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Preface

This volume of EPTCS contains the proceedings of the Sixth Workshop on Proof Exchange for Theorem
Proving (PxTP 2019), held on 26 August 2019 as part of the CADE-27 conference in Natal, Brazil.

The PxTP workshop series brings together researchers working on various aspects of communication,
integration, and cooperation between reasoning systems and formalisms, with a special focus on proofs.

The progress in computer-aided reasoning, both automated and interactive, during the past decades,
made it possible to build deduction tools that are increasingly more applicable to a wider range of prob-
lems and are able to tackle larger problems progressively faster. In recent years, cooperation between
such tools in larger systems has demonstrated the potential to reduce the amount of manual intervention.

Cooperation between reasoning systems relies on availability of theoretical formalisms and practical
tools to exchange problems, proofs, and models. The PxTP workshop series strives to encourage such
cooperation by inviting contributions on all aspects of cooperation between reasoning tools, whether
automatic or interactive, including the following topics:

• applications that integrate reasoning tools (ideally with certification of the result);

• interoperability of reasoning systems;

• translations between logics, proof systems, models;

• distribution of proof obligations among heterogeneous reasoning tools;

• algorithms and tools for checking and importing (replaying, reconstructing) proofs;

• proposed formats for expressing problems and solutions for different classes of logic solvers (SAT,
SMT, QBF, first-order logic, higher-order logic, typed logic, rewriting, etc.);

• meta-languages, logical frameworks, communication methods, standards, protocols, and APIs re-
lated to problems, proofs, and models;

• comparison, refactoring, transformation, migration, compression and optimization of proofs;

• data structures and algorithms for improved proof production in solvers (e.g. efficient proof repre-
sentations);

• (universal) libraries, corpora and benchmarks of proofs and theories;

• alignment of diverse logics, concepts and theories across systems and libraries;

• engineering aspects of proofs (e.g. granularity, flexiformality, persistence over time);

• proof certificates;

• proof checking;

• mining of (mathematical) information from proofs (e.g. quantifier instantiations, unsat cores, in-
terpolants, ...);

• reverse engineering and understanding of formal proofs;

• universality of proofs (i.e. interoperability of proofs between different proof calculi);

• origins and kinds of proofs (e.g. (in)formal, automatically generated, interactive, ...);

• Hilbert’s 24th Problem (i.e. what makes a proof better than another?);

• social aspects (e.g. community-wide initiatives related to proofs, cooperation between communi-
ties, the future of (formal) proofs);
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• applications relying on importing proofs from automatic theorem provers, such as certified static
analysis, proof-carrying code, or certified compilation;

• application-oriented proof theory;

• practical experiences, case studies, feasibility studies;

Previous editions of the workshop took place in Wroclaw (2011), Manchester (2012), Lake Placid
(2013), Berlin (2015) and Brası́lia (2017).

This edition of the workshop received submissions of three regular papers, two extended abstracts and
two presentation-only extended abstracts. All submissions were evaluated by at least three anonymous
reviewers and one paper went through two rounds of reviewing. Five papers were accepted in the post-
proceedings. The presentation-only extended abstracts were:

• DRAT-based Bit-Vector Proofs in CVC4
Authors: Alex Ozdemir, Aina Niemetz, Mathias Preiner, Yoni Zohar and Clark Barrett.
Published at: SAT 2019.
Abstract: Many state-of-the-art Satisfiability Modulo Theories (SMT) solvers for the theory of
fixed-size bit-vectors employ an approach called bit-blasting, where a given formula is translated
into a Boolean satisfiability (SAT) problem and delegated to a SAT solver. Consequently, produc-
ing bit-vector proofs in an SMT solver requires incorporating SAT proofs into its proof infrastruc-
ture. In this paper, we describe three approaches for integrating DRAT proofs generated by an
off-the-shelf SAT solver into the proof infrastructure of the SMT solver CVC4 and explore their
strengths and weaknesses. We implemented all three approaches using CryptoMiniSat as the SAT
back-end for its bit-blasting engine and evaluated performance in terms of proof-production and
proof-checking.

• Modularity Meets Forgetting: A Case Study with the SNOMED CT Ontology
Authors: Jieying Chen, Ghadah Abdulrahman S Alghamdi, Renate A. Schmidt, Dirk Walther and
Yongsheng Gao
Published at: Description Logics 2019.
Abstract: Catering for ontology summary and reuse, several approaches such as modularisation
and forgetting of symbols have been developed in order to provide users smaller sets of relevant
axioms. We consider different module extraction techniques and show how they relate to each
other. We also consider the notion of uniform interpolation that is underlying forgetting. We show
that significant improvements in the performance of forgetting can be obtained by applying the
forgetting tool to ontology modules instead of the entire ontology. We investigate combining sev-
eral module notions with uniform interpolation and we provide a preliminary evaluation forgetting
signatures based on the European Renal Association subset from SNOMED CT.

The program committee had the following members: Haniel Barbosa (co-chair), Giselle Reis (co-
chair), Rob Blanco, Frédéric Blanqui, Simon Cruanes, Catherine Dubois, Amy Felty, Mathias Fleury,
Stphane Graham-Lengrand, Cezary Kaliszyk, Chantal Keller, Laura Kovács, Olivier Laurent, Stefan
Mitsch, Carlos Olarte, Bruno Woltzenlogel Paleo, Florian Rabe, Martin Riener, Geoff Sutcliffe, Josef
Urban and Yoni Zohar.

We would like to thank all authors for their submissions and all members of the program committee
for the time and energy they spent to diligently ensure that accepted papers were of high quality. We also
thank Easychair for making it easy to chair the reviewing process. Furthermore, we are thankful to the
CADE-27 organizer, Elaine Pimentel, for enabling a smooth local organization of the event.
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In Natal we will have the honor to welcome two invited speakers: Assia Mahboubi, from Inria and
Vrije Universiteit Amsterdam, giving a talk entitled Systems for Doing Mathematics by Computer and
Thibault Gauthier, from Czech Technical University, presenting a talk entitled Learning from Tactic Steps
in Formal Proofs.

The organization of this edition of PxTP stood on the shoulders of previous editions, and we are
grateful to the chairs of previous editions for all the resources and infra-structure that they made available
to us.

August 4, 2019

Giselle Reis and Haniel Barbosa
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The connection method has earned good reputation in the area of automated theorem proving, due
to its simplicity, efficiency and rational use of memory. This method has been applied recently
in automatic provers that reason over ontologies written in the description logic ALC. However,
proofs generated by connection calculi are difficult to understand. Proof readability is largely lost by
the transformations to disjunctive normal form applied over the formulae to be proven. Such a proof
model, albeit efficient, prevents inference systems based on it from effectively providing justifications
and/or descriptions of the steps used in inferences. To address this problem, in this paper we propose
a method for converting matricial proofs generated by theALC connection method toALC sequent
proofs, which are much easier to understand, and whose translation to natural language is more
straightforward. We also describe a calculus that accepts the input formula in a non-clausal ALC
format, what simplifies the translation.

1 Introduction

Description Logics (DLs) [1] are a family of knowledge representation formalisms considered as a fun-
damental foundation for the Semantic Web, as it constitutes the formalism underlying the Web Ontology
Language (OWL) language. DL is an expressive, decidable subset of First Order Logic (FOL), success-
fully applied in several areas. DL provides a precise and unambiguous meaning to DL descriptions due
to its formal semantics, and fast reasoners have been produced to the many fragments available [7].

One of them, the ALC θ-Connections Calculus, and its automated reasoner RACCOON (Reasoner
based on the Connection Calculus Over ONtologies), is based on the Connection Method [5, 8], and was
specifically developed to infer over the Description Logic ALC [5, 8]. The calculus includes typical
DL features and techniques, such as notation without variables, absence of Skolem functions/unification
and, inclusion of a blocking rule to handle cycles, which guarantees termination to make for the case of
cyclic ontologies. The Connection Calculus has earned good reputation in the area of automated theorem
proving due to its simplicity, efficiency and rational use of memory. The method represents formulae as
matrices, whose columns are conjunctive clauses; its proof procedure consists of horizontally traversing
paths through the matrix in order to connect complimentary literals (e.g., L with its complement ¬L). A
pair {L,¬L}, is called a connection, which corresponds to the validity the path being checked. Thus, a
formula is valid if every path through the matrix corresponding to it has a connection.

Both calculi mentioned above, before attempting to find a proof, convert a formula into a disjunctive
normal form. The translation to this clausal form often obscures the structure of the original formula
and transforms some simple theorem proofs into difficult ones[11]. In complex cases, the deductions’
premise(s) and conclusion can no longer be clearly identified, once the transformation has been applied
[3]. Thus, proof readability and understandability is largely lost, and consequently, it becomes quite
difficult to provide justifications and/or descriptions of the steps used during inferences.

The θ-Non-clausal ALC θ-Connection Calculus is based on the ALC θ-Connection Calculus and
works directly on the structure of the original formula, thus avoiding the translation into a clausal form.



2 ConvertingALC Connection Proofs intoALC Sequents

Nevertheless, its proof format is still not intuitive, once, like other connection calculi, it consists of a set
of complementary pairs found in each path through the matrix, when the formula is valid.

The motivation of this work is to make a connection proof forALC more readable so that, in a near
future, justifications can be generated automatically in natural language. Therefore, this article proposes
a conversion method that translates non-clausal ALC θ-connection proofs into ALC sequent proofs.
Sequent calculi have a more friendly proof representation than connection calculus; it conveys proofs in
a formal logic argument style, where each proof line is a conditional tautology. Such translation should
therefore contribute to a better user interaction with DL reasoners based on the Connection Method.

The DL ALC is presented in the next section; Section 3 brings an ALC non-clausal Connection
Calculus forALC; Section 4 introduces theALC Sequent Calculus, to which proofs will be translated;
the conversion process and its main concepts in Section 5; an overview of the main algorithms for the
conversion method with its computational complexities in Section 6; and conclusions in Section 7.

2 The Description LogicALC
An ontology O in ALC is a set of axioms over a signature (NC ,NR,NO), where NC is the set of concept
names (unary predicate symbols), NR is the set of role or property names (binary predicate symbols); NO

is the set of individual names (constants) [1]. Concept expressions are inductively defined as follows.
NC includes >, the universal concept that subsumes all concepts, and ⊥, the bottom concept subsumed
by all concept names belong to NC . If r ∈ NR is a role and C, D ∈ NC are concepts, then th following
formulae are also concepts: (i) C u D, (ii) C t D, (iii) ¬C, (iv)∀r.C; (v) ∃r.C.

A knowledge base in DL consists of a set of basic axioms (TBox), and a set of axioms specific to a
particular situation (ABox). Two axiom types are allowed in a TBox T : (i) C v D; (ii) C ≡ D, standing
for C v D and D vC. An ABoxA w.r.t. a TBox T is a finite set of assertions of two types: (i) a concept
assertion is a statement of the form C(a), where a ∈ NO, C ∈ NC and (ii) a role assertion r(a,b), where
a,b ∈ NO, r ∈ NR. AnALC formula is either an axiom or an assertion; an ontology O is an ordered pair
(T ,A). The semantics of concepts and ontologies is defined in the usual way - see, e.g., [1].

3 The Non-clausalALC θ-Connection Calculus

Definition 1. (Query). A query O |= α is an ALC formula to be proven valid, where O is an ALC
ontology, and α is either a TBox or an ABox axiom to be proven a logical consequence from O.

Definition 2. (Literal, clause, matrix). ALC Literals are atomic concepts or roles, possibly negated
or instantiated in the form L or ¬L. An ALC disjunction is either a literal L, a disjunction (E0 t E1)
or an universal restriction ∀r.E0. An ALC conjunction is either a literal L, a conjunction (E0uE1) or
an existential restriction ∃r.E0, where E0 and E1 are expressions of arbitrary concepts (see DLs and its
Mapping to FOL in [2]). Clauses are conjunctions of literals and matrices in the form L1 u . . .u Lm,
where each Li is a literal or a matrix. A matrix of a formula (in DNF) is its representation as a set
{C1, . . . ,Cn}, where each Ci is a clause.

