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Satisfiability modulo theories (SMT) solvers have throughout the years been able to cope with in-
creasingly expressive formulas, from ground logics to full first-order logic modulo theories. Nev-
ertheless, higher-order logic within SMT is still little explored. One main goal of the Matryoshka
project, which started in March 2017, is to extend the reasoning capabilities of SMT solvers and other
automatic provers beyond first-order logic. In this preliminary report, we report on an extension of
the SMT-LIB language, the standard input format of SMT solvers, to handle higher-order constructs.
We also discuss how to augment the proof format of the SMT solver veriT to accommodate these
new constructs and the solving techniques they require.

1 Introduction

Higher-order (HO) logic is a pervasive setting for reasoning about numerous real-world applications. In
particular, it is widely used in proof assistants (also known as interactive theorem provers) to provide
trustworthy, machine-checkable formal proofs of theorems. A major challenge in these applications is
to automate as much as possible the production of these formal proofs, thereby reducing the burden of
proof on the users.

An effective approach for stronger automation is to rely on less expressive but more automatic the-
orem provers to discharge some of the proof obligations. Systems such as HOLYHammer, MizAR,
Sledgehammer, and Why3, which provide a one-click connection from proof assistants to first-order
provers, have led in recent years to considerable improvements in proof assistant automation [8|]. Today,
the leading automatic provers for first-order classical logic are based either on the superposition calcu-
lus [[1,/12]] or on CDCL(.7) [11]]. Those based on the latter are usually called satisfiability modulo theory
(SMT) solvers and are the focus of this paper.

Our goal, as part of the Matryoshka projectis to extend SMT solvers to natively handle higher-order
problems, thus avoiding the completeness and performance issues associated with clumsy encodings. In
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this paper, we present our first steps towards two contributions within our established goal: to extend
the input (problems) and output (proofs) of SMT solvers to support higher-order constructs. Most SMT
solvers support SMT-LIB [5]] as an input format. We report on a syntax extension for augmenting SMT-
LIB with higher-order functions with partial applications, A-abstractions, and quantification on higher-
order variables (Section [2)). Regrettably, there is no standard yet for proof output; each proof-producing
solver has its own format. We focus on the proof format of the SMT solver veriT [9]. This solver is
known for its very detailed proofs [2,/6]], which are reconstructed in the proof assistants Isabelle/HOL [/7]]
and the GAPT system [[10].

Proofs in veriT accommodate the formula processing and the proof search performed by the solver.
Processing steps are represented using an extensible set of inference rules described by Barbosa et
al. [2]. Here, we extend this calculus to support transformations such as S-reduction and congruence
with A-abstractions, which are required by the new constructs that can appear in higher-order problems
(Section 3)).

The CDCL(.7) reasoning performed by veriT is represented by a resolution proof, which consists
of the resolution steps performed by the underlying SAT solver and the lemmas added by the theory
solvers and the instantiation module. These steps are described in Besson et al. [6]. The part of the
proof corresponding to the actual proving will change according to how we solve higher-order problems.
In keeping with the CDCL(.7) setting, the reasoning is performed in a stratified manner. Currently,
the SAT solver handles the propositional reasoning, a combination of theory solvers tackle the ground
(variable-free) reasoning, and an instantiation module takes care of the first-order reasoning. Our initial
plan is to adapt the instantiation module so that it can heuristically instantiate quantifiers with functional
variables and to extend veriT’s underlying modular engine for computing substitutions [4]. Since only
modifications to the instantiation module are planned, the only rules that must be adapted are those
concerned with quantifier instantiation:

— _INSTy —— INST;
Vx. o[x] = ¢lt] o[t] = Ix. p[x]

These rules are generic enough to be suitable also for higher-order instantiation. Here, we focus on

adapting the rules necessary to suit the new higher-order constructs in the formula processing steps.

2 A Syntax Extension for the SMT-LIB Language

By the time of starting this writing, the SMT-LIB standard was at version 2.5 [J5], and version 2.6 was
in preparation. Although some discussions to extend the SMT-LIB language to higher-order logic have
occurred in the past, notably to include A-abstractions, the format is currently based on many-sorted
first-order logic. We here report on an extension of the language in a pragmatic way to accommodate
higher-order constructs: higher-order functions with partial applications, A-abstractions, and quantifiers
ranging over higher-order variables. This extension is inspired by the work on TIP (Tools for Inductive
Provers) [[13]], which is another pragmatic extension of SMT-LIB.

