponding to a POU program
and the POU functions and function block instances it may use, with every POU being
modeled as a B machine and refinement, aside from the POU functions.

The POU programs and function block instances are modeled as a machine + re-
finement due to the gain in expressivity obtained at Refinement level, which eases the

95

representation of the PLC language elements in the B notation, such as the possibility
of sequential compositions. Therefore, in the abstract level we only indicate which part
of the machine’s state will be modified in each operation6, considering any behaviour
possible, while the actual behaviour, derived from the POU bodies’ translations, being
considered solely in the refinement level, as the only subset of the possible behaviours
established at machine level that is accounted for. Thus, the safety constraints will be
taken into account only on this level, inserted as invariants in the refinements — this
way the abstract level, as previously said, just indicates the elements of the problem’s
state space, not being considered in the verification process, which only takes place over
the refinements representing the POUs’ behaviours.

The decomposition in the representation of the PLC program through POUs, besides
splitting the complexity for performing the intended behaviour also splits the verification
e�ort to attest its correctness. Since the invariants are considered only at the refinement
level, the components may be verified independently from the other components that
access them. The INCLUDES relation between the POU program and its function block
instances allows the free use of its state — mandatory due to the PLC semantics itself
—, but as these are accessed only at the abstract level, where we do not exhibit the
POU’s behaviour, every restriction about the correctness of this behaviour is passed to
the function block component — in the POU program the concern is that it behaves
correctly whatever is the result of the function blocks’ execution, exactly what is obtained
by only considering their abstract state.

The POU functions, for being stateless, makes purposeless to put any constraint over
its behaviour by means of invariants over its state, simply because they do not have any.
By the same principle refinements are innocuous for them, as there will be no state to
refine. This leads to the modeling of each POU function as a B operation, all collected
in the B machine “Functions”, where no state is kept, so these operations must make
use only of the values they receive and the ones they produce (inputs and outputs); this
restriction, as well as having only the abstract level constructs to work with, forces the use
of some workarounds, to be presented in the next section, in the B language to overcome
the issue of representing the POU bodies, but allows the use of the SEES structure
when relating the “Functions” machine to the numerous other components of the model;
another issue is that as no restriction over the behaviour of the POU functions is possible
in the “Functions” machine, these must be carried out in the component invoking the

6This is represented by nondeterministic assignments of any possible value, given its type, to the
variables.

96

operations, be it a POU program or a function block instance, through the results obtained
after the invoked operation’s execution with the given inputs.

The POU function blocks, for being stateful, are represented with a separated com-
ponent for each instance used in the POU program, so their states may be represented
independently and kept between invocations. Another feature of our B model architec-
ture, not depicted in Figure 27, is that function block instances may use other function
block instances themselves, so they may include the machine part of these components
as well.

Once the overall architecture of the B model is known we concentrate on the internal
structure of the individual components.

4.2.2 Translation Process

As important as the architecture of the model is a good set of guidelines for the
translations of the PLC language elements into the B notation, so the semantics of the
PLC programs may be preserved when their B representations is generated, as well as
keeping the traceability between their elements.

The PLC language elements are the components of the POU bodies composing a
PLC program, thus the following guidelines approach how the Body of a POU is symbo-
lized in the B machines, which is through B operations, with their preconditions and
substitutions.

4.2.2.1 ST

We present below the guidelines for the translation of ST code into B notation. The
general aspects of this translation will be shown, not in excessive detail, for the sake of
clarity.

Expressions

One of the most important steps is regarding the ST expressions, as they are used
in many of the other constructs of the language. They cover the ST operations shown in
Table 17, in Appendix A.

The translation of the symbols in these operations is summarized in Table 11. Since

97

the definition is recursive, special care is taken during the translation process so the
precedence order is respected, through the insertion of parenthesis.

ST Operation Structure B notation
Parenthesization (expression) (expression)
Exponentiation expression ** expression expression ** expression

Multiply expression * expression expression * expression
Divide expression / expression expression / expression
Modulo expression MOD expression expression mod expression

Add expression + expression expression + expression
Subtract expression - expression expression - expression

Complement NOT expression not(expression)
Comparison expression (< | > | <= | >=)

expression
expression (< | > | <= | >=) expression

Equality expression = expression expression = expression
Inequality expression <> expression expression /= expression

AND expression (& | AND) expression expression & expression
OR expression OR expression expression or expression

Exclusive OR exp1 XOR exp2 (exp1 or not(exp2)) & (not(exp1) or exp2)
Table 11: ST operations and their equivalent B notations

A remark must be made regarding the logic expressions (involving the boolean and
comparison operators): in the B language, when a boolean variable is present in an ex-
pression its value cannot be directly accessed — it needs to be inside a predicate, so one
needs to compare it to some other boolean value for the expression to be valid; in order
to obtain the desired execution a comparison to TRUE is made, preserving the expression
semantics. For instance,

boolV ar1 AND boolV ar2

must be translated, for a semantic equivalent, to

(boolVar1 = TRUE) & (boolVar2 = TRUE)

Function block invocation

Other significant constructs in ST are the function and function block instance invo-
cations. The treatment to the latter is simpler, as only a B operation, with no outputs,

98

is called, representing a reference to the block’s body. The name of the B operation will
correspond to the instance and depend on the language the function block body is imple-
mented. As in the function block instances the translated statements are considered only
at refinement level, the operation to be called in the abstract level is only the one receiving
the parameters, which will be, for FBD and ST, instanceName plus the su�x “_body”,
since the programs for these languages are translated to a single B operation. However,
since the SFC and LD programs are translated through one or more B operations, the
function block invocation is made through the operation corresponding to the initial step
or the first rung, respectively, where the parameters are read for the execution through
the other operations — thus, the operation called is instanceName plus the su�x “_ +
initialStepName” or “_rung1”7.

1 fbInstance_identifier (argument list);

2 variable := fbInstance_identifeir.output;

Regarding the use of the resulting outputs from the function block execution, it is
made through a ST assignment, as seen in line 2 of the ST structure for function block
invocation; the B equivalent is almost the same, di�ering only on the separator from the
fb instance name and the output name — instead of a “.”, a “_”.

An example of the translation of a ST function block invocation is presented in
Code 30, with the above code being the one in the PLC language, while the one be-
low is its respective B translation. An instance, “test_MEmg”, of a function block who
possesses four inputs is invoked and then has its output “authorize” assigned to a va-
riable — the B translation is carried out and the function block instance is invoked with
its body operation receiving the inputs, and its output, whose name is prefixed by the
instance name, being assigned.

1 test_MEmg(stopped := speedZero, in_platform := platformSafe,
doors_closed := TL_DOORS_CL, doors_locked := TL_DOORS_LCK);

2 TL_AUTO_EMG := test_MEmg.authorize;

1 test_MEmg_body(speedZero, platformSafe, TL_DOORS_CL, TL_DOORS_LCK);
2 TL_AUTO_EMG := test_MEmg_authorize;

Code 30: B generation from ST function block invocation

7The process of building the machines and refinements, for each POU and according to the language
its body is in, is shown in detail in next section.

99

Function invocation

As for the function invocations, there are some issues to be taken care of in order to
build the semantically equivalent B statement. Below the di�erent cases where a function
invocation may occur in ST are presented:

1 variable := function_identfier(argument list);

2 variable := expression + function_identifier + expression;

If a function is being invoked as in line 1, no special treatment other than the direct
translation is necessary — simply replace the “:=” symbol for “<--”, which is how B
marks the calling of an operation from another scope, and add the su�x “_op” to the
function’s name; however, if the calling is made as in line 2, with the function invocation
as part of a bigger expression, a workaround is necessary to keep the statement semantics,
once in B a function can not be called as part of an expression. The process is detailed in
Code 31.

1 calculate n: number of function invocations in these conditions

2 create returnVariable: ‘‘return_’’ + function operation name + n

3 build statement returnVariable <-- functionInvocation (argument list)

4 for all the occurrences of that functionInvocation in the expression:

5 replace the invocation for the returnVariable

Code 31: B generation from ST function invocation

The other technicality is regarding the inOut variables that may be passed to the
function. As in B there is no concept of passing arguments by reference, the variable
passed as an inOut parameter in ST will need to be both input (passed as parameter)
and output (receives return value) in the B function invocation: it is added to the list of
variables receiving the returned values of the B operation invocation.

An example of the translation of a ST function is presented in Code 32. In the ST
code firstly the function is being invoked alone, whose translation is pretty simple; then
it is invoked as part of an expression with another elements, which requires the execution
of the procedure in Code 31 for the generation of the respective B translation.

The case where an inOut variable is involved is also demonstrated: the function
doublesHigherThanTen takes a numeric value that, if is higher than 10, is dou-

100

bled, in which case its default return value is assigned as TRUE, otherwise being
FALSE. The function invocation in the ST code assigns the returned value to a variable
“successfullyExecuted” and “n3” is sent as an inOut parameter. The respective B
translation adds n3 as a return value for the operation invocation, clearing the issue.

1 n3 := getHigher(n1, n2);
2 n3 := n1 + getHigher(n1, n2);
3 successfullyExecuted := doublesHigherTen(n3);

1 n3 <-- getHigher_op(n1, n2);
2 return_getHigher_op1 <-- getHigher_op(n1, n2);
3 n3 := n1 + return_getHigher_op1
4 successfullyExecuted, n3 <-- doublesHigherThanTen_op(n3);

Code 32: B generation from ST function block invocation

Assignments

Besides the internal structure of an expression, another important factor is how it
is used in the ST code, which may demand special treatment when the B translation is
performed. In the case of the a ST assignment, whose structure is

variable := expression

the resulting B statement will be among four di�erent outcomes, depending on three
conditions over the expression being assigned:

• it is a logic expression (isLogicExpression).

• it is solely a function invocation (isSolelyAFunctionInvocation).

• it is an expression with a function invocation as one of its operands (hasInExpres-
sionFunction). This one is mutually exclusive with the previous condition.

The possible outcomes will be determined according to the combinations of these
conditions, following the algorithm in Code 33. The outcome 1 represents the situation
when none of the previous conditions was the case, so the process goes straightforwardly.
If the isSolelyAFunctionInvocation condition was satisfied, given the other two were not,
the B assignment, when a function is being invoked, requires the use of the “<--” symbol

101

1 if (!isLogicExpression & !hasInExpressionFunction) then
2 if !isSolelyAFunctionInvocation then
3 translateTo variable := expression (outcome 1)
4 else
5 translateTo variable <-- functionInvocation (outcome 2)
6 else if hasInExpressionFunction then
7 create auxiliar function assingment statement
8 if !isLogicExpression then
9 translateTo variable := expression (outcome 3)

10 else
11 translateTo variable := bool(expression) (outcome 4)
12 else
13 translateTo variable := bool(expression) (outcome 4)

Code 33: B generation from ST assignments

instead of “:=”; otherwise the translation has no other peculiarities. In lines 6-11 the
situations where hasInExpressionFunction is valid are treated; firstly, a B statement is
created, previously to the one being translated, for the assignment of the function result
to the respective auxiliar return variable (line 7), then the main assignment, translation
of the expression with the function invocation replaced by the respective auxiliar return
variable, is built depending on isLogicExpression: if it is false, outcome 3, otherwise
outcome 4, where the expression is put inside the predicate bool(), once the expression’s
boolean result can only be assigned if inside a predicate. In line 13 the case in which
isLogicExpression is valid and there is no function invocation is treated, also as outcome
4.

An example of a series of ST assignments translation is presented in Code 34. In line
1 of the ST code is the assignment that will result in outcome 1 for the B translation,
the assignment with no special conditions, whose straightforward translation is in line
1 at the B notation part. In the next line the exhibited case is for outcome 2, when
the assignment is solely of the function invocation’s result, whose B translation has the
changing of the assignment symbol for the function invocation one, besides the presence
of the _op su�x in the function’s name. The case where a function is invoked as part
of a not logic expression (assignment for numVar3) fits into the outcome 3 scenario,
where the creation of an assignment of the function invocation for a temporary return
variable (line 3 at the B notation part) which is then used instead of the invocation in the
original expression translation (line 4 at the B notation part). It is a very similar scenario
as the ones in lines 4-5 in the ST code, where outcome 4 is reached, di�ering from
the previous case for being a logic expression, resulting in the B expressions inside the
bool() predicate shown in lines 5-8 at the B notation part. Outcome 4 is also applied

102

for the last assignment in the ST code, only that no processing for a function invocation
is necessary.

1 numVar1 := n1;

2 numVar2 := getHigher(n1, n2);

3 numVar3 := n1 + getHigher(n1, n2);

4 boolVar1 := TRUE AND isHigher(n1, n2);

5 boolVar2 := boolVar1 OR isHigher(n1, n2);

6 boolVar3 := boolVar1 XOR boolVar2;

1 numVar1 := n1;

2 numVar2 <-- getHigher_op(n1, n2);

3 return_getHigher_op1 <-- getHigher_op(n1, n2);

4 numVar3 := n1 + return_getHigher_op1;

5 return_isHigher_op1 <-- isHigher_op(n1, n2);

6 boolVar1 := bool((TRUE = TRUE) & (return_isHigher_op1 = TRUE));

7 return_isHigher_op2 <-- isHigher_op(n1, n2);

8 boolVar2 := bool((boolVar1 = TRUE) or (return_isHigher_op2 = TRUE));

9 boolVar3 := bool(((boolVar1 = TRUE) & not(boolVar2 = TRUE))

or (not(boolVar1 = TRUE) & (boolVar2 = TRUE)))

Code 34: B generation from ST assignments

IF

Given the previous definitions, the translation of the ST IF statement goes almost
directly, as depicted in Code 35, only with the END_IF token being translated as END,
besides the expressions, function invocations and assignments in the statements and in
the IF conditions.

Example

We present a small example that covers part of the features presented in this section,
with a piece of ST code and the respective B translation that our method generates,
following these guidelines.

The line 1 of the ST code presents a function invocation that fits into the inExpres-

103

IF logicExpression THEN
statements

{ELSIF logicExpression THEN
statements

}
[ELSE

statements
]
END_IF

IF bool(logicExpression) THEN
statements translated

{ELSIF bool(logicExpression)
THEN
statements translated

}
[ELSE

statements translated
]
END

Code 35: B generation from ST ’IF’ statements

1 IF NOT isHigher(n1, n2) AND
performOperation THEN

2 n1 := n1 + n2;
3 ELSE
4 n1 := n1 - n2;
5 END_IF

1 VAR return_isHigher_op1 IN
2 return_isHigher_op1 <--

isHigher_op(n1, n2);
3 IF not(return_isHigher_op1 = TRUE)

& (performOperation = TRUE)
THEN

4 n1 := n1 + n2
5 ELSE
6 n1 := n1 - n2
7 END
8 END

Code 36: B generation from ST example

sionFunction case, so the presented strategy must be applied: the creation of a transient
variable to receive the value of the function call and be used in the respective expression
(outcome 3, following Code 33), resulting in lines 1-3 of the B code, with the transient
variables being defined in a VAR clause for being used in that scope. It is interesting to
notice that although the function is being invoked amidst an AND expression this does
not satisfy isLogicExpression: that is so because the IF statement can access the boolean
value of an expression without the need of the bool() predicate; nonetheless, the boolean
variables still need to be inside a predicate(comparison with TRUE). The expressions are
translated according to Table 11, straightforwardly.