Definition 3. (Formula with polarity). A formula with polarity, denoted by F p, consists of a formula F
and a polarity p, where p ∈ {0,1}, that is, 0 is positive and 1 is negative. This concept is used to denote
negation in a matrix, i.e. literals or matrices A and ¬A are represented by A0 and A1, respectively.

Definition 4. (ALC Non-Clausal Matrix). An ALC non-clausal matrix is a set of clauses in which a
clause is a set of literals and matrices. Let F be a formula and p be a polarity. The matrix of F p, denoted
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by M(F p), is inductively defined according to Table 1, which indicates how the polarity is inherited by
the (sub-)matrices of an F p. The matrix of F p is the matrix M(F0). Literals or (sub-)matrices involved
in a universal restriction (∀r.C) or in an existential restriction (∃r.C) are underlined in the matrix.

Table 1: Matrix of anALC formula F p.

Type F p M(F p) Type F p M(F p)
Atomic A0 {{A0}} β (CuD)0 {{M(C0),M(D0)}}

A1 {{A1}} (CtD)1 {{M(C1),M(D1)}}
α (¬C)0 M(C1) (C v D)1 {{M(C0),M(D1)}}

(¬C)1 M(C0) γ (∀rD)1 {{M(r0),M(D1)}}
(CuD)1 {{M(C1)}, {M(D1)}} (∃rD)0 {{M(r0),M(D0)}}
(CtD)0 {{M(C0)}, {M(D0)}} δ (∀rD)0 {{M(r1)}, {M(D0)}}
(C v D)0 {{M(C1)}, {M(D0)}} (∃rD)1 {{M(r1)}, {M(D1)}}
(C |= D)0 {{M(C1)}, {M(D0)}}

Definition 5. (Positive) Graphical Representation of the Matrix). In the (positive) graphical represen-
tation of a matrix, its clauses are arranged horizontally, while the literals and (sub-)matrices of each
clause are arranged vertically. The restrictions are represented by solid lines; when a restriction involves
more than one clause, its literals are indexed in the bottom with the same index in the matrix column in
the written representation, for example, the notation Li (see example 1); restrictions with indexes are
represented with horizontal lines; restrictions without indexes with vertical lines.
Example 1. (Query, clause, ALC non-clausal matrix, formula with polarity, graphical representation
of a matrix). The query F1 = {∃hasPet.Cat v CatOwner, OldLady v ∃hasPet.Animalu∀hasPet.Cat} |=
OldLady vCatOwner is read in FOL as:

∀x((∃y hasPet(x,y)∧Cat(y))→CatOwner(x))
∀z(OldLady(z)→∃v(hasPet(z,v)∧Animal(v)))

∧∀k(hasPet(z,k)→Cat(k)))


|= ∀u(OldLady(u)→CatOwner(u))

and is represented by the FOL matrix (a is a Skolem terms, f a function symbol):

{{hasPet(x,y),Cat(y),¬CatOwner(x)}, {OldLady(z), {{¬hasPet(z, f (z))}, {¬Animal( f (z))}, {hasPet(w,k),
¬Cat(k)}}}, {¬OldLady(a)}, {CatOwner(a)}}

and by the followingALC non-clausal matrix M1, which is defined according to 1 (column indices relate
the two clauses involved in a same restriction; variables are omitted as they are specified implicitly):

{{hasPet0,Cat0,CatOwner1}, {OldLady0, {{hasPet1
1}, {Animal11}, {hasPet0,Cat1}}},
{OldLady(a)1}, {CatOwner(a)0}}

So, the graphical representation of M1 is:



hasPet0

Cat0

∣∣∣∣∣∣
CatOwner1




OldLady0

[
[hasPet11][Animal11]

[
hasPet0

Cat1

∣∣∣∣∣∣

]]
 [OldLady(a)1][CatOwner(a)0]



Matrices of the form M = {. . . , {C1, . . . ,Cn}, . . .} can be simplified to M′ = {. . . ,C1, . . . , Cn, . . .}, where
C1, . . . ,Cn are clauses.

Clauses of the form C = {. . . , { M1,. . ., Mm},. . .} can be simplified to C′ = {. . . ,M1, . . . ,Mm, . . .}, where
M1, . . . ,Mm are matrices.



4 ConvertingALC Connection Proofs intoALC Sequents

Definition 6. (Path). A path through a matrix M = {C1, . . . ,Cn} is a set of literals containing a literal Li

of each clause Ci ∈M, i.e.,
⋃n

i=1{Li} with Li ∈Ci. A path through a matrix M (or a clause C) is inductively
defined as follows. The (only) path through a literal L is {L}. If p1, . . . , pn are paths through the clauses
C1, . . . ,Cn, respectively, then p1∪ . . .∪ pn is a path through the matrix M = {C1, . . . ,Cn}. If p1, . . . , pn are
paths through the matrices/literals M1, . . . ,Mn, respectively, then p1, . . . , pn are also paths through the
clause C = {M1, . . . ,Mn}.
Definition 7. (Connection, θ-substitution, θ-complementary connection). A connection is a pair of
literals {E,¬E} with the same concept/role name, but different polarities. A θ-substitution assigns to each
(possibly omitted) variable an individual or another variable (in the whole matrix). A θ-complementary
connection is a pair ofALC literals {E(x),¬E(y)} or {p(x,v),¬p(y,u)}, with θ(x) = θ(y), θ(v) = θ(u). The
complement L of a literal L is E if L = ¬E, and it is ¬E if L = E.

Simple term unification without Skolem functions is used to calculate θ-substitutions. The appli-
cation of a θ-substitution to a literal is an application to its variables, i.e. θ(E) = E(θ(x)) and θ(r) =

r(θ(x), θ(y)), where E is an atomic concept and r is a role. Furthermore, xθ = θ(x).

Example 2. (Path, Connection, θ-substitution, θ-complementary connection). In the matrix M1 of
Example 1, {hasPet0 |, hasPet1

1, Animal11, hasPet0 |, OldLady(a)1, CatOwner(a)0} and {Cat0, hasPet1
1,

Animal11, Cat1 |, OldLady(a)1, CatOwner(a)0} are some paths through M1. {Cat0 |,Cat1} is a connection.

θ(OldLady0) = OldLady(θ(y))0 and θ(hasPet0) = hasPet(θ(y), x)0, where θ(y) = a, are examples of θ-
substitution, and {OldLady0,OldLady(a)1} is a θ-complementary connection,

Definition 8. (Set of concepts, Skolem condition). The set of concepts τ(x) of a variable or individual x

contains all concepts that were substituted/ instantiated by x so far, i.e. τ(x)
def
= {E(x) ∈ Path}, where E is

a concept and E(x) is a substituted/instantiated literal coming from this concept. The Skolem condition
ensures that at most one concept is underlined in the graphical matrix. The condition is formally stated
as, ∀a|{Ei(a) ∈ Path}| ≤ 1, with a a variable/individual, and i a column index.

Definition 9. (α-Related Clause). Let C be a clause in a matrix M and L be a literal in M. C is α-
related to L, iff M contains (or is equal to) a matrix {C1, . . . ,Cn} such that C = Ci or Ci contains C, and
C j contains L for some 1 ≤ i, j ≤ n with i , j. C is α-related clause to a set of literals L, iff C is α-related
to all literals L ∈ L.

Example 3. (α-Related Clause) In the matrix of Example 1, {Animal11} is α-related to {hasPet0,Cat1}.
Definition 10. (Parent Clause). Let M be a matrix and C be a clause in M. The clause C′ = {M1, . . . ,Mn}
in M is called the parent clause of C iff C ∈ Mi for some 1 ≤ i ≤ n.

Example 4. (Parent Clause). In Example 1, {OldLady0, {{hasPet1
1}, {Animal11}, {hasPet0,Cat1}}} is par-

ent clause of {hasPet1
1}.

Definition 11. (Extension Clause). Let M be a matrix and P a path (be a set of literals). Then the
clause C in M is an extension clause of M with respect to P, iff either C contains a literal of P, or C is
α-related to all literals of P occurring in M and if C has a parent clause, it contains a literal of P.

In the extension rule of theALC θ-Connection Calculus (3.1) the new subgoal clause (set of literals
that need to be connected) is C2 \ {L2}. In the non-clausal connection calculus the extension clause C2
might contain clauses that are α-related to L2 and do not need to be considered for the new subgoal
clause. Hence, these clauses can be deleted from the subgoal clause. The resulting clause is called the
β-clause of C2 with respect to L2.
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Definition 12. (β-Clause). Let C = {M1, . . . ,Mn} be a clause and L be a literal in C. The β-Clause of C
with respect to L, denoted by β-ClauseL(C), is inductively defined:

β-ClauseL(C) :=
{

C \ {L} if L ∈C,
M1, . . . ,Mi−1, {Cβ},Mi+1, . . . ,Mn otherwise,

where C′ ∈ Mi contains L and Cβ := β-ClauseL(C′).

Example 5. (Extension Clause, β-Clause). In Example 1, C = {OldLady0, {{hasPet1
1},

{Animal11}, {hasPet0, Cat1}}} is an extension clause with respect to p = {CatOwner(a)0,Cat0}, while the

clause {OldLady0, {{hasPet1
1}, {Animal11}, {hasPet0}}} is a β-Clause of C with respect to L = Cat1.

3.1 The Formal Non-ClausalALC θ-Connection Calculus

Suppose we wish to entail if O |= α is valid using a direct method, like the Connection Method (CM).
By the Deduction Theorem [3], we must then prove directly if O→ α, or, in other words, if ¬O∨α is
valid. This opposes to classical refutation methods, like tableaux and resolution, which builds a proof
by testing whether O∪{¬α} |= ⊥. Hence, in the CM, the whole knowledge base KB should be negated.
Given O = {α1,α2, . . . ,αn} , αi being literal conjunctions in the clausal connection method, all (negated
KB) formulae are converted to the Disjunctive Normal Form (DNF). A query then is the matrix ¬O∨α
(i.e., ¬α1∨¬α2∨ . . .∨¬αn∨α) to be proven valid. In the non-clausal calculus, instead of having clauses
only with literals, they can also contain matrices, and no conversion is needed. If every path contains
a (θ-complementary) connection (representing a subformula At¬A in a disjunction, what makes this
disjunction valid), then the matrix is valid.

Definition 13. (Non-ClausalALC θ-Connection Calculus) Figure 1 shows the rules of the formal non-
clausal ALC θ-connection calculus. Rules are applied bottom-up. The words of the calculus are tuples
C,M,Path, where C is a clause, M is a matrix corresponding to query O |= α and Path is a set of literals.
C is called the subgoal clause. C1, C2 and C3 are clauses. The index µ ∈ N of a clause Cµ denotes that
Cµ is the µ-th copy of clause C, increased when Copy is applied for that clause (the variable x in Cµ

is denoted xµ). When Copy is used, it has to be followed by the application of Extension or Reduction,
to avoid non-determinism in the rules application. The Blocking Condition is defined as follows: the
new individual xθµ (if it is new, then xθµ < NO, as in the condition) is only created if the set of concepts of
the previously created individual τ(xθ

µ−1) is not a subset of the set of concepts of the penultimate copied
individual, i.e., τ(xθ

µ−1) * τ(xθ
µ−2).

The calculus consists of six rules. The Axiom, Start, Reduction and Copy rules are the same as the
ones from theALC θ-Connection Calculus. The Extension rule was modified to contain a β-Clause and
the Decomposition rule [9] splits subgoal clauses into their sub-clauses.