SMT-LIB contains commands to define atomic sorts and functions, but no functional sorts. The
language is first extended so that functional sorts can be built:

(sort) = (identifier) | ( (identifier) (sort)™ )
| (=>(sort)™ (sort) )
The second line is the addition to the original grammar. We use (=> (sort) " (sort) ) rather than a special

case of ((identifier)™ (sort)) to avoid ambiguities with parametric sorts and to have the same notation
as the one generally used for functional sorts.
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The next modification is in the grammar for terms, which essentially adds a rule for A-abstractions
and generalizes the application so that any term can be applied to other terms:

(term) = (spec_constant)
| (qual_identifier)
| ((term) (term)™)
| (lambda ( (sorted var)™ ) (term)™ )
| (et ((var_binding)* ) (term))
| (forall ( (sorted var)" ) (term) )
| Cexists ( (sorted var)™ ) (term) )
| (match (term) ( (match_case)™ ) )
| (Y (term) (attribute)™ )

(sorted_var) == ((symbol) (sort) )

The old rule ({qual_identifier) (term)™) is now redundant. Higher-order quantification requires no new
syntax, since sorts have been extended to accommodate functions.
Semantically, the well-sortedness rules in SMT-LIB are extended with the following typing rules for
the arrow constructor —> and A-abstraction:
Yx:olkt:T Yruro—1 Zhvio

LAMBDA APP
YA t:o—T Yhtuv:t

Where a judgment is composed of two items. On the left hand side, a signature X, which is a tuple of
function and constant symbols. On the right hand side, a term annotated by its type. The notation X[x : 7]
stands for the signature that maps x to the type 7.

If we want to define a function taking an integer as argument and returning a function from inte-
gers to integers, it is now possible to write (declare-fun f (Int) (-> Int Int)). The following
example illustrates higher-order functions, terms representing a function, and partial applications:

(set-logic UFLIA)

(declare-fun g (Int) (-> Int Int))
(declare-fun h (Int Int) Int)
(declare-fun f ((-> Int Int)) Int)
(assert (= (f (h 1)) ((g 1) 2)))
(exit)

The term (g 1) is a function from Int to Int, in agreement with the sort of g. Then it is applied
to 2 in the expression ((g 1) 2) of sort Int. The term (h 1) is a partial application of the bi-
nary function h, and is thus a unary function. The term (f (h 1)) is therefore well typed and is
an Int. Note that in our presentation all functions of type (-> Int Int ... Int) are equivalent to
(=> Int (-> Int (-> ... Int))). Thisimplies, in particular, that in the example above ((g 1) 2)
is semantically equal to (g 1 2). More precisely we may considerate the three different declaration of
f below:

(declare-fun f () (-> Int (-> Int Int)))
(declare-fun f (Int) (-> Int Int))
(declare-fun f (Int Int) Int)
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as the unique form (declare-fun f () (-> Int Int Int)). This follows from -> being right as-
sociative. The next example features A-abstraction:

(set-logic UFLIA)
(declare-fun g (Int) (Int))
(assert
(= ((lambda ((f (-> Int Int)) (x Int)) f x) g 1) (g 1)))
(exit)

The term (lambda ((f (-> Int Int)) (x Int)) f x) isan anonymous function that takes a func-
tion f and an integer x as arguments. It is applied to g and 1, and the fully applied term is stated to be
equal to (g 1). The assertion is a tautology (thanks to S-reduction).

3 An Extension for the veriT Proof Format

Our setting is classical higher-order logic as defined by the extended SMT-LIB language above, or ab-
stractly described by the following grammar:

M:= x|c|MM| x.M | letx,~M,in M

where formulas are terms of Boolean type. We rely on the metatheory defined by Barbosa et al. [2].
Besides the axioms for characterizing Hilbert choice and ‘let’ described there, we add the following
axiom for A-abstraction, where ~ denotes the equality predicate:

= (Ax. t[x]) s ~ t]s] B)

In general, the notation f[%,| stands for a term that may depend on distinct variables X,; #[5,] is the
corresponding term where the terms 5, are simultaneously substituted for X,; bound variables in ¢ are
renamed to avoid capture. For readability, and because it is natural with a higher-order calculus, we
present the rules in curried form—that is, functions can be partially applied, and rules must only consider
unary functions.