4.2.2.2 FBD

FBD programs

To translate the FBD programs to B notation we oriented the construction of B
expressions based on the organization of the elements of the program: how its blocks,
inVariables, inOutVariables and outVariables are connected, interacting with each other.

104

In Code 37 the guidelines for this translation are shown.

1 for each out variable:
2 determine connected element acoording to CPointIn
3 if connnected to block:
4 build block invocation
5 if stateless block
6 build assignment: output ’:=’ returnVariable
7 else
8 build assignment: output ’:=’ fbInstance_out
9 else

10 build assignment: output ’:=’ variable
11 (*----------------- Building block invocation ------------*)
12 determine arguments according to the CPointIns of the block
13 for each connected block:
14 build connected block invocation
15 if staless block then
16 build function invocation statement
17 if stateful block then
18 build fb instance invocation

Code 37: B generation from a FBD body

As stated in line 1, the process is for each outVariable (or inOutVariable) in the FBD
program. Firstly, from the ConnectionPointIn in the variable element, the reference to
whom it is connected is obtained (line 2). If this element is a block then the invocation
of its corresponding B operation will be necessary — the building process will correspond
to the ST functions or function block invocations in the previous section (lines 16 and
18. This procedure is recursive: each input of a block that is connected to another block
will demand the construction of the invocation statement of this block (lines 12-14).
The order for building the invocation statements is from the higher to the lower pin in
the block, unless the execution order attribute in any of the blocks is defined, in which
case the blocks with higher precedence have their invocation made before the ones with
lower precedence8. If the block’s input is connected to a variable then it is directly passed
as a parameter to its argument list. Once the chain of blocks (if any) connected to the
outVariable in question is treated, its assignment may be constructed; if there was no
block connected to it, then it had to be another variable (line 10); if it was a block then
the assignment will be either of the return variable of the corresponding function (line 6)
or from the respective output in the corresponding function block instante (line 8).

8This is a solution for cases such as a connected block having an output as input for another connected
block.

105

Standard blocks

Some blocks are direct representations of expressions supported in ST, in which case
there is already an equivalent B translation and the building of a “B function” is not
necessary to represent it. So, when these blocks are faced in the translation of a FBD
program, the corresponding B expression is used instead of a function invocation.

The blocks with correspondent B operations are:

• Arithmetic: Adding, multiplying, etc.

• Bitwise: AND, OR, etc.

• Comparison: greater than, equal, lesser, etc.

There are also some standard function blocks defined in PLCopen that may be used in
the PLC programs. A library with these blocks and their respective translation is available
for use. An example is the Set_Reset Flip Flop function block, the SR block. It represents
an operation where a bit may be set or reset according to the inputs received: the state
of the block corresponds to the memory address of the bit being set or reset, so several
instantiations of the block may cover several bits in di�erent memory addresses.

Example

To exemplify our translation procedure for FBD programs we use an example similar
to the one presented in the previous Chapter, in Figure 7, at page 43, only that now
di�erent blocks are used, representing POU functions, not standard blocks (such as were
the AND and OR blocks); the SR function block is maintained. The program we translate
is depicted in Figure 28.

The value of OUT, an outVariable, is determined by the output Q1 of the SR1 instance
for the SR function block, whose set and reset inputs will be, respectively, from: the
equality comparison of the inputVariable IN1 with the result of the getHigher block, which
has as output the higher value between the inputs received, thus the higher between of
IN1 and IN2 ; and whether the higher value between IN1 and IN2 is higher than IN3 —
the output of the block isHigher. The numbers just below the blocks mark their execution
order, with the lesser number representing the higher precedence.

106

Figure 28: FBD program to be translated to B notation

1 VAR return_getHigher_op1, return_isHigher_op1 IN
2 return_getHigher_op1 <-- getHigher_op(IN1, IN2);
3 return_isHigher_op1 <-- isHigher_op(return_getHigher_op1, IN3);
4 SR1_body(bool(IN1 = return_getHigher_op1), return_isHigher_op1);
5 TestFBD_OUT := SR1_Q1
6 END

Code 38: B generation from FBDTest example

The B statements with the equivalent behaviour is presented in Code 38. In lines
2 and 3 the invocation of the stateless blocks is performed, with the necessary return
variables defined in line 1, with the VAR clause. The function block instance call for
SR1 is made in line 4, with its first argument, the equality comparison block, being
automatically translated to the logic expression for equality comparison in B — thus, the
EQ block is converted in the expression bool(IN1 = return_getHigher_op1), since the
input IN2 receives the resulting value from the getHigher block evaluation. In line 5, once
the function block instance has defined its output value, the assignment is made to OUT,
which, for being the output of a instance of a FBDTest function block itself, TestFBD,
has the instance name as its prefix.

4.2.2.3 LD

The B translation of a LD program, as in FBD, will also be oriented by the organi-
zation of its graphical elements: how the contacts, blocks and variables are disposed so
that a coil is energized once the rung is closed. In Code 39 the generation procedure is

107

presented.

1 for each CPointIn in the right power rail:
2 set connected element (coil) as l-value
3 for each connected element from coil’s CPointIn
4 buildExpressionFromElement
5 if more than one resulting expression
6 build an OR expression from resulting expressions
7 build assignement l-value := OR expression
8 else
9 build assignement l-value := sole resulting expression

10 (*----------------- Buildi Expression From Element ------------*)
11 take connected elements from CPointIn
12 if connected to left power rail or without connections
13 build expression solely with received element
14 else
15 for each connected element
16 buildExpressionFromElement
17 if more than one resulting expression
18 build an OR expression from resulting expressions
19 build an AND expression with received element and OR expression
20 else
21 build an AND expression with received element and sole resulting

expression

Code 39: B generation from a LD body

As stated in line 1, the process is for each coil connected to the right power rail,
therefore for each rung in the LD program. A logic expression will be built corresponding
to the rung organization (lines 3-6), establishing that when the rung is closed its value is
TRUE, being FALSE otherwise; this expression will be assigned to the coil (which represents
an output, inOut or local variable).

The structure of the expression representing the rung evaluation is defined mainly
from lines 11 to 21. If, for a given element, there is more than one element connected
to it, an OR expression must be built for each of the expressions resulting from the
translation of these elements (lines 15-19); then if the given element is energized and the
path leading to it also is, that part of the rung will be closed (line 19 or 21). The base
case in this recursive procedure is when the element hit is connected to the left power rail
(first element in the rung) or when it is not connected to anything (outside the scope of
the LD language, like a FBD variable).

An important remark is that each of the elements evaluated in the elaboration of the
rung expression are inserted into the B translation with the correspondent translation
from previous language elements: blocks will be invoked as functions or function blocks
in the same manner as in FBD programs, so the same goes to the variables, treated as in

108

a ST expression.

Example

Figure 29: LD program to be translated to B notation

To illustrate the translation from LD to B we use the LD program depicted in Fi-
gure 29, where a block is used in the middle of a rung, also receiving values from FBD
inputVariables, independent from the rung evaluation. The closing of the rung and conse-
quent energizing of the coil out1 in the first rung will depend on the function processing.
Whether the second rung is closed, and out2 energized, will depend on the value attri-
buted to out1 in the previous rung and if var1 is not energized, or var2 or var3 is
energized.

1 FBD1_body(bool(not(var2 = TRUE) & (var1 = TRUE)), var3, var4);
2 out1 := FBD1_OUT;
3 out2 := bool((var3 = TRUE) or (var2 = TRUE) or not(var1 = TRUE)) & (out1

= TRUE))

Code 40: B generation from LD example

The resulting B translation to this LD program is presented in Code 40. The trans-
lation of the first rung into a B expression results in lines 1 and 2: in 2 the coil (out1)
receives the block output (FBD1_OUT), which is determined after the function block ins-
tance invocation in line 1, whose first parameter is the resulting expression from the rest
of the rung and the others are the FBD inputVariables. The second rung’s expression is
generated straightforwardly through the guidelines for the LD translation, composed by

109

an AND expression with an operand as the predicate for out1 and the other for the OR
expression with the predicate for the alternative paths to energizing the rung after it is
past the first contact. The coil out2 then is assigned the value resulting of this AND
expression evaluation (line 3).

4.2.2.4 SFC

The translation of the SFC programs is also dependent on its structure: how the
steps are disposed, which are the actions associated to them, what’s the language they
are implemented in, and what is the organization of the transitions between the steps.

For the steps and the actions associated the translation process follows the guidelines
shown in Code 41. Firstly, for each step in the SFC program (line 1), all of its actions
are retrieved (line 2) and translated to the B notation depending on their language (lines
3-9). The resulting translations are then composed as a set of sequential substitutions to
be performed in the same order in which the actions were associated to the SFC Step
(line 10).

1 for each step:
2 for each associated action:
3 if ST body then
4 get translated statements
5 else
6 if LD body then
7 build LD expressions
8 if FBD body then
9 build FBD expressions

10 build step substitutions

Code 41: B generation from a SFC body

Considering the SFC example used in previous sections, but now with two actions
associated to Step1 — Action1 in ST and Action2 in LD —, whose new structure is
depicted in Figure 30, with the Action2 ’s LD body in Figure 31, the resulting B translation
for Step1 would be the one exhibited in Code 42. From lines 2 to 7 are the resulting
translations of Action1, following the guidelines for the ST to B translation procedure,
while from lines 8 to 9 are the statements resulting from the LD to B translation, with
line 8 corresponding to the first rung and line 9 to the second rung. The action statements
will compose the Step1 substitutions respecting the order they were declared in the SFC
Action Block.

The other elements to be considered in a SFC body are the transitions and how they are

110

Figure 30: SFC example modi-
fied.

Figure 31: Action2, in LD

1 VAR return_isHigher_op1 IN
2 return_isHigher_op1 <-- isHigher_op(n1, n2);
3 IF return_isHigher_op1 = TRUE THEN
4 higher := answers(1)
5 ELSE
6 higher := answers(2)
7 END;
8 LDResult1 := bool((not(in1 = TRUE) or (in3 = TRUE)) & (in2 = TRUE)

);
9 LDResult2 := bool((LDResult1 = TRUE) & (in4 = TRUE))

10 END

Code 42: B generation from LD example

connecting the steps; the definition of the reaching conditions for a step will be determined
by them, which will compose the precondition of the B operation representing each
step in the SFC body. In Code 43 the guidelines for their generation are shown, which will
result in a logic expression involving the transitions and steps preceding the step taken
into account.

The procedure is performed for each step in the SFC body and executes according to
whom the step is connected with (line 1), from three options in a valid SFC program: a
transition, a selection convergence or a simultaneous divergence. For the first two (line 2),
each transition preceding the step is analyzed (line 3), firstly taking its logic condition (line
4) and then, if this transition is preceded by a selection divergence, taking the negation of
all the transitions composing the divergence (lines 5-7) and building an AND expression
with all the conditions, with only the step preceding transition’s condition not negated –
this represents the evaluation order in a selection divergence, where a transition is cleared
only if the other transitions previously evaluated were not.

Once the logic condition for the preceding transition is defined, one needs to consider

111

1 for each connected element from step’s CPointIn:
2 if transition or selectionConvergence then
3 for each preceding transition:
4 get preceding transition’s condition
5 if transition’s predecessor is selectionDivergence then
6 build AND expression with all transition’s conditions

negated
7 set logiCondition with the preceding transition’s

condition and the AND expression
8 else
9 set logiCondition as the preceding transition’s

condition
10 get transition’s source steps
11 build an AND expression with source steps and logiCondition
12 set connectionCondition as the resulting AND expression
13 build step’s reachingCondition as OR expression with

connectionConditions
14 else #connected to simultaenousDivergence
15 get connected simult divergence’s name -- simDiv
16 build step’s reachingCondition as being a successor of the

respective simDiv

Code 43: B precondition generation from Step connections

its source steps (line 10). This is necessary because a SFC transition is evaluated only
when the execution flow is coming from their predecessor steps, therefore, in order to
emulate this flow, we need to allow a step to be reached only when their transitions’ logic
conditions are valid and the source steps of each of those transitions were just executed
(line 11). Thus, if the step was preceded for more than one transition, an OR expression
is built with the respective conditions, otherwise the condition to the single transition is
defined as the step’s reaching condition (lines 12-13).

The other case to consider relative to the element preceding the step is when it is
a simultaneous divergence (line 14). In this case the reaching condition for the step will
be solely that its preceding simultaneous divergence was reached and the step has not
yet been activated, since the evaluation of the transition’s condition and source step’s
execution will be done by the simultaneous divergence itself (lines 14-16).

To exemplify the generation of a step’s reaching condition we make use of the SFC
programs presented in the previous Chapter, in Section 3.1.2.8, for the SFC language.
There is an example for each of the possible situations covered by the previous guidelines.

In Figure 10, at page 47, a sequence of steps connected by single transitions is depicted,
which fits into the most simple case for our reaching conditions’ generation procedure.
Thus, for Step2, for instance, the resulting reaching condition would be of the form

112

T2 & Step1

A selection convergence is present in the SFC program shown in Figure 13, at page 110,
which has Step7 as destination. The generation of its reaching condition must take into ac-
count all the transitions, as well as their source steps, leading to the selection convergence
in question, thus the reaching condition of Step7 has the form

(T3 & Step3) or (T5 & Step4) or (T8 & Step6)

For the SFC program in Figure 15, at page 49, the case where the preceding transi-
tion is in turn preceded by a selection divergence applies. Thus, considering that in this
structure a step is reached only when its transition is cleared and the others were not the
reaching conditions for, e.g., Step2 would be of the form

(T1 & ¬T2) & Step1

The last situation, when the step is preceded by a simultaneous divergence, is the one
depicted in Figure 14, at page 49. The reaching conditions would then be thus defined:

For the simultaneous divergence: T1 & Step1

For Step2 : Step2 œ simDivSuccessorsYetToBeActivated

This way the execution flow in a SFC program can be represented by its B model
equivalent.

4.2.3 B Writer

The B Writer module receives a Types object from the PLC Object and generates a
B model in the architecture shown in the previous section for each POU program in it,
making use of its auxiliary POU function and function block instances objects, as well as
of the DataTypeElement objects used.

The B machines will be composed of three main parts, each derived from a subset of
the POU objects and responsible for an aspect in the model:

• Static information: derived from DataTypeElement objects and flow control
constructs.

113

• State: derived from POU ’s Interface and flow control constructs.

• Behaviour: derived from POU ’s Body.