Lemma 1. (Matrix characterization). A matrix M is valid iff there exist an index µ, a set of θ-
substitutions 〈θi〉 and a set of connections S, s.t. every path through Mµ, the matrix with copied clauses,
contains a θ-complementary connection Lθ1,L

θ
2 in S, i.e. a connection with θ (L1) = θ

(
L2

)
. The tuple

〈µ, 〈θi〉,S 〉 is called a matrix proof.

Example 6. (Non-Clausal ALC θ-Connection Calculus). Figure 2 shows the proof for the F1 of Ex-
ample 1 using the matrix representation.

The proof starts (1) by choosing a clause from the consequent as the start clause, in this case,
{CatOwner(a)}, and a literal of that clause is selected, CatOwner(a)0. This literal is connected to
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Axiom(A) {},M,Path

S tart(S )
C1,M, {}
ε,M, ε

with C1 ∈ α

Reduction(R)
C,M,Path∪{L2}

C∪{L1},M,Path∪{L2}
with θ(L1) = θ(L2) and the Skolem condition holds

Extension(E)
C3,M,Path∪{L1} C,M,Path

C∪{L1},M,Path
with C3 := β−clauseL2 (C2),

C2 is an extension clause of M wrt. Path∪{L1},
L2 ∈C2, θ(L1) = θ(L2) and the Skolem condition holds

Decomposition(D)
C∪C1,M,Path

C∪{M1},M,Path
with C1 ∈ M1

Copy(C)
C∪{L1},M∪{Cµ

2 },Path

C∪{L1},M,Path
with Cµ

2 is a copy of C1,

L2 ∈Cµ
2 , θ(L1) = θ(L2) and the blocking condition holds

Figure 1: Non-clausalALC θ-Connection Calculus.

CatOwner1 by an extension step and instance a is the θ-substitution of CatOwner1 and CatOwner(a)0.
This connection is still not enough to prove all the paths starting from CatOwner(a)0; the paths that start
in it and pass through the literals from the other connected clause, namely, Cat0 and hasPet0, are still
to be verified. Indeed, each connection creates two sets of literals to be checked, the remaining liter-
als from each of the clauses involved in the connection. In the new extension step (2), the connection
{Cat0,Cat1} is established on the variable (or fictitious individual) x, as it is not necessary yet to commit
the substitution with an already existing individual. There is still remaining literals to be verified, the
ones resulting from the clause to which Cat0 belongs. Next (3), the hasPet0 predicate is connected,
and the θ-substitution generates the pair (y,x) (not shown in figure), for the connection. OldLady0 is
connected to OldLady(a)1 (4), and then (5), when the connection {hasPet0,hasPet1} is settled (using a
reduction step, as there was already a connection with the same literal in the path), y was θ-substituted
by y (i.e., θ(y) = a), thus forming the pair (a,x). This θ-substitution over y is then propagated through
the path. Since every path through M1 contains a θ-complementary connection, F1 is valid. However,
the readability of the proof is largely lost by the transformations applied on the formulas to be proven,
making it difficult to translate the steps into natural language.

Figure 2: TheALC non-clausal matrix proof of the F1 using the graphical matrix representation.

Next, we present the Sequent Calculus to whichALC non-clausal proofs will be translated.
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4 AnALC Sequent Calculus

According to [4], sequent calculi axiomatizes the relation of logical consequence (entailment), and this
has an obvious parallel with the relation of subsumption, which is a keystone for DL representation and
calculi. Bearing this in mind, Borgida et al proposed a sequent calculus for subsumption inferences in
ALC as an extension of the standard sequent calculus, in which there are no rules of implication, as
they are indeed subsumption rules, so implication is replaced by ` without loss of meaning. In their
calculus, terms are not moved from one side to the other of the turnstile during the proof, thus preserving
the structure of the original subsumption, and in the case of multiple subsumptions, parentheses help in
identifying the main subsumptions. Because of that, additional rules were created in which the negation
is inserted in front of each construct, thus eliminating negation rules (l¬, r¬), what requires changing
sequent antecedents to successors and vice versa. The calculus is divided in three parts: the first two
describe sets of rules, while the last describes a set of axioms (see Figure 3, where a and b are arbitrary
formulas and X and Y are arbitrary sequences of formulae).

• Rules for propositional formulae: rules u and t are duplicated by adding the negation rules
for these connectives (¬u,¬t), while the proper negation rules (¬) were modified to include the
double negation rule (¬¬);

• Rules for quantified formulae: in [4], modal formulae are used (r�, l^) and their negated rules
(l¬�, r¬^). Here, we replace these rules by their equivalents (r∀, l∃) and (l¬∀, r¬∃). The ∃-rules
are the dual ∀-rules. A condition is explicitly considered for the application of these rules: the
rule applies only if all homologous universal and existential formulae (e.g. ∀h.C and ∃h.C are
homologous, ∀h.C and ∃ f .C not) are joined together on the left and right sides of the sequent in
the precondition. The rule is then applied only once;

• Termination axioms: unlike the standard sequent calculus, there are six termination axioms;
all of them can be reduced to X,a ` a,Y by applying the rules. The application of the ¬-rules
forces formulae from the antecedent to the successor or vice versa, to be transformed until it gets
to X,a ` a,Y , a procedure that is avoided in this calculus. Therefore, the additional termination
axioms are necessary to ensure that formulae are never shifted from one side of the sequent to the
other.

Although not stated explicitly, the calculus contains a cut rule, and the cut elimination theorem is
valid in this case; it is stated below.
Theorem 1. Cut Elimination Theorem [6]. Let S be a set of sequents (axioms) and s an individual
sequent. S `S C s, if and only if, there is a proof in S C of s whose leaves are either logical or sequent
axioms obtained by the substitution of S -belonging sequents, where the cut rule, Γ ` ∆,A A,Σ ` Π

Γ,Σ ` ∆,Π , is
only applied with a premise being an axiom.
Example 7. (Sequent Proof for ALC Subsumption). Figure 4 shows Example 1’s proof using the
sequent calculus forALC. The cut rule is applied to the initial assumptions, according to theorem 1.

This proof tree could be described by the following text in natural language: (1) If individuals who
own at least one cat as a pet are owners of cats; and if the old ladies are, individuals who have at least one
animal as a pet and all individuals who have only cat as pet. So this implies that old ladies own cats. (2)
So, the old ladies are all people who have at least one cat as a pet. And all individuals who own at least
one cat as a pet, own cats. (3) In addition to old ladies are all individuals who have at least one animal as
a pet and all individuals who have only cat as pets; all individuals who have at least one animal as a pet
and all individuals who have only cat as pets, are all individuals who have at least one cat as a pet. (4)
Thus, an animal or a cat implies in a cat.
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Rules for propositional formulae
X ,a ,b ` Y

X , aub ` Y (lu)
X ` a ,Y X ` b ,Y

X , ` aub ,Y (ru)

X ,¬a ` Y X ,¬b ` Y
X ,¬(aub) ` Y (l¬u)

X ` ¬a ,¬b , Y
X ` ¬(aub) , Y (r¬u)

X , a ` Y X , b ` Y
X , atb ` Y (lt)

X ` a ,b ,Y
X ` atb , Y (rt)

X ,¬a ,¬b ` Y
X ,¬(atb) ` Y (l¬t)

X ` ¬a ,Y X ` ¬b ,Y
X ` ¬(atb) ,Y (r¬t)

X , a ` Y
X ,¬¬a ` Y (l¬¬)

X ` a ,Y
X ` ¬¬a ,Y (r¬¬)

Rules for quantified formulae
X′ ` b ,Y′

X ` ∀r.b , Y (r∀)
X′ ,b ` Y′

X , ∃r.b ` Y (l∃)

X′ , ¬b ` Y′
X ,¬∀r.b ` Y (l¬∀)

X′ ` ¬b ,Y′
X ` ¬∃r.b ,Y (r¬∃)

where X′ = {a | ∀r.a ∈ X}∪ {¬a | ¬∃r.a ∈ X}, and
Y′ = {a | ∃r.a ∈ Y}∪ {¬a | ¬∀r.a ∈ Y}

Termination axioms
X, a ` a , Y (=) X ,¬a ` ¬a , Y (=)

X, a , ¬a ` Y (l↑) X ` a , ¬a , Y (r↑)
X ,⊥ ` Y (l⊥) X ` > , Y (l>)

Cut rule
Γ ` ∆,A A,Σ ` Π

Γ,Σ ` ∆,Π

Figure 3: The Sequent Calculus forALC Subsumption [4].

OL ` ∃h.Au∀h.C

TRUE =
A,C ` C

l∃∃h.A,∀h.C ` ∃h.C
lu∃h.Au∀h.C ` ∃h.C cut

OL ` ∃h.C ∃h.C ` CO cut
(∃h.C ` CO, OL ` ∃h.Au∀h.C) ` (OL ` CO)

lu((
(∃h.C ` CO)u (OL ` ∃h.Au∀h.C)

) ` (OL ` CO)
)

Figure 4: ALC sequent proof for F1. The names of the clauses and the roles are abbreviated.

5 Conversion Method

The process consists of two steps: building a formula tree and then converting this formula tree into
sequents, given anALC query and its matrix non-clausal connection proof. They are explained below.

5.1 Building the Formula Tree

Definition 14. (Formula Tree, Position, Label, Polarity, Type). A formula tree is a syntactic represen-
tation of a formula F as a tree, where each node can have up to two child nodes. Each node has:

Position: an index that identifies each element (predicate or connective) in the formula. Its repre-
sented as a0,a1,a2, . . .; Label: either a connective (u,t,¬,v, |=), quantifier or predicate, if it is an atomic
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(sub-)formula. Nodes whose label is a predicate are leaves of the tree (figure 5b), while other nodes are
internal (figure 5a); Polarity: can be 0 or 1. It is determined by the label and the parent node polarity.
The root node of the tree has polarity 0; Type: the type of a node is a Greek letter: α, β, α′, β′, γ and δ.
It is determined by its label and its polarity. Leaf nodes have no type. The polarity and type of a node
are defined in table 2. For example, in the first line of this table, (AuB)1 means that the node labelled u
and polarity 1 has type α and its successor nodes have polarity 1.

.
(a) Internal Node (b) Leaf Node

Figure 5: Node Representation.

Table 2: Polarity and types of nodes forALC
Type α Type β Type δ
(AuB)1 A1 B1 (AuB)0 A0 B0 (∀rA)0 r1 A0

(AtB)0 A0 B0 (AtB)1 A1 B1 (∃rA)1 r1 A1

(¬A)1 A0

(¬A)0 A1

Type α′ Type β′ Type γ
(A v B)0 A1 B0 (A v B)1 A0 B1 (∀rA)1 r0 A1

(A |= B)0 A1 B0 (∃rA)0 r0 A0

Nodes of type α and α′ correspond to sequent rules that do not cause proof branching. Nodes of type
γ and δ correspond to quantifier rules. Rules associated to type δ have the eigenvariable condition in
the sequent calculi (where the term t, the eingevariable in the inference, appears in the main formula of
inference and in no other formula in the sequent. In the case of the l∃ rule for the existential quantifier
and r∀ rule for the universal quantifier). Nodes of type β and β′ (i.e., u0, t1, and v1) are particularly
important, since their respective rules in sequents (described in table 3) split proof branching into two in-
dependent sub-proofs. Nodes have their types indexed in the formula tree to facilitate their identification,
for example β1, β2, β′1, β′2. Each branch whose root is of type β or β′ is marked with a letter (a,b,c,...).

Leaf nodes with instances are children of nodes type α, α′ or β. Leaf nodes without instances have
labels attached to their closest predecessor nodes’ position, according to the following criteria : (1) if the
leaf node label represents a concept, it has an unique position associated to its label; (2) if the leaf node
label represents a role, it has two positions associated to its label in the form (a1,a2), where a2 is the
of the nearest predecessor node’s position; (3) only type γ, δ and β′ node positions are associated to the
labels. This helps to check for complementarity in a connection between two nodes.