The notion of context is as in Barbosa et al.:

=9 |Lx|L,x—1h

Each context entry either fixes a variable x or defines a substitution {X, — f,}. Abstractly, a context I'
fixes a set of variables and specifies a substitution subst(I"). The substitution is the identity for & and is
defined as follows in the other cases:

subst(T, x) = subst(I')[x — x] subst(L, %, — 1,) = subst(T') o {X, — 7, }

In the first equation, the [x — x| update shadows any replacement of x induced by I'. We write I'(¢) to
abbreviate the capture-avoiding substitution subst(I')(z).

Our new set of rules is similar to that in Barbosa et al. The rules TRANS, SKO3, SKOy, LET, and
TAUT 7 are unchanged. The BIND rule is modified to accommodate the new A-binder:

Loy, x—y>sx~t
I' > (Bx.s) ~ (By.t)

BIND if y ¢ FV(Bx.s)
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The metavariable B ranges over V, 3, and A. The CONG rule is also modified to accommodate new cases.
With respect to the first-order calculus, the left-hand side of an application can be an arbitrarily complex
term, and not simply a function or predicate symbol. Rewriting can now occur also on these complex
terms. The updated CONG rule is as follows:

I'bs~s I>i~/?

I CONG
I'> st~s't

The only genuinely new rule is for S-reduction—that is, the substitution of an argument in the body
of a A-abstraction. It is similar in form to the LET rule from the first-order calculus:
I'>bves Ix—s>t~u

BETA if I'(s)=s
I'> (Axt)v~u

Indeed, (let x ~ u in t) and (Ax.7) u are semantically equal.
Example 1. The derivation tree of the normalization of (Ax. p x x) a is as follows:

—— REFL ——— REFL
Xr—albpx~p X—albxx~a
CONG — REFL
xX—albpx>~pa xX—albx~a
CONG CONG
>a~a X—albpxx~paa

BETA

> (Ax.pxx)a ~paa

Example 2. The following tree features a S-redex under a A-abstraction. Let I'y = w, x — w; [ =
I',y—~fw;and '35 =15,z fw:

—  REFL ——— REFL ——  REFL REFL
I'ofe~f Mox>~w h>y~fw [3>pz~p(fw)
CONG BETA
I>fx~fw I > (Az.pz)y~p(fw)

I > (. (Az.p2) y) (Fx) ~ p(fw)
> (Ax. (Ay. (Az.p2)y) (fx)) =~ (Aw.p (fw))

Example 3. The transitivity rule is useful when the applied term reduces to a A-abstraction. Let I'j =
w,y—w, In=T,x—w;, In=T,w—pw;, Iu=IT,x— Aw.w; I's =17, w;, x+— wy; and
I'e=T4,z2— Awy.w:

BETA

IND

——— REFL. ——— REFL
INioy~w Ih>px~pw
BETA ——— REFL ——— CONG
> Ax.px)y~pw II Nicpw~pw 3ow~w
CONG BETA
[ > ((Ax (Az.2) x) (Ax.y)) ((Ax.p x) y) =~ (Aw;.w) (pw) I > (Awrw) (pw) ~w T
RANS
I > ((Ax. (Az.2) x) (Ax.y)) (Ax.px)y) =w 5
IND
> (Ay. (Ax. (Az.2) x) (Ax.y)) ((Ax.p x) y)) =~ (Aw.w)
where IT stands for the subtree
— REFL REFL REFL
[s>y~w [y > x>~ (Aw;.w) [ >z~ (Awy.w)
BIND BETA
[ > (Ax.y) = (Awg.w) [y > (Az.2) x>~ (Aw.w)

BETA
I > (Ax. (Az.2) x) (Ax.y) >~ (Awg.w)
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The soundness of the extended calculus is a simple extension of the soundness proof in the technical
report by Barbosa et al. [3]]. We focus on the extensions. Recall that the proof uses an encoding of terms
and context in A-calculus, based on the following grammar:

M = | (Ax. M) | (A%,. M) 1,
As previously, reify(M ~ N) is defined as VX,. t ~ uif M =,5 Ax;...Ax,.[t] and N =og Ax| ... Ax,. [u].
The encoded rules are as follows:
M|[s| ~N[s'] M[t] ~ N[/] M[Ay. (Ax.s) y] =~ N|[Ay.1]