Another component of the B machines generated will be the composing structures and
their use: the INCLUDES and SEES clauses, the former used by the POU programs
and function block instances to access the function block instances they use, while the
latter is used by these same components to allow the invocation of the POU functions
represented by the operations of the to be seen “Functions” machine.

The modeling of the static information in the machines will be made by the SETS
clauses, while the state will be composed of the VARIABLES, their typing INVARI-
ANTS and INITIALISATION, with the behaviour performed over this state being
defined in the OPERATIONS. The guidelines for the generation of these clauses are
presented below.

To emulate the flow control of the PLC programs, a concept non-existent in B, some
workarounds are needed. The additional elements will be necessary for POU programs and
function blocks instances whose body is in LD or SFC, which are modeled as a series of B
operations — for the numerous rungs and steps/simulatenous divergences, respectively.
The flow control will be made using a SET modeling the possible elements that may
be active in a given moment, as well as the last that was executed; specifically for the
SFC simultaneous divergences, variables are created also for flow control regarding their
successor steps.

Once a POU runs in execution cycles the emulation of each cycle is made by repeating
the scan procedure: read the inputs, process them and produce the outputs. The structure
of the B operations representing a POU body must be compliant to this, allowing the
reading of the inputs, the performance of the respective behaviour translated from this
body and, finally, the definition of the output values produced after each cycle.

4.2.3.1 Static information and structuring

The static information in the B machines generated will be derived from the DataTy-
peElement objects and, if necessary, increased with the flow control constructs required
by the respective POU implementation.

114

Functions

In the machine Functions, to be seen by all the components of the model, the SETS
corresponding to the enumeration types declared are built. Each set is constructed
following the structure9:

SET ::= enumerationTypeName ‘=’ ‘{’ valueName {‘,’ valueName } ‘}’

Thus, an enumeration type of the form RESULT : (YES, NO, UNDETERMINED)

would result in a B set with the declaration RESULT = {YES, NO, UNDETERMINED}.

Programs and Function Block Instances

If a POU program or function block instance machine is being built and its body
is in LD or SFC, a set representing the language elements that are correspondent to B
operations, and a value marking that it is the first execution cycle — beginning — are
constructed following the guidelines:

• LD:

SETS ::= LD_CHAIN ‘=’ ‘{’ ‘beginning’ ‘,’ ‘rung’ + rungNumber {‘,’ ‘
rung’ + rungNumber} ‘}’

Therefore, for the LD program shown in Figure 29, in the example for the translation
guidelines for LD, the resulting flow control set would be:

LD_CHAIN = {beginning, rung1, rung2}

• SFC:

SETS ::= SFC_CHAIN ‘=’ ‘{’ ‘beginning’ ‘,’ stepName {‘,’ stepName } [,
simDivName {‘,’ simDivName }] ‘}’

Thus, for the SFC program shown in Figure 14, at page 49, the resulting flow control
set would be:

9We use a notation very similar to BNF to represent our translation rules.

115

SFC_CHAIN = {beginning, Step1, Step2, Step3, Step4, Step5, Step6, Step7,

simDiv1}

The use of these sets by the variables that will indeed make the flow control will be
detailed below.

INCLUDES and SEES

The structuring mechanisms are used by the POU programs and function block ins-
tances components, including function block instances machines they use or seeing the
Functions machine.

The clauses are built with the following structure:

INCLUDES ::= functionBlockInstance {‘,’ functionBlockInstance}

SEES ::= ‘Functions’

Taking as example the LD program used in the previous section, for LD translation,
shown in Figure 29, its INCLUDES and SEES clauses would be of the form:

INCLUDES

FBD1

SEES

Functions

4.2.3.2 State

The state information in the machines will be derived from the Interface objects in the
respective POUs, besides the additional constructs for flow control that are demanded, if
any.

The guidelines have some di�erences depending on the type of the POU and the
language its body is implemented. These are described below.

116

Functions

The POU functions are stateless, then no state information needs to be modeled
for them in the respective machine — Functions. Their inputs and produced outputs, as
well as temporary variables eventually used for their execution will be relative only to the
operation modeling its behaviour.

Programs

A feature common to any POU program being modeled is regarding the inputs recei-
ved.

Variables are created for the internal representation of the POU input and inOut
variables, named by the prefix “int_” plus the variable’s original name. The creation
of these variables is necessary because the inputs and inOuts themselves are going to be
received as parameters in a B operation, but as they may be used in other operations
(for the model of a POU in LD or SFC), that reference would be lost without the saving of
the inputs’ state in the B machine itself. Being part of the machine’s state also allows the
definition of invariants considering them, which will be necessary to verify the correctness
of the POU’s execution according to the safety constraints.

The POU outputs are treated as local variables; it is no loss of generality to deal with
them like that since we are considering the POUs only as independent components. The
safety constraints will concern mostly these outputs, usually relating their values to the
values received as inputs.

For LD and SFC, which make use of numerous B operations to model their POU
bodies, variables will be created for flow control, according to the guidelines shown for
structuring program and function block instances. Only the one stating which was the
last element executed is necessary for LD, but SFC will require more — another to mark
which are the elements currently active and which are the successor steps not yet activated
after a simultaneous divergence clearance. Thus, executed is typed as belonging to the
set with the language operation’s elements — LD_CHAIN or SFC_CHAIN —, and active

and the simDivNameSucs variables, these for each simultaneous divergence, are typed as
a subset of those sets.

117

Function Block Instances

Regarding the state representation, the only di�erence between the POU programs
and function block instances in their respective B machines will be that, since the same
function block may have multiple instances, each with its own state, the elements to access
this state, the function block inOuts and outputs, must reflect that it is a unique instance.

Thus, to distinguish the di�erent instances of a function block the instance name is
added as a prefix to each inOut or output variable in the B component. Thus, e.g., the
same function block may be included in a POU program as two di�erent machines, with
its variables representing the accessible state being di�erent.

Overall structure generation

Thus, for the programs and function block instances, the basic generation process for
the B clauses is presented below for the variables, their typing invariants and initial state
— both at abstract and refinement level.

• VARIABLES
Clause with only the names of the variables used in the component.

VARIABLES ::= varName {‘,’ varName }

Considering the same LD program taken as example previously, the variables clause
generated would be of the form:

VARIABLES

int_var1, int_var2, int_var3, int_var4, out1, out2, executed

• INVARIANT

The invariants generated here concern only the typing of the variables:

INVARIANT ::= varName ‘:’ varType {‘&’ varName ‘:’ varType }

For the same example with the LD program the INVARIANT clause would be:

118

INVARIANT

int_var1 : BOOL & int_var2 : BOOL & int_var3 : BOOL & int_var4 :

BOOL &

out1 : BOOL & out2 : BOOL &

executed : LD_CHAIN

The internal variables receive the same type as their respective inputs, while the
outputs receive the type in the POU’s Interface and executed, the control flow variable is
typed as belonging to LD_CHAIN.

• INITIALISATION

• Abstract level

Non-deterministic assignments to the variables:

INITIALISATION ::= varName ‘::’ varType {‘||’ varName ‘::’ varType }

The INITIALISATION, in the abstract level, for the state of the LD program used
as example is of the form:

INITIALISATION

int_var1 :: BOOL || int_var2 :: BOOL || int_var3 :: BOOL ||

int_var4 :: BOOL ||

out1 :: BOOL || out2 :: BOOL ||

executed :: LD_CHAIN

• Refinement level

Deterministic assignments to the variables:

INITIALISATION ::= varName ‘:=’ (initial_value | default_initi}) {‘||’

varName ‘:=’ (initial_value | default_initi)}

The initial_value is extracted from the respective Variable object in the PLC Object.
If there is none, then the default_init is used. It is a value predetermined in our
method for each data type, so the verification e�ort can be reduced as the prover will

119

not have to deal with undetermined values to the variables in the refinement level.
For a boolean variable, the value assigned would be FALSE, while for an array
would be {}, for instance. This is only adopted, though, if such a deterministic
statement does not break any invariant inserted in the model after its generation,
otherwise the nondeterministic assignment is maintained.

In the refinement INITIALISATION the values of the flow control variables, if any
in the respective machine, are also set, but for the default state previous to the first
execution cycle: beginning.

Thus, the refinement initialisation for the example is:

INITIALISATION

int_var1 := FALSE || int_var2 := FALSE || int_var3 := FALSE ||

int_var4 := FALSE ||

out1 := FALSE || out2 := FALSE ||

executed := beginning

4.2.3.3 Behaviour

A machine’s behaviour is modeled through B operations, as stated before. The struc-
ture of these operations will be dependent on the POU type and the language its body is
implemented in.

Regarding the languages, the B machines’ operations will be structured as follows:

• ST/FBD

Only one operation is used to implement the body of the POU.

• LD

The number of operations will dependent on the type of the POU. As the body
of a POU function, whose bodies are modeled in a single B operation, the LD
program is therefore modeled in a single operation, with the resulting operations for
each rung being disposed “sequentially”. As the body of a POU program or function
block instance the LD program is split into a B operation for each rung, so the
evaluation of the coils is made through di�erent steps, dividing the behaviour of

120

the LD program into specific parts. This structure is adopted for enhancing the
expressivity of the B model for LD programs when it implements the body of a
POU program or function block, stateful elements of the PLC whose verification is
key and a stepwise behaviour performance (through several operations) is a better
representation to achieve that.

In the case of a representation through several operations the first rung will be where
the POU inputs are read — therefore where their internal representations are set.
It also marks where the execution cycle of the POU begins, so executed is reset.

• SFC

The SFC programs are always represented as a series of B operations, one for each
step and simultaneous divergence in the POU body, with the former’s operations
being composed by the preconditions generated from the step’s reaching conditions
and the substitutions translated from the actions associated to the step; the latter’s
operations are used solely to organize the SFC’s flow control, since they mark the
activation of more than one step.

The active variable, in a SFC program, will be used when a simultaneous convergence
is considered, since that will require, for its clearance, that all its preceding steps
are active. The operation to have its precondition considering this, be it for a step
or a simultaneous divergence, will thus require that all their source steps belong to
the current state of active.

The executed variable will be used for the composition of the preconditions of all
other scenarios, so that the last executed step was the source step of a step or
simultaneous divergence.

Having the general structure of the machines defined according to the languages, we
can approach how the generation process of the B operations is carried out. Below we
present the process for the POU functions and for the programs/function block instances.

POU functions statements

Since the POU functions are represented in the B model as B operations, one for each
function, in a machine that is seen by the other components of the model, POU programs

121

and function block instances, alterations in the state of the machine can not be
performed. Thus, assignments, other than to the B operation’s outputs, are not allowed.

Another issue is that, being stateless, it makes no sense to have a refinement for the
POU functions, since there is no state to apply invariants to. The safety constraints will
be addressed in the component making the function invocation, therefore the translated
statements have to be represented at abstract level, where sequential substitutions can
not be. To tackle this limitation we make use of the ANY statements in the B language,
that may be use to simulate sequential execution even at abstract level in a B specification.

Our method supports the POU functions in ST, FBD or LD, however with limitations:

• Only blocks that have a B expression equivalent may be used in the FBD or LD
program.

• For LD, the expressions representing the rungs have to be inside the same B opera-
tion, with the sequencing being emulated by means of the ANY statements.

The first restriction is because the machine with the POU functions translations
can not have operations calling each other in the same machine, as well as function
block instances could not be invoked, as it would require state alteration (of the included
machine representing the instance), forbidden in a seen operation. The second is that,
as the behaviour of the LD program will be considered only at abstraction level, in the
function’s B operation being invoked, all the substitutions must be in that same operation.

The building of the ANY statements is oriented by the assignments in the function’s
program, according to the guidelines in Code 44. The assignments are the substitutions
responsible for changing the state of the machine, so they are eliminated from the program,
being replaced by ANY statements with “local variables” whose values are the same as
the respective expressions being assigned to the variable it represents — lines 2-7. A
mapping is maintained from the variable that would be in the assignment to the number
of the local variable representing the value it would receive, so this local variable can
replace the not-assigned variable occurrences in the expressions to come in the program.
(lines 4 and 8).

An important remark is that, emulating the sequence of the original program, the
ANY statements will propagate: each new one will be inside the scope of the last, so the
local variables created in the previous statements may be used on it. Once the program
was dealt with, the not-assigned variables will receive the last value that would have been

122

1 for each assignment:
2 increase expressionCounter
3 define valueIdentifier as ‘‘value’’ + expressionCounter
4 map variable being assigned to correspondent expressionCounter
5 if isLogicExpression then
6 put expression inside bool() predicate
7 translateTo "ANY " + valueIdentifier + " WHERE " + valueIdentifier

+ " = " + expression + " THEN ";
8 replace all the occurrences of the variable being assigned by the

respective valueIdentifier
9 (*-------- After treating all assignments ------*)

10 for each variable mapped to an expressionCounter
11 if variable is output then
12 create assignment variableName := respective valueIdentifier

Code 44: Guidelines for generating POU functions translations.

assigned to them (line 12), but only if they are inOut or output variables, which do not
belong to any state the POU function’s B operation would be representing (lines 10-11).

1 v1 := n1;
2 v2 := n2;
3 v1 := v1*45;
4 v2 := v2*45;
5 isHigher := v1 > v2;

1 ANY value1 WHERE value1 = n1 THEN
2 ANY value2 WHERE value2 = n2 THEN
3 ANY value3 WHERE value3 = value1*45 THEN
4 ANY value4 WHERE value4 = value2*12 THEN
5 ANY value5 WHERE value5 = bool(value3 > value2) THEN
6 v1 := value3 || v2 := value4 ||
7 isHigher := value5
8 END
9 END

10 END
11 END
12 END

Code 45: B generation from ST code in a POU function

The B assignments statements in line 6 would be the local variables assignments with
the last values that would be assigned to them: the second assignment for v1, in line 3 of
the ST code, and also the second assignment for v2, in line 4 of the ST code; the definition
of the “local variables” values for these assignments are made in the ANY statements
in lines 3 and 4, respectively, which use the defined values for the local variables corres-
ponding to the first ST assignments for v1 and v2 (lines 1 and 2 of the B statements).
Nonetheless, these substitutions shall not be present in the resulting B specification for the

123

POU function, since v1 and v2 are not output variables; the only allowable assignment
is the one made in line 7, for the output isHigher.

POU programs and Function Block Instances

The same guidelines are followed for the generation of the B operations from the
bodies of POU programs and function block instances — the di�erence between them
relies on the necessity to explicit, in the machines for the function block instances, the
instance that the outputs are from, through the prefixing of the instance name. However,
the prefixing procedures are carried out in the PLC Object construction, thus, in the B
writer module, the guidelines for the B operations generation are the same.

We present the mechanisms based on the level of abstraction, since some di�erences
are made between the process for each case.