The tree construction is guided by the identification of the (sub-)formulae’s main constructor (con-
nective or quantifier), which will be a label in the tree node. This node has at most two branches that
binds them to their child nodes, i.e., new (sub-)formulas. The node type and its childrens polarities are
assigned according to table 2. If children nodes are not atomic (sub-)formulae, the process repeats itself
by identifying these (sub)-formulae’s main constructor and then generating other nodes in the tree, until
it reaches the leaves.
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The proof matrix elements must correspond to the leaf nodes in the formula tree, indicated by the
position of the corresponding predicate, as explained in section 5.2 step 2.
Example 8. (Building the Formula Tree Process). Figure 6 shows the first step in the tree construction
for F1 from Example 1:

(
(∃h.C v CO)u (OL v ∃h.Au∀h.C)

) |= (
OL(a) v CO(a)

)
. Its main constructor

is |=, the root node label, which, by definition has polarity 0; its position is a0. According to table 2, its
type is α′; its children nodes, on the right and left, have polarities 0 and 1, respectively, and both are
sub-formulas of |= in F1. This process continues until it reaches the leaf nodes, as shown in figure 7.

|=0 a0

α′
(OL(a) vCO(a))0(

(∃h.C vCO)u (OL v ∃h.Au∀h.C)
)1

Figure 6: Step 01 Process of building the formula tree for F1.

|=0 a0

α′ v0 a16

α′
CO(a)0 a18OL(a)1 a17

u1a1

α

v1a7

β′2
u1 a9

α

∀1 a13

γ

C(a13)1 a15h(a7,a13)0 a14

∃1 a10

δ

A(a10)1a12h(a7,a10)1a11

d

OL(a7)0 a8

c

v1a2

β′1

CO(a2)1a6

b

∃0a3

γ

C(a3)0a5h(a2,a3)0a4

a

Figure 7: Formula Tree for F1 with labels, polarities and types.

For a given formula A, A′, B, B′, Γ and ∆ are used to denote the sets of node positions of type α, α′,
β, β′, γ, and δ, respectively.
Definition 15. (Substitution of positions σδ, ordering relation @δ)). It replaces positions of type γ for
positions of type δ. A position substitution σδ is a mapping of the set Γ of type γ node positions to the
set ∆ of type δ node positions. The σδ substitution induces a partial ordering relation @δ in ∆×Γ as
follows: let u ∈ Γ and v ∈ ∆; if σδ(u) = p then v @δ u for all v ∈ ∆ occurring in position p.

Since the sequent rules r∀ and l∃ and their homologues l¬∀ and r¬∃ are restricted to the eigenvariable
condition, the relation v @δ u expresses that the node labelled by v must be reduced before reducing the
one labelled by u.
Example 9. (Substitution of positions σδ, ordering relation @δ). Consider the formula tree in figure 7.
Let u be the node labelled by ∀1, with position a13 and type γ, and let v be the node labelled by ∃1, with
position a10 and type δ. To replace the position of a Type γ node by the position of a type δ node, It is
necessary to reduce the type δ node first, then the node with the position a10 must be reduced before the
node with the position a13. Thus, for this example, the ordering relation @δ is given by ∃1a10 @δ ∀1a13,
and the substitution σδ(∀1a13) = a10. With this, we have σδ = {a13/a10}.
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Definition 16. (Substitution of positions σβ′). It replaces positions of type β′, γ, δ for instances or
positions of type β′. Positions of the nodes of type β′, γ and δ, as well as instances, appear in atomic
formulas, so a substitution of positions σβ′ is a mapping of the set B′/Γ/∆ positions of nodes of type
β′/γ/δ to instances or positions of nodes of type β′. Let u be a leaf node with the positions of nodes of
type β′/γ/δ associated to its label and v ∈ B′; if σβ′(u) = p, where p ∈ B′ or p is an instance.

Reducing a node means applying the sequent rule that corresponds to that node over a given (sub-)for-
mula. Leaf nodes are not reduced.

Example 10. (Substitution of positions σβ′). Consider the formula tree in Figure 7. Let u be the node
labelled by OL0, with position a8 and position a7 of type β′ associated to its label, and let v be the
node labelled by OL1, with position a17 and instance a. The substitution for this in leaf u in this case is
σβ′(OL(a7)0) = a. Therefore, σβ′ = {a7/a}.
Definition 17. (Substitution σFinal). It is a combination of σδ and σβ′ . A σFinal substitution consists of
a substitution σδ and a substitution σβ′ , where σFinal := σδ∪σβ′ .
Example 11. (Substitution σFinal). Considering the two previous examples, σFinal = {a13/a10,a7/a}.
Definition 18. (Connection, σFinal-complementary connection). A connection is a pair of leaf nodes
labelled with the same predicate symbol and the same position associated with the label or the same
instance, but with different polarities. If they are identical under σFinal, the connection is a σFinal-
complementary connection.

Example 12. (Connection, σFinal-complementary connection). Let the formula tree in figure 7 be. The
leaf nodes h(a2,a3)0 and h(a7,a10)1 with positions a4 and a11, respectively, form a connection that is
complementary under σFinal = {a2/a7,a3/a10}.
Definition 19. (Tree Ordering ≺). The tree ordering ≺ of an F formula is the partial ordering of the
nodes positions in the tree formula. ≺ is defined as follows:(i) the root occupies the smallest position
with respect to this ordering, (ii) ai ≺ a j if and only if the position ai is below a j in the formula tree.

Example 13. (Tree Ordering ≺). In the tree from Figure 7, there are examples of tree ordering: a7 ≺
a9 ≺ a13 ≺ a15 and a0 ≺ a1 ≺ a2 ≺ a3.

Definition 20. (Reduction Order C). The transitive closure of the union of @δ, @β′ and ≺ is called
reduction order C, i.e., C := (≺ ∪ @δ ∪ @β′)+.

Nodes vCu means that the node v must be reduced before the node labelled by u in the sequent poof.
C determines the nodes’ reduction order, and helps determine which sequent rules are to be used and in
which order.

Example 14. (Reduction Order C). In Figure 7, the nodes with positions a7, a10, a16 and a13, have the
following reduction order C: (i) a7 ≺ a10; (ii) a7 ≺ a13; (iii) a10 @δ a13. The orderings’ union and the tree
ordering determine the reduction order for these nodes: a7Ca10Ca13.

Definition 21. (σFinal Admissible Substitution). An σFinal Substitution is admissible if the reduction
order C is not reflexive. In this case, it is possible to construct a sequent proof.

A correspondence between node label, polarity and type with the sequent rules presented in section
4, is established in table 3. Such correspondence is useful for the sequent proof construction, where the
polarity helps in the identification of the rule. Polarity 1 represents a rule on the left (left or l); polarity 0,
on the right (right or r), for cases where there is already an associated rule. For instance, in Table 3’s first
line, for node u1 the rule is lu, while for node u0 it is ru. For cases where internal nodes are preceded
by a node labelled by a negation, correspondences are in Table 3’s last four columns.
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Table 3: Correspondence between label, polarity and type of a node, preceded or not by a node labelled
with negation, toALC Sequent rules.

Not preceded Preceded
Type α Rule Type β Rule Type δ Rule Type α Rule Type β Rule
u1 lu u0 ru ∀0 r∀ ¬1 r¬¬ u0 l¬u
t0 rt t1 lt ∃1 l∃ ¬0 l¬¬ t1 r¬t
¬1 ∅ u1 r¬u
¬0 ∅ t0 l¬t
Type α′ Rule Type β′ Rule Type γ Rule Type δ Rule
v0 ∅ v1 Cut ∀1 ∅ ∀0 l¬∀
|=0 ∅ ∃0 ∅ ∃1 r¬∃

5.2 Conversion to Sequents

Given anALC query and its matricial non-clausal connection proof, the conversion procedure transforms
this proof into anALC sequent proof. This process performs four steps, which are described below:

• Step 1- Formula tree construction: A syntactic representation in tree form is constructed for the
input formula, containing nodes, as described in 14. The position of each predicate is input to step
2, and the tree to steps 3 and 4. Example: The conversion process begins with the F1 formula tree
construction, described in definition 14, which resulted in the formula tree represented in figure 7.

• Step 2- Matrix elements’ positions assignment: Since proof matrix elements correspond to pred-
icates in the formula and also to leaf nodes in the formula tree, this step assigns to each matrix
element the position of the corresponding predicate. Its input is the matrix non-clausal connection
proof and the position of predicates. Its output is input to step 3. Example: Each element of the
matrix is assigned with the position of the corresponding predicate in the formula, see matrix in 8.

Figure 8: Steps representation in the connection proof/sequentALC for F1.

• Step 3- (partial) sequent proof structure Construction: The matrix non-clausal connection
proof with the positions of each element and the formula tree are inputs for this step. To each
matrix connection, the formula tree is examined in search for the leaf nodes that correspond to the
connection. The paths between the root node and these nodes in the tree are analyzed to determine
the order of nodes to be worked on and thus build a structure of the (partial) proof in sequents. This
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structure provides information about the reduction order C, which helps determine the rules to be
applied, and on the existence of the proof branch, given by the identification of the nodes of type
β and β′. The (partial) sequent proof structure constructed will be the input for step 4. Example:
The first connection links element CO(a)0, from position a18, to element CO1, of position a6,
which are complementary under the substitution σβ′ = {a2/a}, see table 4. The path between these
leaf nodes is {a18,a16,a0,a1,a2,a6}. Since there is no ordering relation @σ between the nodes of
that path and there are two tree orderings given by a0 ≺ a16 and a0 ≺ a1 ≺ a2, It is possible to
start with any of these tree orderings. Choosing the first, we have the order of reduction at that
moment equal to: a0 C a16 C a1 C a2. Since the node with position a2 is of type β′, the sequent is
divided into two branches, called a e b, as in the formula tree. Thus, this connection closes the
branch b, branch where the node CO1 is, and leads to the axiom h0,C0 ` CO1, because nodes of
type β′ are associated with the cut rule (see table 3). In the second connection, C0, with position
a5 in branch a, is connected to C1, with position a15 in branch d, and the path between them is
{a5,a3,a2,a1,a7,a9,a13,a15}. As the nodes with positions a1 and a2 have already been reduced,
it is necessary to reduce the nodes with positions, a3, a7, a9 and a13, which have tree ordering
a7 ≺ a9 ≺ a13 and the relations a10 @δ a3 and a10 @δ a13. At the moment it is only possible to
reduce the node with position a7 and then the node with position a9, that is, a7Ca9. Since the node
with position a7 is of type β′, its reduction divides branch ’a’ into branches ’c’ and ’d’. Then the
node with position a9, in branch ’d’, is reduced. Since there are pendant nodes on this path, it is not
yet possible to form an axiom and close the ’d’ branch. The third connection is analyzed, where
h0, with position a14, is connected to h1, with position a11, both in branch ’d’. The path between
the nodes is {a14,a13,a9,a10,a11}. Since a9 has already been reduced, and there are the relations
a10 @δ a13 and a10 @δ a3, the a10 position node is reduced, and ’together’ with it the nodes with
position a13 and a3. The reduction of the a10 position node makes the third and second connection
complementary under the substitutions σδ = {a13/a10, a3/a10}. With this the last two connections
are reflected in the sequent proof leading to the closure of the ’d’ branch. Notice that the second
connection was only reached in the tree after the third connection, this leads to the axiom in the
form C1 ` C0. The fourth connection connects OL0, with position a8 in branch ’c’, to OL1, with
position a17. The path between the nodes with theses positions is {a8,a7,a1,a0,a16,a17}. As all
nodes on this path have already been reduced, no reduction will be necessary in this step. Thus, ’c’
branch is closed with an axiom in the form OL0 ` h1A1,h0C1, due to the cut rule. This connection
is complementary under σβ′ = {a7/a}. On the fifth and last connection, which connects h0 to h1,
there is no need of node reduction, since all nodes in the path were reduced. The connection is
complementary under σδ = {a3/a10}. Note that a2/a and a7/a were σβ′ previous substitutions. All
connections are complementary under a substitution σFinal, all branches of the proof structure in
sequent were closed, and the reduction order is not reflexive, as shown in figure 8 and in Table 4.