CONG BIND if y¢ FV(Bx.s
M[s1] = N[5/ ] M[Bx. 5] ~ N[By.1] y & FV(Bx.s)

Mv] >~ N[s] M][(Ax.t) s] ~ N[u]
M[(Ax.t) v] ~ N[u]

BETA if M[v] =.5 N|s]

Lemma 1. If the judgment M ~ N is derivable using the encoded inference system with the theories
T ... Ty, then |= 5 reify(M ~ N) with = Z1U---UJ, U~Ue€ Ue UletUp.

Proof. The proof is by induction over the derivation M ~ N. We only provide here the three new cases:

CASE BIND B = A: The induction hypothesis is = reify(M[Ay. (Ax. s[x]) y] ~ N[Ay.t[y]]). Using (B)
and the side condition of the rule, we can also deduce that |= 5 reify(M|Ay. s[y])] ~ N[Ay.t[y]]). Hence
by @-conversion this is equivalent to = reify(M[Ax. s[x]] ~ N[Ay.t]y]]).

CASE CONG: This case follows directly from equality in a higher-order setting.
CASE BETA: This case follows directly from (8) and equality in a higher-order setting.

The remaining cases are similar to Barbosa et al. O

The auxiliary functions L(I")[¢] and R(T")[u] are used to encode the judgment of the original inference
system I" > # ~ u. They are defined over the structure of the context, as follows:

L(2)[1] = R(2)[u] =
L(x,T)[] = Ax.L(D)[1] R(x,D)[u] = A.L(T)[y]
L(Gn > 5uD)[f] = (A%, L(D)[1]) 5, R(Zy = 50, D)[u] = (A% L(D)[u]) 50

Lemma 2. [fthe judgment I" > t ~ u is derivable using the original inference system, the equality L(T')[t]
~ R(T')[u] is derivable using the encoded inference system.

Proof. The proof is by induction over the derivation I" I> f >~ u, we give only the three new cases:

CASE BIND with B = A: The encoded antecedent is M[Ay. (Ax. s) y| =~ N[Ay. 1] (i.e., L(T', y, x — y)[s] =~
R(T,y, x+— y)[t]), and the encoded succedent is M[Ax. s] ~ N[Ay.t]. By the induction hypothesis, the
encoded antecedent is derivable. Thus, by the encoded BIND rule, the encoded succedent is derivable.

CASE CONG: Similar to BIND.
CASE BETA: Similar to LET withn = 1.
The remaining cases are similar to Barbosa et al. O

Lemma 3 (Soundness of Inferences). If the judgment I" > t >~ u is derivable using the original inference
system with the theories T ... I, then =2 U(t) ~uwith 7 = Z1U...U 7, U~U¢e Ue Ulet UpB.

Proof. Using the above updated lemmas, the proof is identical to the one for the original calculus. [
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4 Conclusion and Future Work

We have presented a preliminary extension of the SMT-LIB syntax and of the veriT proof format to sup-
port higher-order constructs in SMT problems and proofs. Partial applications, A-abstractions, and quan-
tification over functional variables can now be understood by a solver compliant with these languages.
The only relatively challenging element of these extensions so far concerns the rules for representing
detailed proofs of formula processing. The next step is to extend the generic proof-producing formula
processing algorithm from Barbosa et al. [2]. Given the structural similarity between the introduced
extensions and the previous proof calculus, we expect this to be straightforward.

A more interesting challenge will be to reconstruct these new proofs in proof assistants, to allow
full integration of a higher-order SMT solver. Since detailed proofs are produced, with proof check-
ing being guaranteed to have reasonable complexity, we are confident to be able to produce effective
implementations.

With the foundations in place, the next step will be to implement the automatic reasoning machinery
for higher-order formulas and properly evaluating its effectiveness. Moreover, when providing support
for techniques involving, for example, inductive datatypes, we will need to augment the proof format
accordingly.

Acknowledgment We would like to thank the anonymous reviewers for their comments. Between
the initial version of this document and the current one, the SMT-LIB extension has been greatly influ-
enced by discussions with Clark Barrett and Cesare Tinelli (the SMT-LIB managers, together with Pascal
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