• Abstract level

As we said before the guidelines for the operations generation are language-dependent,
thus we present them separately:

• ST/FBD

1 OPERATION ::= st_fbd_operation

2 st_fbd_operation ::= st_fbd_signature preconditions st_fbd_abstract_body

3 st_fbd_signature ::= (pouProgramName | instanceName) + ‘_body’ [

pou_inputs] ‘=’

4 pou_inputs ::= ‘(’ (inputName | inOutName) {‘,’ (inputName | inOutName

} ‘)’

5 preconditions ::= (‘PRE’ inputsTyping ‘THEN’ | ‘BEGIN’)

6 st_fbd_abstract_body ::= modifiedVariablesNondeterministicAssignments

Line 1 illustrates that the machine will possess only one operation, while in line
3 the name of the operation, either after the POU program’s or the instance’s
name, su�xed by _body, as well as, if the component has inputs, their names
(line 4). The precondition of the operation, if any, will be composed solely of the
typing constraints over the inputs. The abstract operation’s body will be built with

124

nondeterministic assignments to the modified variables in the respective ST or FBD
body, obtained during the PLC Object construction.

Taking the function block instance FBD1, used by the LD program taken as example,
we would have as resulting abstract operation the one shown in Code 46.

1 FBD1_body (IN1, IN2, IN3) =
2 PRE IN1 : INT & IN2 : INT & IN3 : INT
3 THEN
4 int_IN1 :: INT || int_IN2 :: INT || int_IN3 :: INT ||
5 FBD1_OUT :: BOOL
6 END

Code 46: Abstract operation from FBD1 body

The operation’s name is prefixed by the instance name (FBD1), which is followed by
the inputs definition (line 1) and then their typing in the operation’s precondition
(line 2). In lines 4-5 the nondeterministic assignments made to the variables to be
modified in the refinement are presented — those are for the internal representations
of the inputs, which will be assigned to the received inputs, and the instance’s
output, whose value will be determined also in the refinement.

• LD

1 OPERATION ::= rung_operation {‘;’ rung_operation }

2 rung_operation ::= rung_signature ‘PRE’ preconditions ‘THEN’

rung_abstract_body

3 rung_signature ::= [instanceName + ‘_’ +] ‘rung’ + rungNumber [

pou_inputs] ‘=’

4 pou_inputs ::= ‘(’ (inputName | inOutName) {‘,’ (inputName | inOutName

} ‘)’

5 preconditions ::= [inputsTyping ‘&’] rungReachingConditions

6 rung_abstract_body ::= modifiedVariablesNondeterministicAssignments

One operation per rung is built (line 1), with their numbers according to the se-
quence of rungs and prefixed by the instance name, if any. If the component has
inputs they are received only in the first rung, symbolizing the beginning of the
execution cycle; thus, the inputs typing, if any, also occurs only in the first rung
operation. Nonetheless, each rung operation will have in the respective operation its
reaching conditions, which will consist of the flow control variable executed having
to be equal to the previous rung or to beginning, if it is the first rung.

125

The resulting abstract operations for the LD program example itself are depicted in
Code 47.

1 Rung1 (var1, var2, var3, var4) =
2 PRE
3 var1 : BOOL & var2 : BOOL & var3 : BOOL & var4 : BOOL & (executed =

beginning or executed = rung2)
4 THEN
5 int_var1 :: BOOL || int_var2 :: BOOL || int_var3 :: BOOL || int_var4

:: BOOL ||
6 out1 :: BOOL ||
7 executed :: LD_CHAIN
8 END;
9

10 Rung2 =
11 PRE
12 executed = rung1
13 THEN
14 out2 :: BOOL ||
15 executed :: LD_CHAIN
16 END

Code 47: Abstract operations from LD body

The Rung1 operation (line 1) represents the first rung’s evaluation, while Rung2

(line 10) stands for the second rung’s evaluation. In Rung1, the beginning of the
execution cycle is marked, so the inputs are received and have their acceptable
types defined (line 2). In the precondition the reaching conditions for Rung1 are also
defined, specifying that either this is the first performance of the execution cycle —
executed = beginning — or a previous cycle has ended — executed = rung2; for
the Rung2 operation the reaching condition is that its previous rung was executed
(line 12). Besides the modified variables for inputs assignments (line 5) and rung
evaluation (lines 6 and 14), the control flow variable executed is also marked as
having its state modified in the rungs’ operations (lines 7 and 15).

• SFC

Steps

OPERATION ::= (step_operation | simDiv_operation) {‘;’ (step_operation |

simDiv_operation) }

126

The operations for SFC will be built either from a step or from a simultaneous
divergence.

1 step_operation ::= step_signature ‘PRE’ step_precondition ‘THEN’

step_abstract_body

2 step_signature ::= [instanceName + ‘_’ +] stepName [pou_inputs] ‘=’

3 pou_inputs ::= ‘(’ (inputName | inOutName) {‘,’ (inputName | inOutName

} ‘)’

4 step_preconditions ::= [inputsTyping ‘&’] stepReachingConditions

5 step_abstract_body ::= modifiedVariablesNondeterministicAssignments

The step operations are named after the respective step’s name, being prefixed by
the instance name, if any (line 2). As in the LD body, the reading of inputs will be
made solely in the operation marking the beginning of the execution cycle, which in a
SFC program is in its initial step. The step’s reaching conditions are retrieved from
the logic expression built during the PLC Object construction, only that now the
source step validity is made through executed, active or simDivNameSucs, with the
last two being used instead of the first when the step has more than one source step
through a unique transition (which happens only when the transition’s predecessor is
a simultaneous convergence) or when it is the successor of a simultaneous divergence,
respectively.

In Code 48 the resulting step operations from the example shown in Figure 30, at
page 110, are depicted.

1 Start (n1, n2, in1, in2, in3, in4) =
2 PRE n1 : INT & n2 : INT & in1 : BOOL & in2 : BOOL & in3 : BOOL & in4 :

BOOL & (executed = beginning or active = {step1})
3 THEN
4 active :: POW(SFC_CHAIN) || executed :: SFC_CHAIN || answers :: 1 ..

2 +-> RESULT || higher :: RESULT || int_n1 :: INT || int_n2 ::
INT || int_in1 :: BOOL || int_in2 :: BOOL || int_in3 :: BOOL ||
int_in4 :: BOOL

5 END;
6

7 Step1 =
8 PRE (int_in1 = TRUE & executed = start)
9 THEN

10 active :: POW(SFC_CHAIN) || executed :: SFC_CHAIN || higher ::
RESULT || LDResult1 :: BOOL || LDResult2 :: BOOL

11 END

Code 48: Abstract step operations from SFC body.

127

The structure di�ers from the LD resulting operations, shown previously, for the use
of active to control the SFC execution flow along with executed. We can also see,
in the third assignment an line 4 of the B code — answers :: 1..2 +-> RESULT

— the resulting translation of the type ANSWERS, derived from the Array type.
The partial function represents an array, with its domain being generated from the
array dimensions and the range from its base type.

Simultaneous divergences

1 simDiv_operation ::= simDivName ‘=’ ‘PRE’ simDivReachingConditions

‘THEN’ simDiv_abstract_body

2 simDiv_abstract_body ::= modifiedVariablesNondeterministicAssignments

The simultaneous divergence’s operations are named after the respective element’s
name and their preconditions regard only their reaching conditions, which are ge-
nerated in the same manner as for the steps, also using executed or active to
determine the source step’s validity.

1 SimDiv1 =
2 PRE (T1 = TRUE & executed = step1)
3 THEN
4 active :: POW(SFC_CHAIN) || simDiv1Sucs :: POW(SFC_CHAIN) ||

executed :: SFC_CHAIN
5 END

Code 49: Abstract simultaneous divergence operation from SFC body.

We use the example shown in Figure 14, at page 49, which presents a SFC program
containing a simultaneous divergence element, to demonstrate the results of these
guidelines, depicted in Code 49. The reaching condition is produced as for the steps,
so the result is the one seen in line 2 — the validity of the predecessor transition’s
logic condition and source step’s prior execution. The variables to be modified in a
simultaneous divergence operation are the ones regarding general flow control and
its specific destination steps, thus SimDiv1Sucs .

128

• Refinement level

In the refinement operations the signatures are maintained and the preconditions may
be omitted, as they are already constraining the operation access’ state by being defined
in the abstract level. Therefore, the main changes are presented in the operations’ bodies,
where the internal representations of the inputs will be set, the B statements resulting
from the PLC programs will be inserted and the flow control, if any is required, will be
made.

• ST/FBD

1 OPERATION ::= st_fbd_operation

2 st_fbd_operation ::= st_fbd_signature ‘BEGIN’ st_fbd_refinement_body

3 st_fbd_refinement_body ::= internalVarsSetting initialValuesSetting

returnVarsClause (stStatementsTranslated | fbdExpressionsGenerated)

The setting of the internal representation of the inputs will consist simply of each
input being assigned to its internal variable, and the setting of the initial values
is made for each variable that has one. If any function invocation demanded the
creation of a return variable it will be put in a VAR clause, for local variables
within its scope, which is where the ST’s or FBD’s B equivalent programs will be
put.

1 FBD1_body (IN1, IN2, IN3) =
2 BEGIN
3 int_IN1 := IN1; int_IN2 := IN2; int_IN3 := IN3;
4 VAR return_getHigher_op1, return_isHigher_op1 IN
5 return_getHigher_op1 <-- getHigher_op(int_IN1, int_IN2);
6 return_isHigher_op1 <-- isHigher_op(return_getHigher_op1,

int_IN3);
7 SR1_body(bool(int_IN1 = return_getHigher_op1),

return_isHigher_op1);
8 FBD1_OUT := SR1_Q1
9 END

10 END

Code 50: Refinement operation from FBD1 body.

In Code 50 we have the refinement operation generated from the same example
taken in the abstract level. Here we have the actual translation of the FBD body

129

(lines 4 to 9), obtained following the guidelines of the translation process for FBD,
besides the internal variables setting, in line 3, receiving the inputs values so they
can be used in the translated statements.

• LD

1 OPERATION ::= rung_operation {‘;’ rung_operation }

2 rung_operation ::= rung_signature ‘BEGIN’ rung_refinement_body

3 rung_refinement_body ::= [internalVarsSetting initialValuesSetting] [

returnVarsClause] rungExpressionsGenerated flowControlStatements

The construction of the rung operations’ bodies will have the internal variables’
setting and initial values’ assignments only in the first rung, symbolizing the be-
ginning of the execution cycle. The VAR clause will be created for the rungs whose
B notation equivalent required so, and the flow control statement will consist of
executed receiving the current rung as value.

1 Rung1 (var1, var2, var3, var4) =
2 BEGIN
3 int_var1 := var1; int_var2 := var2; int_var3 := var3; int_var4 :=

var4;
4 FBD1_body(bool(not(int_var2 = TRUE) & (int_var1 = TRUE)), int_var3,

int_var4);
5 out1 := FBD1_OUT;
6 executed := rung1
7 END;
8

9 Rung2 =
10 BEGIN
11 out2 := bool(not(int_var3 = TRUE) or (int_var2 = TRUE) or not(

int_var1 = TRUE)) & (out1 = TRUE));
12 executed := rung2
13 END

Code 51: Refinement operations from LD body

Code 51 is the refinement generated for the abstract operations in the previous LD
example. It can be seen that, indeed, inputs reading and internal variables setting
occurs only in the first rung (lines 1 and 3); nonetheless, the structure of the rung
operations is identical aside from that, with the expressions representing the rungs’
evaluation (lines 4-5 and 11) and the flow control — executed being valuated with
the last executed rung (lines 6 and 12).

130

• SFC

Steps

1 step_operation ::= step_signature ‘BEGIN’ step_refinement_body

2 step_refinement_body ::= [internalVarsSetting initialValuesSetting] [

returnVarsClause] actionsStatements flowControlStatements

At the refinement level the initial step’s operation will have the internal variables’
setting and initial values’ assignment, followed by, if needed, the VAR clause and,
if any, the associated actions’ equivalents with the B notation statements.

The control flow is made through both executed and active variables, with the
former being assigned with the current step’s name and the latter being increased
also of the current step’s name and decreased of the current step’s source steps’. If
the step is successor of a simultaneous divergence, when it is reached it updates the
flow control variable simDivNameSucs by removing itself’s name from the variable.

Code 52 shows the step operations at refinement level, obtained from the given
example. In the Start operation, derived from the program’s initial step, the inputs’
reading and setting of the internal variables is made (lines 1 and 3), as well as the
initial values’ assignments; the first assignment in line 4 shows the B representation
for array values: a mapping from a position in the array to its respective value –
an ordered pair in the partial function’s scope. Since there is no action associated
with the step Start there are no translated statements, coming after the flow control
statements, regarding the last step executed — Start itself —, in line 6. The active

variable concerns the steps active, which can be more than one depending on the SFC
program’s organization; in Start, therefore, only its preceding step is deactivated,
with the current step itself being put in the activation control (line 5); although there
are no connections between Step1 and Start, the former is considered the predecessor
of the latter due to the execution cycles: after the first one, a new execution cycle
will begin only after the last ends — hence Start may execute only after Step1.

The operation for Step1 presents the translated statements of its actions, from line
12 to 17 representing Action1, originally in ST, and lines 18-19 representing the
rungs in the LD code for Action2. The flow control statements follow the same
guidelines as in the Start operation.

131

1 Start (n1, n2, in1, in2, in3, in4) =
2 BEGIN
3 int_n1 := n1; int_n2 := n2; int_in1 := in1; int_in2 := in2; int_in3

:= in3; int_in4 := in4;
4 answers := {1 |-> YES, 2 |-> NO}; higher := UNDETERMINED;
5 active := (active - {Step1}) \/ {Start};
6 executed := start
7 END;
8

9 Step1 =
10 BEGIN
11 VAR return_isHigher_op1 IN
12 return_isHigher_op1 <-- isHigher_op(n1, n2);
13 IF return_isHigher_op1 = TRUE THEN
14 higher := answers(1)
15 ELSE
16 higher := answers(2)
17 END;
18 LDResult1 := bool((not(in1 = TRUE) or (in3 = TRUE)))

& (in2 = TRUE));
19 LDResult2 := bool((LDResult1 = TRUE) & (in4 = TRUE))
20 END;
21 active := (active - {Start}) \/ {Step1};
22 executed := step1
23 END

Code 52: Refinement step operations from SFC body

Simultaneous Divergences

1 simDiv_operation ::= simDivName ‘=’ ‘BEGIN’ simDiv_refinement_body

2 simDiv_refinement_body ::= flowControlStatements

The refinement body of the simultaneous divergences operations will be exclusively
for flow control, setting executed with the current simultaneous divergence’s name,
while all its source steps are removed from active. Also, all its destination steps
are assigned to the respective simDivNameSucs variable, stating all of them must be
activated after its clearance.