• Step 4- Construction of the complete sequent proof: Here, the process builds a complete sequent
proof (output) from the (partial) sequent proof structure and the correspondence between nodes and
sequent rules, described in 3. The input is (partial) sequent proof structure, the formula tree and
ALC sequent rules. Example: The structure obtained in step 3 is traversed. The proof begins
with the reduction of a1 position node, since the first two tree nodes do not have associated rule,
because they are of type α′. Rule lu is applied. Then, the a2 position node, with type β′, reduced
by means of the cut rule on the query α, that is, on (OL `CO). The proof is divided into branches
’a’ and ’b’. The ’b’ branch is closed with the initial axiom ∃h.C ` CO, while branch ’a’ is open,
in which OL ` ∃h.C must be proved. The next node is of position a7, of type β′, and its reduction
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Table 4: Relation between connections, substitutions and orderings

N Nodes σδ σβ′ @δ C
1 CO(a2)1a6,CO(a)0a18 a2/a a0Ca16Ca1Ca2

2 C(a3)0a5,C(a13)1a15
a13/a10,
a3/a10

a10 @δ a3,
a10 @δ a13

a7Ca9

3 h(a7,a13)0a14,h(a7,a10)1a11 a13/a10 a10

4 OL(a7)0a8,OL(a)1a17 a7/a
5 h(a2,a3)0a4,h(a7,a10)1a11 a3/a10 a2/a
σFinal = a2/a, a13/a10, a3/a10, a7/a a0Ca16Ca1Ca2Ca7Ca9Ca10

divides the branch ’a’ into branches ’c’ and ’d’, by means of the application of a new cut rule on
OL ` ∃h.C. The ’c’ branch is closed with the initial axiom OL ` ∃h.Au∀h.C, while the ’d’ branch
stays open. To close the ’d’ branch, the a9 position node is reduced with the lu rule, followed by
the node with position a10, through rule l∃. This ends the F1 sequent proof, as shown in figure 9:

OL ` ∃h.Au∀h.C

=
A,C ` C

l∃∃h.A,∀h.C ` ∃h.C
lu∃h.Au∀h.C ` ∃h.C cut

OL ` ∃h.C ∃h.C ` CO cut
(∃h.C ` CO, OL ` ∃h.Au∀h.C) ` (OL ` CO)

lu((
(∃h.C ` CO)u (OL ` ∃h.Au∀h.C)

) ` (OL ` CO)
)

Figure 9: Complete proof inALC sequents for F1.

6 Complexity

This section presents a very brief overview of the main algorithms for the conversion method with its
complexities, according to the 4 steps seen in section 5.2. All the algorithms are demonstrated in [10].
Time complexities were analyzed according to the input size of each algorithm. For example, some
algorithms receive anALC formula F as input, so the input size n represents the number of symbols of
F. Other algorithms accept an F proof matrix as input; in this case, the input size is the matrix number
of symbols, including connections between literals. This input is represented by m.

Figure 10 presents the main algorithms’ execution order. Lines with arrows indicate that the output
of one algorithm is input to another. For example, the output from algorithm 02 (called convertsPostFix)
is conveyed as input for algorithm 03 (called buildTree and 04 (called assignPosition). The complexity
of algorithm 05 (Search Connections) is the highest among the algorithms: O(n4), up to four iterations
over structures based on the input size m.

7 Conclusions

This work presents a method to convert Non-clausalALC connections proofs into more readable proofs.
The approach consists in transforming these proofs into proofs in theALC-Sequent Calculus [4]. Hence,
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Figure 10: Overview of the main algorithms’ order.

this conversion assumes that the input formulae will always be in non-clausal form, i.e., without the need
to transform these formulae into any normal form. A tree representation of formulae is used as a guide
in this conversion and a sequent proof is created while the connection proof is traversed. This conversion
must contribute to describe how the reasoners based on the ALC Connection Method summon their
inferences and may facilitate the creation of natural language explanations, given the ease of converting
sequents to texts. The evaluation of the main algorithms’ computational complexities demonstrates its
practical feasibility, since they display polynomial complexity. In this perspective, the scientific contribu-
tions of this work should characterize the importance of the logical proofs, clarify the reasoning process
and increase inferences’ readability, thus providing better user interaction with connection reasoners.
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In the late 80s, Wolfram describes the Mathematica computer algebra system as a system for doing
mathematics by computer [6]. Since, a broad spectrum of tools have been designed for computer-
aided mathematics: computer algebra systems offer sophisticated algorithms for symbolic computa-
tions; scientific computing builds on the implementation of powerful numerical analysis algorithms;
high-performance automated provers have produced proofs for long-standing mathematical con-
jectures [4]; proof assistants are mature enough for the formalization of contemporary mathemat-
ics [5, 2], etc. The ever eased access to the computational power of machines has changed the face
of experimentation in mathematics.

But the status of proofs in the mathematical literature has been transformed as well, as these can
themselves be computer-aided [3, 5]. Proof assistants provide both the most expressive language to
represent mathematical objects, and the highest possible guarantee on the correctness of formalized
proofs. They could thus in principle be used to organize a fruitful cooperation among all these
systems. But delicate software engineering problems, as well as more fundamental translation issues
often hinder this collaboration [1]. In this talk we will try to discuss and illustrate the different views
these different software may have on various mathematical objects, in particular from the perspective
of proof exchange and verification.
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TacticToe is a machine-learning guided tactical prover which works as follows. By mining a proof
assistant library and modifying its proof scripts, tactic invocations are recorded. Abstraction and
orthogonalization techniques improve the quality of the created database. A predictor trained on
these examples guides TacticToe proof attempts by biasing its searches towards the most promising
tactics for each situation. The efficiency of TacticToe is demonstrated on the HOL4 standard library
and part of CakeML. By construction, proof scripts generated by TacticToe can be easily inspected
and analyzed.
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This work is a part of an ongoing effort to prove the correctness of invertibility conditions for the
theory of fixed-width bit-vectors, which are used to solve quantified bit-vector formulas in the Sat-
isfiability Modulo Theories (SMT) solver CVC4. While many of these were proved in a completely
automatic fashion for any bit-width, some were only proved for bit-widths up to 65, even though they
are being used to solve formulas over arbitrary bit-widths. In this paper we describe our initial efforts
in proving a subset of these invertibility conditions in the Coq proof assistant. We describe the Coq
library that we use, as well as the extensions that we introduced to it.

1 Introduction

Reasoning logically about bit-vectors is useful for many applications in hardware and software verifica-
tion. While Satisfiability Modulo Theories (SMT) solvers are able to reason about bit-vectors of fixed
width, they currently require all widths to be expressed concretely (by a numeral) in their input formulas.
For this reason, they cannot be used to prove properties of bit-vector operators that are parametric in
the bit-width such as, for instance, the associativity of bit-vector concatenation. Proof assistants such as
Coq [13], that have direct support for dependent types are better suited for such tasks.

Bit-vector formulas that are parametric in the bit-width arise in the verification of parametric Boolean
functions and circuits (see, e.g., [8]). In our case, we are mainly interested in parametric lemmas that are
relevant to internal techniques of SMT solvers for the theory of fixed-width bit-vectors. Such techniques
are developed a priori for every possible bit-width, even though they are applied on a particular bit-width.
Meta-reasoning about the correctness of such solvers then requires bit-width independent reasoning.

An example of the latter kind, which is the focus of the current paper, is the notion of invertibility
conditions [9] as a basis for a quantifier-instantiation technique to reason about the satisfiability of quan-
tified bit-vector formulas. For a trivial case of an invertibility condition consider the equation x+ s = t
where x, s and t are variables of the same bit-vector sort, and + is bit-vector addition. In the terminology
of Niemetz et al. [9], this equation is “invertible” for x, i.e., solvable for x, for any value of s and t. A
general solution is represented by the term t − s. Since the solution is unconditional, the invertibility
condition for x+ s = t is simply the universally true formula >. The formula stating this fact, referred
to here as an invertibility equivalence, is >⇔ ∃x.x+ s = t, a valid formula in the theory of fixed-width

∗This work has been partially supported by the Austrian Science Fund (FWF) grant P26201, the European Research Council
(ERC) Grant No. 714034 SMART, DARPA award N66001-18-C-4012, and ONR contract N68335-17-C-0558.
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bit-vectors for any bit-width n for x, s and t. In contrast, the equation x · s = t is not always invertible
for x (· stands for bit-vector multiplication). A necessary and sufficient condition for invertibility is
(−s | s) & t = t meaning that the invertibility equivalence (−s | s) & t = t⇔∃x.x · s = t is valid for any
bit-width n for x, s and t [9]. Notice that this invertibility condition involves the operations &, | and −,
and not · that occurs in the literal itself. Niemetz et al. [9] provide a total of 160 invertibility conditions
covering several bit-vector operators for both equations and inequations. However, they were able to
verify, using SMT solvers, the corresponding invertibility equivalences only for concrete bit-widths up
to 65, given the reasoning limitations of SMT solvers mentioned earlier. A recent paper by Niemetz et
al. [10] addresses this challenge by translating these invertibility equivalences into quantified formulas
over the combined theory of non-linear integer arithmetic and uninterpreted functions — a theory sup-
ported by a number of SMT solvers. While partially successful, this approach failed to verify over a
quarter of the invertibility equivalences.

In this work, we approach the task of verifying the invertibility equivalences proposed in [9] by
proving them interactively with the Coq proof assistant. We extend a rich Coq library for bit-vectors we
developed in previous work [6] with additional operators and lemmas to facilitate the task of verifying
invertibility equivalences for arbitrary bit-widths, and prove a representative subset of them. Our results
offer evidence that proof assistants can support automated theorem provers in meta-verification tasks.

Our Coq library models the theory of fixed-width bit-vectors adopted by the SMT-LIB 2 stan-
dard [1].1 It represents bit-vectors as lists of Booleans. The bit-vector type is dependent on a positive
integer that represents the length of the list. Underneath the dependent representation is a simply-typed
or raw bit-vector type with a size function which is used to explicitly state facts on the length of the
list. A functor translates an instance of a raw bit-vector along with specific information about its size
into a dependently-typed bit-vector. For this work, we extended the library with the arithmetic right shift
operation and the unsigned weak less-than and greater-than predicates and proved 18 invertibility equiv-
alences. We initially proved these equivalences over raw bit-vectors and then used these proofs when
proving the invertibility equivalences over dependent bit-vectors, as we explain in Section 4.

The remainder of this paper is organized as follows. After some technical preliminaries in Section 2,
we provide an overview of invertibility conditions for the theory of fixed-width bit-vectors in Section 3
and discuss previous attempts to verify them. Then, in Section 4, we describe the bit-vector Coq library
and our current extensions to it. In Section 5, we outline how we used the extended library to prove
the correctness of a representative subset of invertibility equivalences. We conclude in Section 6 with
directions for future work.

2 Preliminaries

We assume the usual terminology of many-sorted first-order logic with equality (see, e.g., [7] for more
details). We denote equality by =, and use x 6= y as an abbreviation for ¬(x = y). The signature ΣBV of
the SMT-LIB 2 theory of fixed-width bit-vectors includes a unique sort for each positive integer n, which
we denote here by σ[n]. For every positive integer n and a bit-vector of width n, the signature includes
a constant of sort σ[n] in ΣBV representing that bit-vector, which we denote as a binary string of length
n. The function and predicate symbols of ΣBV are as described in the SMT-LIB 2 standard. Formulas of
ΣBV are built from variables (sorted by the sorts σ[n]), bit-vector constants, and the function and predicate
symbols of ΣBV , along with the usual logical connectives and quantifiers. We write ψ[x1, . . . ,xn] to
represent a formula whose free variables are from the set {x1, . . . ,xn}.