The refinement statements for the example in the abstract level is presented in
Code 53, where the flow control operations are exhibited. In line 3 the setting of
simDiv1 as last element executed is made, however it is not put into active, since
only the steps are active elements in a SFC program; therefore just the removing
of the predecessor steps from active is performed. The key operation made in the
operation is the assignment of the simultaneous divergence’s destination steps —

132

1 SimDiv1 =
2 BEGIN
3 executed := simDiv1; active := active - {step1};
4 simDiv1Sucs := {Step2, Step4, Step5}
5 END;
6

7 Step2 =
8 PRE step2 : simDiv1Sucs
9 THEN

10 ...
11 simDiv1Sucs := simDiv1Sucs - {step2};
12 active := active \/ {step2}; executed := step2
13 END;

Code 53: Refinement simultaneous divergence operation from SFC body

Step2, Step4 and Step5 — into the successors yet to be activated control variable
— simDiv1Sucs.

How this variable is used can be seen in the flow control statements present in one
of the simultaneous divergence’s destination steps: when a step that is successor of
such a structure is reached, besides it being set as last active and inserted into the
active ones (line 12), it has to be removed from the list of successors yet to be
activated (line 11), since the precondition for its reaching is uniquely being in that
list (line 8), once the transition and source steps check is made in the simultaneous
divergence.

4.3 Inserting the safety constraints

The next phase is to add safety constraints. Since PLC programs do not repre-
sent such constraints explicitly, they have to be manually extracted from the project
requirements and modeled to be used in the formal models10. This is a hard task and
still an open issue in industry (ABRIAL, 2006), and we have not decided yet which
methodology to adopt to tackle this problem. However, some promising approaches
as (CABRAL and SAMPAIO, 2006) and (LADERNBERGER and JASTRAM, 2012)
may be suited for our purpose; the latter is being used in our case study.

Once the safety constraints are defined, they are inserted into the model as invariants
in the POU components, conditions that must always hold as the PLC actions are perfor-

10Strategies such as annotating the code with requirements labels would make it possible to automate,
at some level, this process, but this is not in the scope of this work for now.

133

med. Tools such as Atelier B11 can perform automatic verification of their consistency up
to a certain point; an Interactive Theorem Prover is provided for aiding the performance
of manual proofs in the Proof Obligations not discharged. Any problem found, like the
impossibility of verifying a proof obligation, points out to where the inconsistence lies in
the respective part of the PLC program, guiding its treatment.

To guarantee that the PLC performs the expected behavior of its execution cycle
we may create LTL formulas over the variables representing the operations’ execution,
verifying, e.g., if a given operation is ever reached from a predecessor one.

We may also verify properties that cannot be modeled with regular first order logic,
requiring modalities found in LTL: one example is the condition that whenever a given
variable has a given value, there must be some state reached by the PLC where another
certain variable receives another certain value. This can be modeled with the operators ⇤,
meaning “it will always be the case that...”; and ù, meaning “it will eventually be the case
that...”. The ProB tool is a model checker that allows us to perform these verifications
over B models, although some modifications may be necessary in a model prior to its
model checking, like reducing the spectrum of values that numerical variables may take,
in order to avoid the state-explosion problem. The analysis that leads to these adaptations
is manual and requires expertise and understanding of the system.

4.3.1 Example

We retrieve the Set_Reset Flip Flop function block, presented in Section 4.2.2.2, for
the FBD translation process, to show how the insertion of safety constraints into a B
model, in order to verify if the PLC program is behaving accordingly to its requirement,
through theorem proving verification.

The SR block receives two inputs, S1 and R, which represent the set and reset ins-
tructions being enabled, respectively, while the output Q gives the state of the bit being
addressed by that block. The bit is set if S is 1 and R is 0, being reset if S is 0 and R is
1 or if both are 1.

The graphic representation of the SR block, as well as part of the resulting B model to
a SR1 instance for such block is depicted in Figure 32, with the resulting B operation re-
presenting the POU body, with its execution and the setting of the internal representation
of the inputs.

11http://www.atelierb.eu/

134

1 SR1_body (S1, Reset) =
2 PRE S1 : BOOL & Reset : BOOL
3 THEN
4 int_S1 := S1;
5 int_Reset := Reset;
6 IF int_S1 = TRUE & int_Reset = FALSE THEN
7 SR1_Q1 := TRUE
8 ELSIF (int_S1 = FALSE & int_Reset = TRUE)

or (int_S1 = TRUE & int_Reset = TRUE)
THEN

9 SR1_Q1 := FALSE
10 END
11 END

Figure 32: B translation for SR function block

In order to assess if the behaviour performed by the bock is compliant with the
expected one we verify the following invariants, derived from the block requirements:

INVARIANT

((int_S1 = TRUE & int_Reset = TRUE) => (SR1_Q1 = FALSE))

&

((int_S1 = FALSE & int_Reset = TRUE) => (SR1_Q1 = FALSE))

&

((int_S1 = TRUE & int_Reset = FALSE) => (SR1_Q1 = TRUE))

Each represents one of the allowed cases when a bit may be set (SR1_Q1 = TRUE) or
reset (SR1_Q1 = FALSE).

After the insertion of these invariants in the model, four proof obligations were gene-
rated to verify their correctness according to the specification. All of them were automati-
cally discharged by the AtelierB Prover, guaranteeing that the translation of the function
block was compliant with its requirements. Regarding the translation process itself, we
used the ProB Model Checker to check whether the B model’s behaviour was equivalent
to the execution of the SR function block, what was attested after the performance of
animation over the model.

4.4 Restrictions of the approach

We summarize the restrictions of our approach in three categories, for clarity:

135

1. Languages:

• For now we do not cover the elements of IL.

• Regarding the ST statements, we do not support the loop statements yet.

• The FBD elements jump to label and label have not been covered yet.

• The SFC elements macro steps and jump steps are not yet supported, as well
as most action qualifiers.

2. Data types:

• Elementary types: The B language does not support floating numbers. There
are workarounds to tackle this issue, as many e�orts try to overcome this
limitation, but they are not in the scope of this work. Thus, the elementary
types REAL and LREAL are not supported by our approach.

• Derived types: For now, our method handles enumerations, arrays, sub ranges
and derived types that make reference to the data types supported. The struct
type lies in our future work.

3. Technicalities:

• In the SFC transition’s conditions there can be no call to POU functions, since
these conditions are represented in the B model as the preconditions of the
operations and B does not support operation invocation in them.

• The array elements can only be unidimensional. We have not implemented yet
the translation process to multidimensional arrays.

• The B language has several restrictions in what concerns operation invocation.
Thus, the POU functions can not make calls between them, as operations are
not allowed to call operations from the same machine.

• We do not support time representation.

• One feature of the PLC programs that is beyond our scope for now is the rising
edge12 support.

Due to these restrictions we are not able to apply our method to PLCs that use
floating point arithmetic or that have time related constraints, a major setback, since
many PLCs make use of them. These issues must be overcome in future works, analyzing

12Capturing the transition of a digital signal from low to high (0 to 1).

136

ongoing e�orts into providing support for real numbers in the B language, as discussed
in (BURDY et al., 2012), and time handling approaches. The translation restrictions, like
the unsupported elements of the languages or the struct data type, also lead to a coverage
loss in our approach, but they are easier to be tackled, since the required e�ort lies mostly
in defining the translation guidelines and implementing them.

Another issue concerns the adaptation of the method to not fully standard compliant
languages, or to other languages for control systems that are out of the PLC scope, since
we have not yet defined how much di�erent these languages may be from the ones we
cover so we can treat them without the need of drastic changes in the program reading
and B writing components. Future works should detail these scenarios.

137

5 Case Study

Our case study is the CDC (Central Door Controller), a part of the doors subsystem of
trains in the Metro-DF project, developed by AeS1, a small company in Brazil specialized
in railway projects.

The doors subsystem became important in the railway field due to its modular ar-
chitecture and a great concern with safety, an essential feature in a critical system that
deals with human lives. Aiming to assure it in the control system, so to not depend only
on techniques such as hardware redundancy for fault tolerance, the AeS company chose
to use formal methods on the verification of their systems. They provided us with a PLC
for the CDC, as well as the whole system’s requirements, so we could test our method on
a real industry application.

5.1 Application description

The CDC is responsible for controlling the doors’ opening and closing in the train,
guaranteeing that these actions are only executed under safe circumstances. It also con-
trols the emergency situations that the train may be involved in, which must be taken in
consideration to determine whether a given scenario is safe.

It receives, as input, information about the state of the train, such as the current
speed, and commands requesting it to open or close the doors. After verifying if the
conditions to execute some action are fulfilled, the CDC sends out commands, as outputs,
allowing or not the required actions.

1http://www.grupo-aes.com.br/site/home/

138

5.1.1 Doors subsystem

In order to understand how the CDC works in the context of the train’s doors subsys-
tem we have to explain the latter in detail.

Figure 33: Overall structure of a train’s door subsystem.

Each train for the Metro-DF is composed by four wagons, two of them presenting
CDCs — the A type ones. Those are located in the ends of the train, as depicted in the
top of Figure 33; the others, without CDCs, are in the middle, the B type ones. Each
wagon has six doors, three at each side.

The bottom part of Figure 33 shows, in a simple scheme, the five components of the
doors subsystem and how they are connected with each other. The components are:

• Cabin - A cabin with an operator.

• CDC - Central Door Controller.

• DCU - Door Control Unit.

• TCMS - Train Control and Monitoring System.

• ATC - Automatic Control System.

As previously said there will be two A type wagons in a train, each possessing a
Cabin. Only one of them will be set as leader at each time, meaning that only the
respective Cabin and CDC components in it will be allowed to operate. The former will

139

send commands to the latter requesting it to perform opening or closing operations, also
sending information about the train — such as if it is active in manual, semi-automatic
or automatic mode — so the CDC can reason about them and determine if the required
operations can be performed in safe conditions.

The DCU components are responsible for performing control operations over a single
door, therefore there is one to each door in the train. It may receive signals from the
CDC demanding opening or closing operations, then it must e�ectively open or close the
doors — it does not consider safety conditions, those are all made in the CDC. Other
operations executed by the DCUs are the sound signalization to the train passengers that
the door is about to be closed — operation also controlled by a signal sent by the CDC.
It is also their responsibility to inform the CDC about the activation of an emergency
device, which are of two types: the button emergency device, one at each door, and the
mechanic emergency device (a switch), two for each wagon; it is su�cient that one of the
emergency devices has been operated for the respective device’s signal to be set and sent
to the CDC.

Regarding the doors subsystem, the TCMS component will provide information
about the current state of the train — its speed, location, etc. These will be conside-
red by the CDC when evaluating the conditions in which opening and closing operations
are allowed, as well as emergency conditions.

Each train has an ATC system. It will, concerning the doors subsystem, require the
execution of opening or closing operations by the CDC when the train is not operating
in the manual mode, as well as to strengthen the safety restrictions considered in it.

The environment where the CDC will be executed and that it will control is charac-
terized by these components. Their disposition and interaction can be visualized in detail
in Appendix D.

5.1.2 Central Door Controller

The Central Door Controller is responsible for the overall control over the doors in the
train. It receives information about the train’s state, through the Cabin and TCMS com-
ponents, as well as from the DCUs about whether the emergency devices were performed;
process them according to the restrictions for opening, closing and emergency operati-
ons; and finally emit control signals to the other components of the doors subsystem,
representing the results of its processing.

140

Figure 34: Central Door Controller, system view.

The CDC component is depicted in detail in Figure 34, presenting all the signals it
receives and emits, whose usage will be better explained in next section, when the PLC
program for CDC is shown.

The names of these signals are truncated. For a better understanding, take into
account that “AUTO” stands for “authorization”, “OP” for “ opening”, “CL” for
“closing”, “RS” for “ right side” and “LS” for “left side”; they mark the kind
and side of the operation being requested. “Console” symbolizes that the signal was sent
from the buttons in the Cabin’s console, while “SideButton” that it was from a button
in one of the Cabin’s side. The other abbreviation is “TL”, that stands for “trainline”
and marks the signals sent from the ATC or DCU components, or that it is one of the
CDC’s outputs.

141

5.1.2.1 PLC program for CDC

Figure 35: Central Door Controller, SFC program.

The PLC program for CDC is composed by a POU program in SFC as main com-
ponent, depicted in Figure 35, and four auxiliar components implemented by two POU
functions and two POU function blocks, all in ST. The block views for the auxiliary POUs
are shown in Figures 36 and 37, while their interfaces are presented in Appendix D.

The SFC program for the POU program is responsible for the main computations in
the CDC component, these made by the SFC actions, implemented in ST, associated to
the SFC steps, which are executed according to the POU’s execution flow, controlled with
the SFC transitions, cleared according to their logic conditions’, also in ST, evaluation.

The initial step, Start, has no actions associated, and the transition after it has
automatic clearance — its logic condition is simply TRUE; this step is used solely for
the PLC scan, reading the inputs to be used in each execution cycle. In Step1 the action
Define_Operation is performed, where what kind of operation was requested to the CDC
— for opening or closing —, depending on the inputs read, also checking if the request itself
was valid; the conditions for the operation appliance are checked later. The transitions
T1 and T2 will guide the execution flow according to this result, while T3 accounts for
the case where the commands received did not qualify for a valid request.

142

Figure 36: POU functions used by the
CDC.

Figure 37: POU function blocks used by the
CDC.

1 conditions_to_close_satisfied := Test_Closing(train_mode, TL_RS_OP_ATC,
TL_AUTO_RS_ATC, TL_LS_OP_ATC, TL_AUTO_LS_ATC, OP_RS_Console,
OP_LS_Console)

Code 54: Action Evaluate Closing, at Step3

In Step2 and Step3 the evaluation of the conditions to open or close the doors are
made in actions Evaluate_Opening and Evaluate_Closing, respectively; the latter is de-
picted in Code 54. In these actions, the ST statements make use of the POU functions
for splitting the complexity in more than one component — in Code 55 the body of the
Test_Closing POU, where the testing of the closing conditions is made, is presented. De-
pending on the result of the actions, the transitions after their related steps will determine
which, if any, of the right or left doors opening operation, or of the right or left closing
operation, was allowed to occur (transitions T5, T6, T7 and T8, respectively); T4 and
T9 accounts for the scenarios where the conditions to open or close were not achieved.

1 Test_Closing := NOT (train_mode = ATO AND ((NOT TL_RS_OP_ATC OR NOT

TL_LS_OP_ATC) AND (OP_RS_Console OR OP_LS_Console)));

Code 55: POU function Test Closing’s ST body.

The last step in the SFC program for CDC is Step8, which must be be reachable in
any of the possible scenarios. The action performed when the execution flow gets here is

143

Evaluate_Emergency (depicted in Code 56), where it is determined whether the current
CDC’s state applies for an emergency situation — if any passenger pressed an emergency
button or moved an emergency switch at some of the doors and if emergency operations
are to be performed. To inquire this the ST statements make use of instances of the POU
function blocks that test if the conditions to such a situation are satisfied and determine
the actions to be taken regarding emergency commands. Depending on the result, the
CDC may block an opening operation that was going to occur, allow an opening that was
not going to occur, ring an alarm, etc.