1 The SMT-LIB 2 theory is defined at http://www.smt-lib.org/theories.shtml.
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The semantics of ΣBV -formulas is given by interpretations that extend a single many-sorted first-order
structure so that the domain of every sort σ[n] is the set of bit-vectors of bit-width n, and the function and
predicate symbols are interpreted as specified by the SMT-LIB 2 standard. A ΣBV -formula is valid in the
theory of fixed-width bit-vectors if it evaluates to true in every such interpretation.

In what follows, we denote by Σ0 the sub-signature of ΣBV containing the predicate symbols <u, >u,
≤u, ≥u (corresponding to strong and weak unsigned comparisons between bit-vectors, respectively), as
well as the function symbols + (bit-vector addition), &, |,∼ (bit-wise conjunction, disjunction and nega-
tion), − (2’s complement unary negation), and <<, >> and >>a (left shift, and logical and arithmetical
right shifts). We also denote by Σ1 the extension of Σ0 with the predicate symbols <s, >s, ≤s, and ≥s

(corresponding to strong and weak signed comparisons between bit-vectors, respectively), as well as the
function symbols −, ·, ÷, mod (corresponding to subtraction, multiplication, division and remainder),
and ◦ (concatenation). We use 0 to represent the bit-vectors composed of all 0-bits. Its numerical or
bit-vector interpretation should be clear from context. Using bit-wise negation ∼ , we can express the
bit-vectors composed of all 1-bits by ∼0.

3 Invertibility Conditions And Their Verification

Many applications rely on bit-precise reasoning and thus can be modeled using the SMT-LIB 2 theory of
fixed-width bit-vectors. For certain applications, such as verification of safety properties for programs,
quantifier-free reasoning is not enough, and the combination of bit-precise reasoning with the ability to
handle quantifiers is needed. Niemetz et al. present a technique to solve quantified bit-vector formulas,
which is based on invertibility conditions [9]. An invertibility condition for a variable x in a ΣBV -literal
`[x,s, t] is a formula IC[s, t] such that ∀s.∀t. IC[s, t]⇔ ∃x.`[x,s, t] is valid in the theory of fixed-width
bit-vectors. For example, consider the bit-vector literal x & s = t where x, s and t are distinct variables of
the same sort. The invertibility condition for x given in [9] is t & s = t.

Niemetz et al. [9] define invertibility conditions for a representative set of literals ` having a single oc-
currence of x, that involve the bit-vector operators of Σ1. The soundness of the technique proposed in that
work relies on the correctness of the invertibility conditions. Every literal `[x,s, t] and its corresponding
invertibility condition IC[s, t] induce the invertibility equivalence

IC[s, t]⇔∃x.`[x,s, t] (1)

The correctness of invertibility equivalences should be verified for all possible sorts for the variables
x,s, t for which the condition is well sorted. More concretely, for the case where x,s, t are all of sort σ[n],
say, this means that one needs to prove, for all n > 0, the validity of

∀s : σ[n].∀t : σ[n]. IC[s, t]⇔∃x : σ[n].`[x,s, t] .

This was done in Niemetz et al. [9] using an SMT solver but only for concrete values of n from 1 to 65.
A proof of Equation (1) that is parametric in the bit-width n cannot be done with SMT solvers, since they
currently only support the theory of fixed-width bit-vectors, where Equation (1) cannot even be expressed.
To overcome this limitation, a later paper by Niemetz et al. [10] suggested a translation from bit-vector
formulas with parametric bit-widths to the theory of (non-linear) integer arithmetic with uninterpreted
functions. Thanks to this translation, the authors were able to verify, with the aid of SMT solvers for the
theory of integer arithmetic with uninterpreted functions, the correctness of 110 out of 160 invertibility
equivalences. None of the solvers used in that work were able to prove the remaining equivalences. For



B. Ekici, A. Viswanathan, Y. Zohar, C. Barrett, and C. Tinelli 21

those, it then seems appropriate to use a proof-assistant, as this allows for more intervention by the user
who can provide crucial intermediate steps. It goes without saying that even for the 110 invertibility
equivalences that were proved, the level of confidence achieved by proving them in a proof-assistant
such as Coq would be greater than a verification (without a verified formal proof) by an SMT solver.

In the rest of this paper we describe our initial efforts and future plans for proving the invertibility
equivalences, starting with those that were not proved in [10].

4 The Coq Bit-vector Library

In this section, we describe the Coq library we use and the extensions we developed with the goal of
formalizing and proving invertibility equivalences. The original library was developed for SMTCoq [6],
a Coq plugin that enables Coq to dispatch proofs to external proof-producing solvers. It is used to
represent SMT-LIB 2 bit-vectors in Coq. Coq’s own library of bit-vectors [5] was an alternative, but it
has only definitions and no lemmas. A more suitable substitute could have been the Bedrock Bit Vectors
Library [3] or the SSRBit Library [2]. We chose the SMTCoq library mainly because it was explicitly
developed to represent SMT-LIB 2 bit-vectors in Coq and comes with a rich set of lemmas relevant to
proving the invertibility equivalences.

The SMTCoq library contains both a simply-typed and dependently-typed theory of bit-vectors im-
plemented as module types. The former, which we also refer to as a theory of raw bit-vectors, formalizes
bit-vectors as Boolean lists while the latter defines a bit-vector as a Coq record, with its size as the
parameter, made of two fields: a Boolean list and a coherence condition to ensure that the parameter-
ized size is indeed the length of the given list. The library also implements a functor module from the
simply-typed module to the dependently-typed module establishing a correspondence between the two
theories. This way, one can first prove a bit-vector property in the context of the simply-typed theory
and then map it to its corresponding dependently-typed one via the functor module. Note that while it
is possible to define bit-vectors natively as a dependently-typed theory in Coq and prove their properties
there, it would be cumbersome and unduly complex to do dependent pattern matching or case analysis
over bit-vector instances because of the complications brought by unification in Coq (which is inherently
undecidable). One can try to handle such complications as illustrated by Sozeau [12]. However, we
found the two-theory approach of Ekici et al. [6] more convenient in practice for our purposes.

The library adopts the little-endian notation for bit-vectors, thus following the internal representation
of bit-vectors in SMT solvers such as CVC4. This makes arithmetic operations easier to perform since
the least significant bit of a bit-vector is the head of the list representing it in the raw theory.

Out of the 11 bit-vector operators and 10 predicates contained in Σ1, the library had support for 8
operators and 6 predicates. The supported predicates, however, can be used to express the other 4. The
predicate and function symbols that were not directly supported by the library were the weak inequalities
≤u, ≥u, ≤s, ≥s and the operators >>a, ÷, and mod . We extended the library with the operator >>a and
the predicates ≤u and ≥u and redefined << and >>, as explained in Section 5.

We focused on invertibility conditions for literals of the form x� s ./ t and s� x ./ t, where x, s and t
are variables and � and ./ are respectively function and predicate symbols in Σ0∪{=, 6=} (invertibility
conditions for such literals were found in [9] for the extended signature Σ1). Σ0 was chosen as a rep-
resentative set because it seemed both expressive enough and feasible for proofs in Coq. Such literals,
as well as their invertibility conditions, include only operators that are supported by the library (after its
extension with >>a, ≤u, and ≥u).

To demonstrate the intuition and various aspects of the extension of the library, we briefly describe
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1 Fixpoint ule_list_big_endian (x y : list bool) :=

2 match x, y with

3 | nil, nil => true

4 | nil, _ => false

5 | _, nil => false

6 | xi :: x', yi :: y' => ((eqb xi yi) && (ule_list_big_endian x' y'))
7 || ((negb xi) && yi)

8 end.

9

10 Definition ule_list (x y: list bool) :=

11 (ule_list_big_endian (rev x) (rev y)).

12

13 Definition bv_ule (a b : bitvector) :=

14 if @size a =? @size b then

15 ule_list a b

16 else

17 false.

Figure 1: Definitions of ≤u in Coq.

the addition of≤u (the definition of≥u is similar). The relevant Coq definitions are provided in Figure 1.2

Like most other operators, ≤u is defined in several layers. The function bv_ule, at the highest layer,
ensures that comparisons are between bit-vectors of the same size and then calls ule_list. Since we
want to compare bit-vectors starting from their most significant bits and the input lists start instead with
the least significant bits (because of the little-endian encoding), ule_list first reverses the two lists.
Then it calls ule_list_big_endian, which we consider to be at the lowest layer of the definition.
ule_list_big_endian then does a lexicographical comparison of the two lists, starting from the most
significant bits.

To see why the addition of≤u to the library is useful, consider, for example, the following parametric
lemma, stating that ∼0 is the largest unsigned bit-vector of its type:

∀x : σ[n].x≤u ∼0 (2)

When not using this explicit operator, we usually rewrite it as:

∀x : σ[n].x <u ∼0∨ x =∼0 (3)

In such cases, since the definitions of <u and = have a similar structure to the one in Figure 1, we strip
down the layers of <u and = separately, whereas using ≤u, we only do this once. Depending on the
specific proof at hand, using ≤u is sometimes more convenient for this reason.

5 Proving Invertibility Equivalences in Coq

In this section we provide specific details about proving invertibility equivalences in Coq. In addition to
the bit-vector library described in Section 4, in several proofs of invertibility equivalences we benefited

2Both the library and the proofs of invertibility equivalences can be found at https://github.com/ekiciburak/

bitvector/tree/pxtp2019. It compiles with coqc-8.9.0.
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1 Theorem bvashr_ult2_rtl : forall (n : N), forall (s t : bitvector n),

2 (exists (x : bitvector n), (bv_ult (bv_ashr_a s x) t = true)) ->

3 (((bv_ult s t = true) \/ (bv_slt s (zeros n)) = false) /\

4 (bv_eq t (zeros n)) = false).

5 Proof. intros n s t H.

6 destruct H as ((x, Hx), H).

7 destruct s as (s, Hs).

8 destruct t as (t, Ht).

9 unfold bv_ult, bv_slt, bv_ashr_a, bv_eq, bv in *. cbn in *.

10 specialize (InvCond.bvashr_ult2_rtl n s t Hs Ht); intro STIC.

11 rewrite Hs, Ht in STIC. apply STIC.

12 now exists x.

13 Qed.

Figure 2: A proof of one direction of the invertibility equivalence for >>a and <u using dependent types.

from CoqHammer [4], a plug-in that aims at extending the automation in Coq by combining machine
learning and automated reasoning techniques in a similar fashion to what is done in Isabelle/HOL [11].
Note that one does not need to install CoqHammer in order to build the bit-vector library, since all the
proof reconstruction tactics of CoqHammer are included in it.

The natural representation of bit-vectors in Coq is the dependently-typed representation, and there-
fore the invertibility equivalences are formulated using this representation. As discussed in Section 4,
however, proofs in this representation are composed of proofs over simply-typed bit-vectors, which are
easier to reason about. Some conversions between the different representations are then needed to lift a
proof over raw bit-vectors to one over dependently-typed bit-vectors.

For example, Figure 2 includes a proof of the following direction of the invertibility equivalence for
>>a and <u:

∀s : σ[n].∀t : σ[n].(∃x : σ[n].s>>a x <u t) ⇒ ((s <u t ∨ ¬(s <s 0)) ∧ t 6= 0) (4)

In the proof, lines 6–9 transform the dependent bit-vectors from the goal and the hypotheses into simply-
typed bit-vectors. Then, lines 10–12 invoke the corresponding lemma for simply-typed bit-vectors (called
InvCond.bvashr_ult2_rtl) along with some simplifications.