1 IF TL_MechEmg THEN

2 test_MEmg(stopped := speedZero, in_platform := platformSafe,

doors_closed := TL_DOORS_CL, doors_locked := TL_DOORS_LCK);

3 TL_AUTO_EMG := test_MEmg.authorize; EMG_SIGN := test_MEmg.signalize;

4 ELSIF TL_ButtonEmg_RS OR TL_ButtonEmg_LS THEN

5 IF TL_ButtonEmg_RS THEN

6 emg_side := right_side;

7 ELSIF TL_ButtonEmg_LS THEN

8 emg_side := left_side;

9 END_IF;

10 test_BEmg(lower6 := speedLower6, stopped := speedZero, in_platform :=

platformSafe, doors_closed := TL_DOORS_CL, doors_locked :=

TL_DOORS_LCK, selectedSide := selected_side, emgSide := emg_side);

11 TL_AUTO_EMG := test_BEmg.authorize; EMG_SIGN := test_BEmg.signalize;

12 TL_RS_OP := test_BEmg.open_right;

13 TL_AUTO_RS := test_BEmg.autho_open_right;

14 TL_LS_OP := test_BEmg.open_left;

15 TL_AUTO_LS := test_BEmg.autho_open_left;

16 END_IF;

17 emergency_evaluated := TRUE;

Code 56: Action Evaluate Emergency, at Step8

In Code 56, as said, the evaluation of the emergency conditions is made. In line 1 is
tested if the input indicating that an emergency switch was operated is set, in which case
the current state is sent to the function block instance (line 2) that determines whether
an emergency situation is authorized and if it must be signalized (line 3). In the case
where an emergency button was pressed, either in a door in the right or the left side (line
4), firstly the variable controlling this information about the side is set (lines 5-9), then
the current state is tested in another function block instance (line 10), that determines if

144

the authorization or signalizing are made (line 11) and also if the doors must be ordered
to open or close (lines 12-15).

1 IF stopped AND in_platform AND doors_closed AND doors_locked THEN

2 authorize := TRUE; signalize := TRUE;

3 ELSIF NOT stopped AND NOT in_platform AND doors_closed AND doors_locked

THEN

4 authorize := FALSE; signalize := TRUE;

5 END_IF;

Code 57: Function block Define_MechEmergency.

The implementation of the POU function block that tests the mechanic emergency
conditions and what actions must be performed depending on them can be seen in Code 57.
If the train is stopped in the platform with its doors closed and locked (line 1), then the
emergency situation is authorized, and the CDC will be ordered to signalize (line 2) that to
the Cabin component. If the same conditions were satisfied, expect from the train being
stopped, an emergency signal would still be sent, but the emergency situation would not
be authorized (lines 3-4). In the case of a mechanic switch actuation the authorization of
an emergency scenario will oblige the respective DCU component to open the door.

5.2 Applying the method

We used a PLCopen XML representation of the CDC’s PLC program as input to
our tool, which automatically generates an instance of the PLC Object through the PLC
Reader module that is itself used as input for the B Writer model, automatically gene-
rating a B model representing the CDC. This resulting model, still short of the CDC’s
safety constraints, is presented below, not in full, though, in the interest of clarity, but
with representative excerpts.

5.2.1 B model

The overall architecture of the B model for CDC is depicted in Figure 38, while the
ones for the function block instances can be seen in Appendix D.

145

Figure 38: B model for the CDC.

The static information built from the declared types and for flow control are
presented in the Functions machine — OPERATION_MODE, SIDE, enumeration types; and
SFC_CHAIN, with beginning, for the first execution cycle, and the steps. The state in-
formation is present in the machines for the function block instances — test_BEmg and
test_MEmg — and for the POU program, where besides the variables for internal repre-
sentation of inputs, locals and outputs, the ones for flow control, active and executed,
can also be seen.

In the model we can see as well the structuring mechanisms at work, with the
refinement for CDC including the machines for the instances and all the components
seeing the Functions machine, which represents the structure of the PLC program itself.

The behaviour part in the model is represented by the operations in each machine,
who are created from the respective POUs bodies, all in ST, except for the CDC’s one —

146

the only one that demands numerous operation, one for each of its steps.

1 Step8 =
2 BEGIN
3 IF int_TL_MechEmg = TRUE THEN
4 test_MEmg_body(int_speedZero, int_platformSafe, int_TL_DOORS_CL,

int_TL_DOORS_LCK);
5 TL_AUTO_EMG := test_MEmg_authorize;
6 EMG_SIGN := test_MEmg_signalize
7 ELSIF (int_TL_ButtonEmg_RS = TRUE or int_TL_ButtonEmg_LS = TRUE)

THEN
8 IF int_TL_ButtonEmg_RS = TRUE THEN
9 emg_side := right_side

10 ELSIF int_TL_ButtonEmg_LS = TRUE THEN
11 emg_side := left_side
12 END;
13 test_BEmg_body(int_speedLower6, int_speedZero, int_platformSafe,

int_TL_DOORS_CL, int_TL_DOORS_LCK, int_selected_side,
emg_side);

14 TL_AUTO_EMG := test_BEmg_authorize;
15 EMG_SIGN := test_BEmg_signalize;
16 TL_RS_OP := test_BEmg_open_right;
17 TL_AUTO_RS := test_BEmg_autho_open_right;
18 TL_LS_OP := test_BEmg_open_left;
19 TL_AUTO_LS := test_BEmg_autho_open_left
20 END;
21 emergency_evaluated := TRUE;
22 active := (active - {step1, step2, step3, step4, step5, step6,

step7}) \/ {step8};
23 executed := step8
24 END

Code 58: B operation for Step8

In Code 58 the B operation generated for Step8 and its associated action, in ST,
shown in Code 56, are depicted. From lines 3 to 21 the translations of the ST statements,
generated according to the guidelines shown in Chapter 4, are presented. In lines 22
and 23 the flow control statements, for Step8, generated to ensure that the B machine
will behave respecting the defined execution flow in the SFC program, are exhibited. At
Step8, all its source steps must be deactivated, which happens to be all of them expect
from start; and step8 itself must be activated, marking whom the execution flow has
just activated, which, for the same principle, guides the assignment of step8 to executed.

At Code 59 the B operation resulting from the translation of the POU function
Test_Closing, at Code 55, is shown. The output of the operation is named after the
POU and represents the return element of Test_Closing, a boolean value. The operation
itself has the su�x “_op” after the POU’s name, which is followed by the names of the
parameters passed to the function (line 1). These parameters are typed in the operation’s

147

precondition (line 2, and, from line 4 to 6, the translation of the POU’s body, as for a
POU function’s translation, is depicted.

1 Test_Closing <-- Test_Closing_op (train_mode, TL_RS_OP_ATC,
TL_AUTO_RS_ATC, TL_LS_OP_ATC, TL_AUTO_LS_ATC, OP_RS_Console,
OP_LS_Console) =

2 PRE train_mode : OPERATION_MODE & TL_RS_OP_ATC : BOOL & TL_AUTO_RS_ATC :
BOOL & TL_LS_OP_ATC : BOOL & TL_AUTO_LS_ATC : BOOL & OP_RS_Console :
BOOL & OP_LS_Console : BOOL

3 THEN
4 ANY value1 WHERE value1 = bool(not((train_mode = ATO & ((not(

TL_RS_OP_ATC = TRUE) or not(TL_LS_OP_ATC = TRUE)) & (
OP_RS_Console = TRUE or OP_LS_Console = TRUE))))) THEN

5 Test_Closing := value1
6 END
7 END

Code 59: B operation for POU function Test Closing

In the ANY statement, an element, value1, is created and defined as the resulting
value of the translated ST expression in the POU’s body that would be assigned to the
return element of the POU (line 1); therefore, in the scope of ANY, the operation’s
output, Test_Closing, is assigned with value1 (line 5).

1 test_MEmg_body (stopped, in_platform, doors_closed, doors_locked) =

2 PRE

3 stopped : BOOL & in_platform : BOOL & doors_closed : BOOL &

doors_locked : BOOL

4 THEN

5 int_stopped := stopped; int_in_Platform := in_platform;

int_doors_closed := doors_closed; int_doors_locked := doors_locked;

6 IF (int_stopped = TRUE & int_in_Platform = TRUE & int_doors_closed =

TRUE & int_doors_locked = TRUE)

7 THEN

8 test_MEmg_authorize := TRUE; test_MEmg_signalize := TRUE

9 ELSIF (not(int_stopped = TRUE) & not(int_in_Platform = TRUE) &

int_doors_closed = TRUE & int_doors_locked = TRUE)

10 THEN

11 test_MEmg_authorize := FALSE; test_MEmg_signalize := TRUE

12 END

13 END

Code 60: B operation for POU function block instance test_MEmg

148

The generation procedure for the instance test_MEmg of the POU function block
Define_MechEmergency results in the B operation shown in Code 60, where the POU
inputs are read in an operation named after the instance’s name (line 1). The statements
in the operation firstly makes the setting of the inputs’ internal representation (line 5),
then performing the statements resulting from the translation of the POU’s body with
the outputs being prefixed of the instance’s name (lines 6-12).

5.2.2 Safety constraints

Once the B model was generated, the next phase in our method is the insertion of
safety constraints in it so we can verify the control system’s requirements. This insertion
had to be performed manually, as the automatic derivation of formal constraints from
natural language requirements is still out of our work’s scope.

To translate the safety constraints from the system’s documentation into B invari-
ants, we used the ProR approach (LADERNBERGER and JASTRAM, 2012), easing the
process and assuring reliable traceability; the whole e�ort is in (BARBOSA, 2010), we
present here only some examples.

To the requirement concerning the safe conditions for performing closing operations,

• In ATO mode, the Central Door Controller must not close the doors while receiving
the command to open them from the driver push buttons.

we have the resulting B invariant:

((conditions_to_close_satisfied = FALSE) =>

(int_train_mode = ATO & (((not(int_TL_RS_OP_ATC = TRUE) &

int_TL_AUTO_RS_ATC = TRUE) or (not(int_TL_LS_OP_ATC = TRUE) &

int_TL_AUTO_LS_ATC = TRUE)) & (int_OP_RS_Console = TRUE or

int_OP_LS_Console = TRUE)))

)

It makes use of the internal representation of inputs (for the train mode,
commands from ATC and from the Cabin), as well as of the local variable
conditions_to_close_satisfied, whose result is determined by the invocation of the
operation Test_Closing_op in the Functions machine; therefore, the invariant will con-
cern the seen operation’s execution, even though its declaration is in the refinement of
CDC, that sees Functions.

149

Another requirements we show here are the ones related with what the CDC must do
when a mechanic emergency switch is actuated:

1. The actuation of the mechanic emergency switch with the train stopped in the
platform with doors closed and locked shall induce:

• The central door controller is informed of the actuation of the mechanic emer-
gency switch.

• In the cabin a sound alarm shall be warned.

• The central door controller must authorize the unlocking of the door through
the emergency switch.

2. The actuation of the mechanic emergency switch with the train in movement in the
platform with doors closed and locked shall induce:

• The central door controller is informed of the actuation of the mechanic emer-
gency switch.

• In the cabin a sound alarm shall be warned.

3. The actuation of the mechanic emergency switch with the train in movement outside
the platform with doors closed and locked shall induce:

• The central door controller is informed of the actuation of the mechanic emer-
gency switch.

• In the cabin a sound alarm shall be warned.

• While the train is in movement and outside the platform, the central door
control must not authorize the unlocking of the door through the emergency
switch.

We have the following resulting invariants from these requirements:

150

(

((int_stopped = TRUE & int_in_Platform = TRUE & int_doors_closed =

TRUE & int_doors_locked = TRUE) or

(int_stopped = FALSE & int_in_Platform = TRUE & int_doors_closed =

TRUE & int_doors_locked = TRUE) or

(int_stopped = FALSE & int_in_Platform = FALSE & int_doors_closed =

TRUE & int_doors_locked = TRUE))

=> (test_MEmg_signalize = TRUE)

)

&

(

((int_stopped = TRUE & int_in_Platform = TRUE & int_doors_closed =

TRUE & int_doors_locked = TRUE))

=> (test_MEmg_authorize = TRUE)

)

These invariants are to be put into the test_MEmg refinement component, representing
the respective instance of the POU function block where the evaluation of the mechanic
emergency conditions are made. The CDC does not have access to this behaviour, so all
constraints over it must be accounted in the respective component.

The invariant also makes use of the internal representation of inputs, only that, regar-
ding the current state of the train (whether stopped in the platform with its doors closed
and locked), and, from specific valuations of these inputs, forces the value of the function
block instance’s outputs.

Considering all the requirements for the CDC execution a total of thirteen invariants
were inserted into the components of the model. Their distribution through scope can be
seen in Table 12.

Subject Number of invariants
Opening conditions 2
Closing conditions 1
CDC opening commands 1
CDC closing commands 1
Closing signalization 1
Mechanic emergency conditions 4
Button emergency conditions 3

Table 12: Invariants inserted into the B model for CDC.

151

5.3 Results

We present below the results we obtained from the formal verification of the B model
for the CDC after the insertion of several invariants, concerning safety constraints, in it2.
The results are divided by the category of verification: through proof obligations to be
discharged with theorem proving in order to assess invariant compliance, representing
that the CDC was executing correctly; and through model checking, also with the defi-
nition of LTL formulae, to check structural properties over the model, representing that
the CDC was presenting the correct execution..

5.3.1 Proof obligations verification

Several proof obligations were generated to verify the invariants in the components
possessing them — CDC_r, test_MEmg_r and test_BEmg_r. The summarization of the
proof obligations, relative to the elements of the machines they are associated with, is
made through Table 13.

Proof Obligations Proven Unproved
CDC 329 328 1

Operations

Initialisation 1 1 0
Start 5 5 0
Step1 234 234 0
Step2 11 10 0
Step3 13 12 1
Step4 5 5 0
Step5 5 5 0
Step6 5 5 0
Step7 5 5 0
Step8 45 45 0
test_MEmg_body 4 3 1
test_BEmg_body 8 8 0

Table 13: Proof obligations generated to verify the B model for CDC.

In Table 13 we can also see the results for the theorem proving e�ort, made with the
AtelierB Theorem Prover, which was not able to verify all the proof obligations: two of
them were not discharged, one for text_MEmg_body and one for Step3. The AtelierB
Prover uses four types of force, from 0 to 3, with higher forces using mechanisms that
consume more CPU and memory. If the proof obligations are not automatically discharged
using these mechanisms one may use the Interactive Theorem Prover3 to verify whether
the proof obligation was indeed satisfiable, which was not the case for the two unproven

2We run the experiments in a computer with a 3.33GHz Core 2 Duo CPU and 4GB of RAM.
3A tool to assist the formal proofs.