Most of the effort in this project went into proving equivalences over raw bit-vectors. As an illustra-
tion, consider the following equivalence over << and >u:

∀s : σ[n].∀t : σ[n].(t <u ∼0<<s)⇔ (∃x : σ[n].x<<s >u t) (5)

The left-to-right implication is easy to prove using ∼0 itself as the witness of the existential proof goal
and considering the symmetry between >u and <u. The proof of the right-to-left implication relies on
the following lemma:

∀x : σ[n].∀s : σ[n].(x<<s)≤u (∼0<<s) (6)

From the right side of the equivalence in Equation (5), we get some x for which x<<s >u t holds.
Flipping the inequality, we have that t <u x<<s; using this, and transitivity over <u and ≤u, Lemma 6
gives us the left side of the equivalence in Equation (5).

As mentioned in Section 4, we have redefined the shift operators << and >> in the library. This
was instrumental, for example, in the proof of Equation (6). Figure 3 includes both the original and new
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1 Definition shl_one_bit (a: list bool) :=

2 match a with

3 | [] => []

4 | _ => false :: removelast a

5 end.

6

7 Fixpoint shl_n_bits (a: list bool) (n: nat) :=

8 match n with

9 | O => a

10 | S n' => shl_n_bits (shl_one_bit a) n'
11 end.

12

13 Definition shl_n_bits_a (a: list bool) (n: nat) :=

14 if (n <? length a)%nat then

15 mk_list_false n ++ firstn (length a - n) a

16 else

17 mk_list_false (length a).

18

19 Theorem bv_shl_eq: forall (a b : bitvector), bv_shl a b = bv_shl_a a b.

Figure 3: Various definitions of <<.

definitions of <<. The definitions of >> are similar. Originally, << was defined using the shl_one_bit
and the shl_n_bits functions. shl_one_bit shifts the bit-vector to the left by one bit and is repeatedly
called by shl_n_bits to complete the shift. The new definition shl_n_bits_a uses mk_list_false
which constructs the necessary list of 0s and appends (++ in Coq) it to the beginning of the list (because
of the little-endian encoding); the bits to be shifted from the original bit-vector are retrieved using the
firstn function, which is defined in the Coq library for lists. The nat type used in Figure 3 is the Coq
representation of Peano natural numbers that has 0 and S as its two constructors — as depicted in the
pattern match in lines 9 and 10. The theorem at the bottom of Figure 3 allows us to switch between
the two definitions when needed. Function bv_shl defines the left shift operation using shl_n_bits

whereas bv_shl_a does it using shl_n_bits_a.
The new definition uses firstn and ++, over which many necessary properties are already proven in

the standard library. This benefits us in manual proofs, and in calls to CoqHammer, since the latter is able
to use lemmas from the imported libraries to prove the goals that are given to it. Using this representation,
proving Equation (6) reduces to proving Lemmas bv_ule_1_firstn and bv_ule_pre_append, shown
in Figure 4. The proof of bv_ule_pre_append benefited from the property app_comm_cons from the
standard list library of Coq, while firstn_length_le was useful in reducing the goal of bv_ule_-
1_firstn to Coq’s equivalent of Equation (2). The statements of the properties mentioned from the
standard library are also shown in Figure 4. mk_list_true creates a bit-vector that represents ∼0, of
the length given to it as input, and bv_ule is the representation of ≤u in the bit-vector library. bv_ule
has output type bool (and so we equate terms in which it occurs to true), while the functions from
the standard library have output type Prop. We also have two definitions for >>a, and a proof of their
equivalence (as done for the other shift operators).

Table 1 summarizes the results of proving invertibility equivalences for invertibility conditions in the
signature Σ0. In the table, Xmeans that the invertibility equivalence was successfully verified in Coq but
not in [10], while X means the opposite; XX means that the invertibility equivalence was verified using



B. Ekici, A. Viswanathan, Y. Zohar, C. Barrett, and C. Tinelli 25

1 Lemma bv_ule_1_firstn : forall (n : nat) (x : bitvector),

2 (n < length x)%nat ->

3 bv_ule (firstn n x) (firstn n (mk_list_true (length x))) = true.

4

5 Lemma bv_ule_pre_append : forall (x y z : bitvector), bv_ule x y = true ->

6 bv_ule (z ++ x) (z ++ y) = true.

7

8 Theorem app_comm_cons : forall (x y:list A) (a:A), a :: (x ++ y) = (a :: x) ++ y.

9

10 Lemma firstn_length_le: forall l:list A, forall n:nat,

11 n <= length l -> length (firstn n l) = n.

Figure 4: Examples of lemmas used in proofs of invertibility equivalences.

`[x] = 6= <u >u ≤u ≥u

−x ./ t XX X X X X X
∼x ./ t XX X X X X X

x & s ./ t X X X X X X
x | s ./ t X X X X X X

x<<s ./ t X X X X X X
s<<x ./ t XX X X X X X
x>>s ./ t XX X X 5 X X
s>>x ./ t XX X X X X X

x>>a s ./ t X X X X X X
s>>a x ./ t XX X X X X X

x+ s ./ t XX X X X X X

Table 1: Proved invertibility equivalences in Σ0 where ./ ranges over the given predicate symbols.

both approaches, and 5 means that it was verified with neither. We successfully proved all invertibility
equivalences over = that are expressible in Σ0, including 4 that were not proved in [10]. For the rest
of the predicates, we focused only on the 8 invertibility equivalences that were not proved in [10], and
succeeded in proving 7 of them. Overall, these results strictly improve the results of [10], as we were
able to prove 11 additional invertibility equivalences in Coq. Taking into account our work together
with [10], only one invertibility equivalence for the restricted signature is not fully proved yet, the one
for the literal x>>s >u t, although one direction of the equivalence, namely IC[s, t]⇒ ∃x.`[x,s, t], was
successfully proved both in Coq and in [10].

6 Conclusion and Future Work

We have described our work-in-progress on verifying bit-vector invertibility conditions in the Coq proof
assistant, which required extending a bit-vector library in Coq. The most immediate direction for future
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work is proving more of the invertibility equivalences supported by the bit-vector library. In addition,
we plan to extend the library so that it supports the full syntax in which invertibility conditions are
expressed, namely Σ1. We expect this to be useful also for verifying properties about bit-vectors in other
applications.
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Proof assistants often call automated theorem provers to prove subgoals. However, each prover has its
own proof calculus and the proof traces that it produces often lack many details to build a complete
proof. Hence these traces are hard to check and reuse in proof assistants. DEDUKTI is a proof
checker whose proofs can be translated to various proof assistants: Coq, HOL, Lean, Matita, PVS.
We implemented a tool that extracts TPTP subproblems from a TSTP file and reconstructs complete
proofs in DEDUKTI using automated provers able to generate DEDUKTI proofs like ZenonModulo or
ArchSAT. This tool is generic: it assumes nothing about the proof calculus of the prover producing
the trace, and it can use different provers to produce the DEDUKTI proof. We applied our tool on
traces produced by automated theorem provers on the CNF problems of the TPTP library and we
were able to reconstruct a proof for a large proportion of them, significantly increasing the number
of DEDUKTI proofs that could be obtained for those problems.

1 Introduction

In order to discharge more burden from the users of interactive theorem provers, and thus to widen the
use of these tools, it is crucial to automate them more. To achieve this goal, in the process of checking
the validity of formulas, proof assistants could use an external theorem prover to automate their tasks
and obtain a proof of a specific formula. Once a proof is found, the proof assistant applies this proof
on the current goal and tells the user that all is done in background. However, this can work only if
the prover builds a complete proof that is easily checkable by the proof assistant. We distinguish two
families of automated theorem provers: some provers, like ZenonModulo [5] and ArchSAT [3], output
complete proofs but are not very efficient to find a proof; others, like E prover [7] and ZipperPosition [4],
are more powerful but return only proof traces, i.e. proofs with less details.

In this paper we are interested in first-order automated theorem provers which can return TSTP [8]
traces. We will use DEDUKTI [1] as proof checker because DEDUKTI files can be translated to many
other proof assistants (Coq, HOL, Lean Matita, PVS) [10].

We start by presenting the TPTP/TSTP formats with an example. Then, we describe how proofs
and formulas are encoded in DEDUKTI. We then present our solution implemented in a tool named
EKSTRAKTO in two steps: extraction of sub-problems and proof reconstruction. Finally, we conclude
and give some perspectives.

2 TPTP

TPTP [8] is a standard library of problems to test automated theorem provers [9]. Each TPTP file rep-
resents a problem in propositional, first-order or higher-order logic. We distinguish the type of formulas
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by using one of the keywords: CNF, FOF, TFF and THF, corresponding respectively to mono-sorted
first-order formulas in clausal normal form, general mono-sorted first-order formulas, typed first-order
formulas, and typed higher-order formulas.

In this work, we restrict our attention to CNF formulas since their proofs use logical consequences
only, which is not the case of FOF formulas (e.g. Skolemisation).

Apart from an include instruction, each line in a TPTP file is a declaration of a formula given with
its role, e.g. axiom, hypothesis, definition or conjecture:

cnf(name, role, formula, information).

TSTP [8] is a library of solutions to TPTP problems. In this paper, we call a TSTP file a trace. It
is obtained after running an automated theorem prover on a TPTP problem. The syntax used in a TSTP
file is the same as TPTP except for the content of the information field. This field contains general
information about how the current formula is obtained. Here is the grammar used to describe a source in
the information field:

<source> :== <dag_source> | [ <sources> ] | ...

<dag_source> :== <name> | inference(..., ..., <inference_parents>)

<inference_parents> :== [] | [ <sources> ]

<sources> :== <source> (, <source>)*

For our purpose only 3 cases are of interest as shown in the grammar above:

1) When it is the name of a formula previously declared.

2) When it is a list of several sources:

[s_0, s_1, ..., s_n]

3) When it is an inference:

inference(name, infos, [s_0, s_1, ..., s_n])

The name of the inference refers to the name of the rule used by the prover to prove the current step.
The infos field contains more information about the inference like status, inference name, etc. Note that
each si is a source and therefore can contain sub-inferences.

Here is an example of a TSTP file obtained after running E prover on the TPTP problem SET001-1:

SET001-1.p

cnf(c_0,axiom ,

( subset(X1,X2)

| ~ equal_sets(X1,X2) )).

cnf(c_1,hypothesis ,

( equal_sets(b,bb) )).

cnf(c_2,axiom ,

( member(X1,X3)

| ~ member(X1,X2)

| ~ subset(X2,X3) )).

cnf(c_3,negated_conjecture ,

( ~ member(element_of_b,bb) )).

cnf(c_4,hypothesis ,
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( member(element_of_b,b) )).

cnf(c_5,hypothesis ,

( subset(b,bb) ),

inference(spm ,[ status(thm)],[c_0,c_1])).

cnf(c_6,hypothesis ,

( member(X1,bb)

| ~ member(X1,b) ),

inference(spm ,[ status(thm)],[c_2,c_5])).

cnf(c_7,negated_conjecture ,

( $false ),

inference(cn ,[ status(thm)],[inference(rw ,[ status(thm)],

[inference(spm ,[ status(thm)],[c_3,c_6]),c_4])]),

[proof ]).