152

POs in our project. A proof in force 0 requires, in average, some seconds to be proven,
while more complex ones may take several minutes. Using force 0 we had, in about two
seconds, almost the same results as the ones shown in Table 13, except for one proof
obligation, for the Step2 operation, that required the use of force 3, being discharged in
about tree seconds — this proof obligation concerned the invariant for opening conditions
and the Test_Opening_op operation, which involved several variables and had to be
verified taking into account the use of temporary values, since it was the result of a
POU function translation, which we stated previously could lead to di�culties during the
verification phase.

The proof obligations not discharged were generated to attest the satisfiability of the
invariants for closing safety and mechanic emergency actuation, presented in the
previous section; the former through the behaviour in the Test_Closing_op, invoked in
Step3, and the latter through the behaviour performed at text_MEmg_body.

Due to the traceability in the model’s architecture with the PLC program it represents
we could attest that these proof obligations were relative to the POU function block
Define_MechEmergency’s body and the Evaluate_Closing action performed in Step3,
through the use of the POU function Test_Closing’s body.

The impossibility to satisfy the proof obligations led us to realize that De-
fine_MechEmergency was not considering the situation when the train was with
its doors closed and locked, in platform, but not stopped, a situation constrained
by the requirements, however not approached in the PLC program. Adding the statements

ELSIF NOT stopped AND in_platform AND doors_closed AND doors_locked THEN

authorize := FALSE; signalize := TRUE;

to its body the resulting B translation was able to clear the proof obligation.

With Test_Closing the procedure was the same: we realized, through the proof
obligation unproven, that the ST expression was not properly considering the commands
sent by the ATC: a closing command from the ATC to open or close the doors in one
side of the train is composed of two trainlines, one representing the direct command
and the other its authorization — e.g, TL_RS_OP_ATC and TL_AUTO_RS_ATC for
a right side opening; in the POU body, however, only the direct trainline — e.g.,
TL_RS_OP_ATC — was being considered, without its authorization counterpart.
Changing the ST assignment seen in Code 55, previously in this Chapter, to

153

Test_Closing := NOT (train_mode = ATO AND (((NOT TL_RS_OP_ATC AND

TL_AUTO_RS_ATC) OR (NOT TL_LS_OP_ATC AND TL_AUTO_LS_ATC)) AND (

OP_RS_Console OR OP_LS_Console)));

made the resulting B translation compliant with the invariant, thus allowing the proving
of the remaining proof obligation.

5.3.2 Model checking

With model checking we verify if the model contains structural and behavioral pro-
blems, testing if it executes as expected — properties to assert this may be defined through
LTL and then verified using model checking.

The state space we deal with for the CDC model is quite big, due mostly to the
high number of inputs received, so some bounds must be established when performing
the model checking, like reducing the number of possible transitions generated from each
operation — this, however, decreases our confidence when making claims about the results.

Nonetheless, applying the model checking approach over the already-invariant-
compliant model led us to situations of incompleteness, such as the one when verifying
the LTL formula

⇤((executed = step6) ∆ ù(executed = step8))

which states that the CDC must, always, eventually evaluate the emergency conditions
(Step8) once it performs closing operations (Step6). The formula could not be verified
with model checking, which led us to see that from the Step6 operation the execution
flow would never go to the Step8 operation, due to the unsatisfiability of Step8’s
precondition in any scenario after Step6.

The traceability of the B model’s architecture with the PLC programs guided us to
track the error to the wrong definition of transition T12, whose logic condition composed
part of Step8’s precondition. The transition T12’s condition, “T12 := NOT TL_RS_OP

AND TL_AUTO_RS;”, was preventing the PLC for reaching the final step, Step8, whenever
it was performing closing operations; changing the condition to “T12 := NOT TL_RS_OP

AND NOT TL_AUTO_RS;” allowed the execution flow to reach Step8 from Step6, what was
verified by the satisfiability of the LTL formula in the model checking over the resulting
CDC model.

154

Operation Number of visits
Initialisation 1
Start 100
Step1 100
Step2 33
Step3 67
Step4 33
Step5 33
Step6 67
Step7 67
Step8 14330
Functions.Test_Opening_op 327144
Functions.Test_Closing_op 1363100
deadlocked 0
explored_but_not_all_transitions_computed 13631
Enabling operations 100
TOTAL_OPERATIONS 1705075
Model Checking time ≥10min

Table 14: Model checking over the CDC model with 100 enabling operations

After this correction in the model we performed model checking to verify deadlock
freedom and other properties. We obtained the results shown in Table 14 for the model
checking with the number of enabling operations from each previous one in 100. Although
it showed no structural issues and covered all the operations, a high number of transitions
was not computed, which led us to try the model checking with a higher number of
enabling operations, aiming full coverage.

We incrementally increased the number of enabling operations so we could test the
relation between time and resources spent and state space covered, until with a limit of
1000 we reached a much lesser number of transitions not computed, still not finding any
more structural problems; however, the computer performing the procedure run out of
memory due to the huge state space that had to be explored. The results are summarized
in Table 15.

5.4 Conclusions

We presented a case study in a real railway application where our approach was
applied with success. We were able to attest the e�cacy of the automatic provers and
verify the safety constraints of the project. Another feature checked was the traceability,
since the errors found in the formal model corresponded, indeed, to the errors in the real
system (the PLC program), which were easily traceable. Therefore, despite being a small
example, the case study successfully illustrates how the issues related to the architecture

155

Operation Number of vistis
Initialisation 1
Start 1000
Step1 1000
Step2 195
Step3 394
Step4 53
Step5 53
Step6 126
Step7 126
Step8 97456
Functions.Test_Opening_op 973872
Functions.Test_Closing_op 7502976
Computer run out of memory
explored_but_not_all_transitions_computed 91
Enabling operations 1000
TOTAL_OPERATIONS 8541252
Model Checking time ≥30min

Table 15: Model checking over the CDC model with 1000 enabling operations

of the model to represent the PLC programs work properly.

The automatic generation of PLC models had a huge impact in the work, facilitating
the process; this is a very desired feature. Some works approaching the CDC, aiming to
provide formal models for its modeling, have been made before and the construction of
the formal model to represent it generally took several weeks, which took no time with
our approach. Of course that we have the setback of lacking the safety constraints, that
must be derived from the requirements and will require time, but once they could be
provided by others the verification procedure can be done very rapidly — as was in this
case study, since the INVARIANTS were already available, only an adaptation procedure
being necessary for its use in the generated model.

156

6 Conclusion

We have overviewed a method to carry out formal verification of PLC programs,
according to the IEC 61131-3 standard, through the automatic generation of a B spe-
cification. Safety constraints are inserted in the formal model and then verified through
theorem proving; we also verify structural properties and if the PLC presents the expected
behavior by performing model checking and using LTL formulae. Thus we increase the
level of confidence on an application, having correctness according to the specification as
a realistic and achievable goal.

Another key point of our approach is that it allows the users to generate the B models
automatically from the PLC programs, only lacking the safety properties, which boosts
the process of formal verification of such programs, significantly reducing the hard work
of designing and modeling the formal model that prevents several formal approaches from
being easily inserted in industrial projects.

We have also presented a case study in a real railway application where our method
was applied with success. We were able to attest the e�cacy of the automatic model
generation, prove the safety constraints compliance and validate the PLC’s execution
through model checking.

The research that led to this had as initial goals to make generation of verified LD code
from B specifications, but we decided to change the “direction” of the usual procedure:
we would derive B specifications from LD code. This decision was taken aiming to ease
the insertion of the approach in industrial developments: formal methods struggle to be
adopted in industry mostly for the intrinsic di�cult in the creation of their models by
engineers, since the majority of them is not familiar with the necessary mathematical
thinking for dealing with formal verification; therefore, taking away from them the e�ort
of creating such models, simply having them generated automatically from the control
programs they are used to develop, would increase the chances of the developed method
being absorbed and applied for the verification of PLCs, although it is still necessary to

157

make the results of the formal verification more readable to them.

Once we defined the central goal of the work we also decided to expand the scope:
instead of only LD we would deal with all the IEC 61131-3 standard, therefore drastically
extending our approach’s reach. The PLCopen standard was instrumental in this decision
and on its performance, as it eased the development of a common intermediary structure
for the di�erent languages to be used in the B generation process. The automation of
the approach was accounted as key since the beginning of the development, as we were
experienced with the usual di�culties when trying to integrate formal methods without
automation in the industrial development.

As we stated before, we successfully implemented our method to automatically gene-
rate the B models from PLC programs in SFC, ST, FBD and LD, short, as for the IEC
61131-3 standard, only of the IL programs. A big e�ort was devoted to the construction of
our PLC Object in order for it to be able to represent the elements of all these languages;
this required the study of the PLCopen standard in depth. We also faced di�culties to
define the guidelines for the B generation, struggling to build the actions in the PLC
readers so the organization of the information in the intermediary structure would be
e�ective in reducing the semantic gap between it and the B notation. A careful study
analysis of the IEC 61131-3 standard was determinant to provide us with the required
understanding so the B model could indeed represent the behavior of the PLC programs;
toy problems that helped the preliminaries evaluations of the method were also of great
importance.

During the development of the research we have also published papers in formal
method conferences. A first sketch, with a very di�erent architecture for the B model,
was presented in (BARBOSA and DÉHARBE, 2011), while a more developed version of
the work was shown in (BARBOSA and DÉHARBE, 2012a). A mature presentation of
the work was published in (BARBOSA and DÉHARBE, 2012b), with an excerpt of the
CDC case study used to evaluate the method; the architecture of the B model generated
presented in this paper was very close to our final version, but it yet needed some work
on; the case study was exhibited with detail and, more interestingly, the definition and
usage of LTL formulae was shown in depth and with several examples.

While developing our approach we have also dealt with a PLC language deviating from
the IEC 61131-3 standard, employed in high-speed train’s scenario, the WinGUIDEP
language: it is similar to SFC, using ST in its elements, although presenting some extensi-
ons — one of them is a new element introduced to the syntax of SFC: the subgraph, which,

158

like a SFC MacroStep, encapsulates a new SFC program inside of it; however, when the
subgraph is reached in the execution flow the current program stops, while the subgraph
runs. Modifications were necessary in the parser to accommodate such di�erences, so they
would be represented as additional data in the PLC Object generated; however, we have
not yet adapted the process of the B model generation to make room for these deviations
of the standard. Nonetheless, this type of e�ort plants the seeds for an important future
work: the expansion of the method’s reach to handle not only PLC languages deviating
from the IEC 61331-3 standard, but languages for di�erent control platforms, such as
Verilog, VHDL, C for microcontrollers, etc.; embedded systems control programming
in general, in a nutshell. Adaptations in the parsers would be mandatory, but using the
guidelines developed so far we would ease significantly such e�ort rather than starting
from scratch.

Regarding the restrictions of the approach, the future work lies mostly in improving
the way the method has to deal with some issues, such as the absence of coverage for
the IL programs, how to enhance the process of specifying the safety constraints and
time handling. The derivation of safety constraints for now is made manually by the
natural language requirements of the application, but techniques such as annotating the
PLC code with the constraints to be verified could allow us to generate the B invariants
along with the generation of the B models themselves. Concerning time, another point of
interest, besides the capacity of time handling itself in the model, is about continuous-time
systems; since we deal only with discrete-time control programs, for PLCs, this diminishes
the broadness of our approach, which led us to plan studying ways to overcome this issue,
like the one presented in (ABRIAL et al., 2012), with an approach using the Event-B
formal method, which has many similarities with the B Method itself. The capacity of
modeling the environment with whom the control program interacts is also facilitated by
Event-B constructs, which, if used in combination with B specifications, could notably
increase our method’s reach.

As for the verification performance and analysis, a methodology could be developed to
guide the correction of the PLC programs verified through our approach. With traceability
provided, results such as a proof obligation not being discharged or a LTL formula not
satisfied, presented in a way that did not require much expertise of the formal techniques, if
inserted in an easy-to-follow methodology would boost the whole approach’s application.
For the verification procedures themselves, the similarities between control operations
could be used to reduce the verification e�ort by defining some default tactics to prove
a specific structure of proof obligations, a feature provided by provers like the AtelierB’s

159

prover — once a guideline was applied to discharge a proof obligation, the same one could
be used in another unproven set of proof obligations to try their clearance. These tactics
could be stored as a library to be used during the tool’s execution by a user request, once
they were applicable to the faced scenario.

Concerning the translation between the PLC programs and the B specifications, a
possible way to improve the confidence on it is applying testing techniques: validate the
process through the re-generation of the PLC programs back from the B models, therefore
attesting the traceability between them with more strength. Full correctness of the trans-
lation process is always desirable, even more when dealing with the rigorous scenarios of
critical systems, but it is often in low priority during an approach’s development due to
the intrinsic di�cult in proving such a property, requiring large amounts of time and work;
therefore, we left the formal proving of the translation for our method in a far horizon,
relying for now on the visual validation of the translation procedure through animation
on the model and planning to strengthen the procedure with testing techniques.

Finally, the performance and evaluation of more case studies is also of great impor-
tance to enhance the approach developed. We have performed a case study in a railway
setting, but other fields with similar control applications, such as the petroleum field, can
as well be targeted by our method and provide interest results.

160

References

ABRIAL et al., 2012 ABRIAL, J., SU, W., and ZHU, H. (2012). Formalizing hybrid
systems with event-b. In Proceedings of the ABZ 2012.

ABRIAL, 1996 ABRIAL, J. R. (1996). The B Book: Assigning Programs to Meanings.
Cambridge University Press.

ABRIAL, 2006 ABRIAL, J. R. (2006). Formal methods in industry: achievements,
problems, future. In Proceedings of the 28th international conference on Software
Engineering.

AMEY, 2004 AMEY, P. (2004). Dear sir, yours faithfully: an everyday story of
formality. In Proceedings of 12th Safety-Critical Systems Symposium.

BARBOSA, 2010 BARBOSA, H. (2010). Desenvolvendo um sistema crítico através
de formalização de requisitos utilizando o método b. Monografia de Graduação,
DIMAp/UFRN.

BARBOSA and DÉHARBE, 2011 BARBOSA, H. and DÉHARBE, D. (2011). Towards
formal verification of plc programs. In 14th Brazilian Symposium on Formal Methods:
Short Papers.

BARBOSA and DÉHARBE, 2012a BARBOSA, H. and DÉHARBE, D. (2012a). An
approach using the b method to formal verification of plc programs in an industrial
setting. In 15th Brazilian Symposium on Formal Methods: Short Papers.

BARBOSA and DÉHARBE, 2012b BARBOSA, H. and DÉHARBE, D. (2012b).
Formal verification of plc programs using the b method. In Proceedings of the ABZ 2012.

BLACKBURN et al., 2001 BLACKBURN, P., RIJKE, M., and VENEMA, Y. (2001).
Modal Logic. Cambridge University Press, 1st edition.

BURDY et al., 2012 BURDY, L., DUFOUR, J. L., and LECOMTE, T. (2012). The b
method takes up floating-point numbers. In Proceedings of Embedded Real Time Software
and Systems (ERTS).

CABRAL and SAMPAIO, 2006 CABRAL, G. and SAMPAIO, A. (2006). Formal
specification generation from requirement documents. In Proceedings of Brazilian
Symposium on Formal Methods.

CAVALCANTI et al., 2011 CAVALCANTI, A., CLAYTON, P., and O’HALLORAN,
C. (2011). From control law diagrams to ada via Circus. Formal Aspects of Computing,
pages 465–512.

161

CLARKE et al., 1999 CLARKE, E. M., GRUMBERG, O., and PELED, D. (1999).
Model checking. MIT Press, 1st edition.

FARINES et al., 2011 FARINES, J.-M., QUEIROZ, M. H. d., ROCHA, V. G., and
CARPES, A. M. M. (2011). A model-driven engineering approach to formal verification
of plc programs. In Proceedings of IEEE EFTA’2011.

FME, 2012 FME (2012). Fme.: What is formal methods. Available at: http:
//www.fmeurope.org/?pageid=2.

FREY and LITZ, 2000 FREY, G. and LITZ, L. (2000). Formal methods in plc
programming. In Proceedings of the IEEE Conference on Systems, Man and Cybernetics
(SMC’2000).

IEC, 2003 IEC (2003). IEC 61131 standard. International Electrotechnical Commission.

KRON, 2003 KRON, H. (2003). On the evaluation of risk acceptance principles. In
Proceedings of the 19th Dresden Conference on Tra�c and Transportation Science.

LADERNBERGER and JASTRAM, 2012 LADERNBERGER, L. and JASTRAM, M.
(2012). Requirements traceability between textual requirements and formal models using
pror. In Proceedings of the Posters & Tools demos sessions, ABZ 2102.

Lahiri and Bryant, 2003 Lahiri, S. K. and Bryant, R. E. (2003). Deductive verification
of advanced out-of-order microprocessors. Proceedings 15th International COnference on
Computer-Aided Verification (CAV), 2725:341–354.

LECOMTE et al., 2007 LECOMTE, T., SERVAT, T., and POUZANCRE, G. (2007).
Formal methods in safety-critical railway systems. In Proceedings of Brazilian Symposium
on Formal Methods.

LEUSCHEL and BUTLER, 2003 LEUSCHEL, M. and BUTLER, M. (2003). The prob
animator and model checker. Available at: http://www.stups.uni-duesseldorf.
de/ProB/.

MEDEIROS JR, 2009 MEDEIROS JR, V. (2009). Aplicação do método b ao projeto
formal de software embarcado. Master’s thesis, UFRN.

PARK et al., 2008 PARK, S., PARK, C., WANG, G., KWAK, J., and YEO, S. (2008).
Plcstudio: Simulation based plc code verification. In Proceedings of the 2008 Winter
Simulation Conference.

PARNAS, 2010 PARNAS, D. (2010). Really rethinking ‘formal methods’. COMPUTER,
pages 28–34.

PLCOPEN, 2009 PLCOPEN (2009). PLCopen: XML Formats for IEC 61131-3.
PLCopen Technical Committee 6.

RAUSCH and KROGH, 1998 RAUSCH, M. and KROGH, B. H. (1998). Formal
verification of plc programs. In Proceedings of the American Control Conference.

SCHNEIDER, 2001 SCHNEIDER, S. (2001). The B-method, an introduction. Palgrave,
1st edition.

http://www.stups.uni-duesseldorf.de/ProB/
http://www.stups.uni-duesseldorf.de/ProB/

162

SOLIMAN and FREY, 2009 SOLIMAN, D. and FREY, G. (2009). Verification and
validation of safety applications based on plcopen safety function blocks using timed
automata in uppaal. In Proceedings of the second IFAC workshop on dependable control
of discrete systems (DCDS).

SÜFLOW and DRECHSLER, 2008 SÜFLOW, A. and DRECHSLER, R. (2008).
Verification of plc programs using formal proof techniques. In Proceedings of
FORMS/FORMAT (2008).

VÖLKER and KRÄMER, 1999 VÖLKER, N. and KRÄMER, B. J. (1999). Modular
verification of function block based industrial control systems. In Proceedings of
IFAC/IFIP (1999).

WANG et al., 2012 WANG, R., ZHOU, M., YIN, L., and BOZGA, M. (2012). Modeling
and validation of plc-controlled systems: A case study. In Proceedings of IEEE Sixth
International Symposium on Theoretical Aspects of Software Engineering.

163

APPENDIX A -- Textual languages constructs

A.1 IL Constructs

Operator Modifiers Operand Semantics
LD N Set current result equal to

operand
ST N Store current result to ope-

rand location
S BOOL Set boolean operand to 1
R BOOL Set boolean operand to 0

AND N, (BOOL Boolean AND
& N, (BOOL Boolean AND

OR N, (BOOL Boolean OR
XOR N, (BOOL Boolean Exclusive OR
ADD (Addition
SUB (Subtraction
MUL (Multiplication
DIV (Division
GT (Comparison: >
GE (Comparison: >=
EQ (Comparison: =
NE (Comparison: <>
LE (Comparison: <=
LT (Comparison: <

JMP C, N LABEL Jump to label
CAL C, N NAME Call POU
RET C, N Return from called POU

) Evaluate deferred operation

Table 16: Elements of the instructions in IL.

164

A.2 ST constructs

Operation Structure
Parenthesization (expression)
Exponentiation **

Negation -
Complement NOT

Multiply *
Divide /
Modulo MOD

Add +
Subtract -

Comparison <, >, <=, >=
Equality =

Inequality <>
Boolean AND &, AND

Boolean Exclusive OR XOR
Boolean OR OR

Table 17: ST operations and their symbols

Statement type Structure
Assignment variable := expression;

Function invocation variable := function_identifier(argument list);

variable1 := function_identifier(argument list) + va-

riable2;

Function block invocation and FB
output usage

fb_identifier(argument list);

variable := fb_identifier.output;

RETURN RETURN;
IF IF logic expression THEN statements

ELSIF logic expression THEN statements

ELSE statements END_IF;

CASE CASE variable OF
value1 : statements;
...
valueN : statemetns;

ELSE statements; END_CASE;

FOR FOR initialize counter TO upper bound DO
statements

END_FOR;

EXIT EXIT;
EMPTY STATEMENT ;

Table 18: ST statements and examples of their usage.

165

APPENDIX B -- Textual declarations in IEC 61131-3

B.1 POU declaration

A PLC program declaration in the textual form of IEC is

1 plc_declaration ::= data_type_declaration

2 | function_declaration | function_block_declaration

3 | program_declaration | configuration_declaration

Code 61: Production rules for the textual declaration of a PLC program

The declaration of POUs in the textual form of IEC is

1 function_name ::= standard_function_name | derived_function_name

2 standard_function_name ::= <predefined in the standard>

3 derived_function_name ::= identifier

4 function_declaration ::=

5 ’FUNCTION’ derived_function_name ’:’

6 (elementary_type_name | derived_type_name)

7 { io_var_declarations | function_var_decls }

8 function_body

9 ’END_FUNCTION’

10 io_var_declarations ::= input_declarations | output_declarations |

11 input_output_declarations

12 function_var_decls ::= ’VAR’ [’CONSTANT’)

13 var2_init_decl ’;’ {var2_init_decl ’;’} ’END_VAR’

14 function_body ::= ladder_diagram | function_block_diagram

15 | instruction_list | statement_list | <other languages>

16 var2_init_decl ::= var1_init_decl | array_var_init_decl

17 | structured_var_init_decl | string_var_declaration

Code 62: Production rules for the textual declaration of a POU function

166

1 function_block_type_name ::= standard_function_block_name

2 | derived_function_block_name

3 standard_function_block_name ::= <predefined in the standard>

4 derived_function_block_name ::= identifier

5 function_block_declaration ::=

6 ’FUNCTION_BLOCK’ derived_function_block_name

7 { io_var_declarations | other_var_declarations }

8 function_block_body

9 ’END_FUNCTION_BLOCK’

10 other_var_declarations ::= external_var_declarations | var_declarations

11 | retentive_var_declarations | non_retentive_var_declarations

12 | temp_var_decls | incompl_located_var_declarations

13 temp_var_decls ::=

14 ’VAR_TEMP’

15 temp_var_decl ’;’

16 {temp_var_decl ’;’}

17 ’END_VAR’

18 non_retentive_var_decls ::=

19 ’VAR’ ’NON_RETAIN’

20 var_init_decl ’;’

21 {var_init_decl ’;’}

22 ’END_VAR’

23 function_block_body ::= sequential_function_chart | ladder_diagram

24 | function_block_diagram | instruction_list | statement_list

25 | <other languages>

Code 63: Production rules for the textual declaration of a POU function block

1 program_type_name :: = identifier

2 program_declaration ::=

3 ’PROGRAM’ program_type_name

4 { io_var_declarations | other_var_declarations

5 | located_var_declarations | program_access_decls }

6 function_block_body

7 ’END_PROGRAM’

Code 64: Production rules for the textual declaration of a POU program

167

B.2 SFC declaration

1 sequential_function_chart ::= sfc_network {sfc_network}

2 sfc_network ::= initial_step {step | transition | action}

3 initial_step ::=

4 ’INITIAL_STEP’ step_name ’:’ {action_association ’;’} ’END_STEP’

5 step ::= ’STEP’ step_name ’:’ {action_association ’;’} ’END_STEP’

6 step_name ::= identifier

7 action_association ::=

8 action_name ’(’ [action_qualifier) {’,’ indicator_name} ’)’

9 action_name ::= identifier

10 action_qualifier ::=

11 ’N’ | ’R’ | ’S’ | ’P’ | timed_qualifier ’,’ action_time

12 timed_qualifier ::= ’L’ | ’D’ | ’SD’ | ’DS’ | ’SL’

13 action_time ::= duration | variable_name

14 indicator_name ::= variable_name

15 transition ::= ’TRANSITION’

16 [transition_name) [’(’ ’PRIORITY’ ’:=’ integer ’)’)

17 ’FROM’ steps ’TO’ steps

18 transition_condition

19 ’END_TRANSITION’

20 transition_name ::= identifier

21 steps ::= step_name | ’(’ step_name ’,’ step_name {’,’ step_name} ’)’

22 transition_condition ::= ’:’ simple_instruction_list | ’:=’ expression

23 ’;’ | ’:’ (fbd_network | rung)

24 action ::= ’ACTION’ action_name ’:’

25 function_block_body

26 ’END_ACTION’

Code 65: Production rules for the textual declaration of a SFC program

168

APPENDIX C -- PLC object extra information

C.1 Class diagramas to the PLC Object

A picture of the whole structure can be seen in Figure 39. It represents the totality
of the PLCopen XML standard.

Figure 39: The whole PLC Object, representing the PLC with is header, types and instance
information.

We can see in Figure 40 one part of this diagram “zoomed up", the one where the
SFCOBjects class is presented.

169

Figure 40: The class SFCObjects, representing the elements that are used in a SFC program.

Figure 41: The class ActionBlock and their ActionCommonObjects associated, representing the blocks of actions that may be associated
with a Step object in a SFC body.

170

In Figures 42 and 43 the LDOBjects FBDOBjects classes are presented in more detail.

Figure 42: The class LDObjects, representing the elements that are used in a LD program.

Figure 43: The class FBDObjects, representing the elements that are used in a FBD
program.

171

APPENDIX D -- CDC extra information

D.1 CDC interface

Table 19: The interface of CDC, presenting its input, local and output variables.

Name Class Type

speedLower6 Input BOOL
speedZero Input BOOL
platformSafe Input BOOL
train_mode Input OPERATION_MODES
return type BOOL

Table 20: Interface of Test_Opening

Name Class Type

train_mode Input OPERATION_MODES
TL_RS_OP_ATC Input BOOL
TL_RS_OP_ATC Input BOOL
TL_AUTO_RS_ATC Input BOOL
TL_LS_OP_ATC Input BOOL
TL_AUTO_LS_ATC Input BOOL
OP_RS_Console Input BOOL
OP_LS_Console Input BOOL
return type BOOL

Table 21: Interface of Test_Closing

172

Name Class Type

stopped Input BOOL
in_platform Input BOOL
doors_closed Input BOOL
doors_locked Input BOOL
authorize Output BOOL
signalize Output BOOL

Table 22: Interface of De-
fine_MechEmergency

Name Class Type

lower6 Input BOOL
stopped Input BOOL
in_platform Input BOOL
doors_closed Input BOOL
doors_locked Input BOOL
selectedSide Input SIDE
emgSide Input SIDE
authorize Output BOOL
signalize Output BOOL
open_right Output BOOL
autho_open_right Output BOOL
open_left Output BOOL
autho_open_left Output BOOL

Table 23: Interface of De-
fine_ButtonEmergency

D.2 Doors system elements

Figure 44: All the components of the train’s doors system and their interactions with each
other.

173

Figure 45: All the components of the
train’s doors system and their interac-
tions with each other.

Figure 46: All the components of the
train’s doors system and their interac-
tions with each other.

Figure 47: All the components of the
train’s doors system and their interac-
tions with each other.

Figure 48: All the components of the
train’s doors system and their interac-
tions with each other.

174

Figure 49: All the components of the train’s doors system and their interactions with each other.

175

D.3 B models

Figure 50: B model for the instance of the Define_ButtonEmergency function block.

Figure 51: B model for the instance of the Define_MechEmergency function block.

	List of Figures
	List of Tables
	List of Codes
	Resumo
	Abstract
	Introduction
	Goals
	Structure of the dissertation

	Related work
	Approaches using theorem proving
	Approaches using model checking
	Approaches using simulation
	Considerations

	Context and techniques
	Programmable Logic Controllers
	IEC 61131
	PLC programming
	Program Organization Units
	Variables and Data Types
	IL
	ST
	Graphical languages
	FBD
	LD
	SFC

	PLCopen
	Variables and Data types
	Data Type
	Value

	POUs
	Interface
	Body

	Additional Data

	B Method
	AMN notation
	Substitutions
	Proof Obligations
	Example
	Decomposition
	Tools

	Method
	Reading the PLC programs
	PLC Object
	IEC reader
	IEC parser
	PLC Example

	PLCopen Reader

	Generating the B Model
	Architecture of the B model
	Translation Process
	ST
	FBD
	LD
	SFC

	B Writer
	Static information and structuring
	State
	Behaviour

	Inserting the safety constraints
	Example

	Restrictions of the approach

	Case Study
	Application description
	Doors subsystem
	Central Door Controller
	PLC program for CDC

	Applying the method
	B model
	Safety constraints

	Results
	Proof obligations verification
	Model checking

	Conclusions

	Conclusion
	References
	Appendix A – Textual languages constructs
	IL Constructs
	ST constructs

	Appendix B – Textual declarations in IEC 61131-3
	POU declaration
	SFC declaration

	Appendix C – PLC object extra information
	Class diagramas to the PLC Object

	Appendix D – CDC extra information
	CDC interface
	Doors system elements
	B models