We can represent this trace as the following tree:

` Form(c_3)

` Form(c_2)

` Form(c_0) ` Form(c_1) spm
` Form(c_5) spm

` Form(c_6) spm ` Form(c_4) rwcn` Form(c_7)

where:

Form(c_0) = subset(X1,X2) | ~equal_sets(X1,X2)

Form(c_1) = equal_sets(b,bb)

Form(c_2) = member(X1,X3) | ~member(X1,X2) | ~subset(X2,X3)

Form(c_3) = ~member(element_of_b,bb)

Form(c_4) = member(element_of_b,b)

Form(c_5) = subset(b,bb)

Form(c_6) = member(X1,bb) | ~member(X1,b)

Form(c_7) = $false

3 First-order logic in DEDUKTI

DEDUKTI is a proof checker based on the λΠ-calculus modulo rewriting [1]. In DEDUKTI, one can
declare (dependent) types and function symbols, and rewriting rules for defining these symbols. We
describe how a formula and its proof are encoded in DEDUKTI using the Curry-Howard correspondence,
i.e., we interpret formulas as types and their proofs as terms. In the following, we recall the encoding of
first-order logic in DEDUKTI, as described in [1]. This encoding is used in ZenonModulo, which is an
extension to rewriting of the automated theorem prover Zenon [2]. ZenonModulo outputs DEDUKTI files
after having found a proof using the tableaux method. The following file defines the type of sorts, the
type of terms, the type of formulas and then the type of proofs.
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zen.lp

symbol sort : TYPE // Dedukti type for sorts

symbol ι : sort // default sort

symbol term : sort ⇒ TYPE // Dedukti type for sorted terms

symbol prop : TYPE // Dedukti type for formulas

symbol ⊥̇ : prop

symbol >̇ : prop

symbol ¬̇ : prop ⇒ prop

symbol ∧̇ : prop ⇒ prop ⇒ prop

symbol ∨̇ : prop ⇒ prop ⇒ prop

symbol ⇒̇ : prop ⇒ prop ⇒ prop

symbol ∀̇ : ∀ a, (term a ⇒ prop) ⇒ prop

symbol ∃̇ : ∀ a, (term a ⇒ prop) ⇒ prop

symbol =̇ : ∀ a, term a ⇒ term a ⇒ prop

symbol Proof : prop ⇒ TYPE // interprets formulas as types

rule Proof (⇒̇ &a &b) → Proof &a ⇒ Proof &b

// rewriting rule defining the type of proofs for ⇒̇

Now, for each TSTP file, we generate a Dedukti file defining its signature by declaring a Dedukti
symbol f for each function symbol f of the TSTP file:

SET001-1.lp

symbol element_of_b : zen.term ι
symbol subset : zen.term ι ⇒ zen.term ι ⇒ zen.prop

symbol b : zen.term ι
symbol member : zen.term ι ⇒ zen.term ι ⇒ zen.prop

symbol bb : zen.term ι
symbol equal_sets : zen.term ι ⇒ zen.term ι ⇒ zen.prop

Hence, every formula of first-order logic can be represented in DEDUKTI by using the function ϕ
defined as follows:

ϕ(x) := x
ϕ( f (t1, t2, . . . , tn)) := f ϕ(t1) ϕ(t2) . . . ϕ(tn)

ϕ(⊥) := ⊥̇
ϕ(>) := >̇

ϕ(¬A) := ¬̇ϕ(A)
ϕ(A∧B) := ϕ(A) ∧̇ ϕ(B)
ϕ(A∨B) := ϕ(A) ∨̇ ϕ(B)

ϕ(A ⇒ B) := ϕ(A)⇒̇ϕ(B)
ϕ(∀xA) := ∀̇ι(λx,ϕ(A))
ϕ(∃xA) := ∃̇ι(λx,ϕ(A))

ϕ(x = y) := ϕ(x) =̇ι ϕ(y)
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For example,

ϕ(∀X1,∀X2,s(X1,X2)∨¬e(X1,X2)) := ∀̇ι(λX1, ∀̇ι(λX2,(s X1 X2) ∨̇ ¬̇(e X1 X2)))

For every formula A, its proof in DEDUKTI is a term that has the type Proo f (ϕ(A)). One can define
a similar embedding for proofs as the one we presented for first-order formulas, as shown in [1].

4 Architecture

In this section, we explain in details how EKSTRAKTO works. In order to produce a DEDUKTI proof
from a TSTP file, EKSTRAKTO extracts a TPTP problem for each formula declaration containing at least
one inference, and calls ZenonModulo (or any other automated prover producing DEDUKTI proofs, see
discussion below) on each generated problem to get a DEDUKTI proof for this problem. If the external
prover succeeds to find a proof of all the generated problems, then we combine those proofs in another
DEDUKTI file to get a DEDUKTI proof of the whole TSTP file.

Trace EKSTRAKTO

P1

P2

. . .

Pn

S1

S2

. . .

Sn

Sig

Certificate

4.1 Extracting TPTP problems

To extract a TPTP problem from a trace step, we need to find the premises used in it. We define the
function P which takes a TSTP source as input and returns the set of premises used by the prover:

P(name) = {name}

P([s0,s1, . . . ,sn]) =
n⋃

i=0

P(si)

P(in f erence(name, in f os, [s0,s1, . . . ,sn])) =
n⋃

i=0

P(si)

Note that if we have an inference t inside another one, say s, we will repeat the process for each
sub-inference and omit s from the set of premises, i.e., if we represent an inference step by a proof tree
we take only the leaves of this tree as premises.

We omit all information that is not needed (status, name, . . . ). In particular we do not consider the
inference name field. Even if it could be used to fine-tune the problem, we prefer to ignore it in order to
remain generic since the names are specific to the prover that produced the trace. Hence, we have:
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P(in f erence([in f erence([in f erence([c 3,c 6]),c 4])])) = {c 3,c 6,c 4}

After getting all the premises used for proving Form(name), say name0, . . . ,namek, we generate the
following TPTP problem:

Form(name0)⇒ . . .⇒ Form(namek)⇒ Form(name)

Note that the generated TPTP problem is a FOF formula. The reason of this choice is to keep the
same formula when we combine the sub-proofs. If we generated a CNF problem, then we would need to
negate the goal and it would be more complex to reconstruct the proof.

Since we are using FOF formulas in sub-problems that are obtained from a CNF trace, we need to
quantify over each free variable to get a closed formula.

In our example, there are 3 steps (colored in blue in the file SET001-1.p above). EKSTRAKTO will
generate the following 3 first-order formulas:

Form(c_0) ⇒ Form(c_1) ⇒ Form(c_5)

Form(c_2) ⇒ Form(c_5) ⇒ Form(c_6)

Form(c_3) ⇒ Form(c_6) ⇒ Form(c_4) ⇒ Form(c_7)

Each formula will be written in a separate TPTP file as follows:

c 5.p

fof(c_5, conjecture , (

(![X1, X2] : (s (X1, X2)|~ equal_sets (X1, X2)))

=> ((equal_sets (b, bb))

=> (subset (b, bb))))).

c 6.p

fof(c_6, conjecture ,(

(![X1, X2, X3] : (member (X1, X3)|~ member (X1, X2)

|~ subset (X2, X3)))

=> (( subset (b, bb))

=> (![X1] : (member (X1, bb)|~ member (X1, b)))))).

c 7.p

fof(c_7, conjecture , (

(~ member (element_of_b, bb))

=> ((![X1] : (member (X1, bb)|~ member (X1, b)))

=> (( member (element_of_b, b))

=> ($false))))).
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4.2 Proof reconstruction

If the automated theorem prover succeeds to solve all the generated TPTP problems, then we can recon-
struct a proof in DEDUKTI directly by using the proof tree of the trace that we are trying to certify and
all the proofs of the sub-problems. The proof term of each sub-problem is irrelevant since it has the right
type.

The global proof is reconstructed from each sub-proof. We just need to apply each proof term of a
sub-proof to its premises by following the proof tree of the TSTP file. Indeed, the type of the sub-proof
of Form(name) using premises name0, . . . ,namek is

zen.Proof (⇒̇ ϕ(Form(name0)) (⇒̇ ϕ(Form(name1)) ...

(⇒̇ ϕ(Form(namek)) ϕ(Form(name))). . .))

Thanks to the rule given in zen.lp in Section 3, this type is convertible to

zen.Proof (ϕ(Form(name0))) ⇒ ... ⇒ zen.Proof (ϕ(Form(namek))) ⇒
zen.Proof (ϕ(Form(name)))

Hence, the proof term of a sub-problem is a function whose arguments are proofs of the premises and
which returns a proof of its conclusion. Since we are handling only CNF formulas, the proof that we
want to reconstruct at the end is always a proof of ⊥. Before applying those proof terms we need to
declare our hypotheses. With our example file we get:

proof SET001-1.lp

definition proof_trace

(hyp_c_0 : zen.Proof (ϕ(Form(c_0))))

(hyp_c_1 : zen.Proof (ϕ(Form(c_1))))

(hyp_c_2 : zen.Proof (ϕ(Form(c_2))))

(hyp_c_3 : zen.Proof (ϕ(Form(c_3))))

(hyp_c_4 : zen.Proof (ϕ(Form(c_4))))

: zen.Proof ⊥̇
:=

let lemma_c_5 = c_5. delta hyp_c_0 hyp_c_1 in

let lemma_c_6 = c_6. delta hyp_c_2 lemma_c_5 in

let lemma_c_7 = c_7. delta hyp_c_3 lemma_c_6 hyp_c_4 in

lemma_c_7

where delta is the name of the proof term in each file.
All this has been implemented in a tool called EKSTRAKTO1 consisting of 2,000 lines of OCaml.

5 Experiments

We run the E prover (version 2.1) on the set of CNF problems of TPTP library v7.2.0 (7922 files) with
2GB of memory space and a timeout of 5 minutes. We obtained 4582 TSTP files. On these TSTP files,
EKSTRAKTO generated 362556 TPTP files. ZenonModulo generated a DEDUKTI proof for 90% of these
files, ArchSAT generated 96% and the union of both produced 97% DEDUKTI proofs:

1https://github.com/elhaddadyacine/ekstrakto
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Table 1: Percentage of DEDUKTI proofs on the 362556 extracted TPTP files
Prover % TPTP

ZenonModulo 90%
ArchSAT 96%

ZenonModulo ∪ ArchSAT 97%

However, as it suffices that no DEDUKTI proof is found for only one TPTP file for getting no global
proof, EKSTRAKTO can generate a complete proof for only 48% of TSTP files using ZenonModulo, 61%
using ArchSAT and 72% using at least one of them:

Table 2: Percentage of DEDUKTI proofs on the 4582 TSTP files generated by E prover
Prover % TSTP

ZenonModulo 48%
ArchSAT 61%

ZenonModulo ∪ ArchSAT 71%

Consequently, we are now able to produce 2189 DEDUKTI proofs from the TPTP library using E
prover and Zenon Modulo (resp. 2793 using E prover and ArchSAT and 3285 using E prover, Zenon
Modulo and ArchSAT), whereas under the same conditions, Zenon Modulo alone is only able to produce
1026 DEDUKTI proofs (resp. 500 for ArchSAT alone).

Sometimes, ZenonModulo and ArchSAT fail to find a proof even if the sub-problem is simpler than
the main one. This is justified by the fact that the proof calculus used in ZenonModulo and ArchSAT
is based on a different method from the one used in E prover. In fact, some steps that are trivial for a
prover based on resolution or superposition may not be trivial for ZenonModulo or ArchSAT which use
the tableaux method.

iProverModulo is another candidate to prove TSTP steps, but it performs some transformations be-
fore outputting a DEDUKTI proof. Therefore the proof reconstruction is hard in the sense that we need
to justify each transformation made by iProverModulo.

6 Conclusion and perspectives

We have presented a tool that reconstructs proofs generated by first-order theorem provers. We described
how proofs and formulas are represented in DEDUKTI and how we can implement a simple proof recon-
struction.

The advantage of EKSTRAKTO is to be generic since it does not depend on the rules used by the auto-
mated prover to find the proof. Another advantage is the fact that the proofs are expressed in DEDUKTI,
i.e., we can translate them to many other systems (Coq, HOL, Lean, Matita, PVS).

In our experiments, we used ZenonModulo and ArchSAT to prove each trace step since they are tools
that produce DEDUKTI proof terms.

EKSTRAKTO should be extended to handle non-provable steps like Skolemisation. This latter tech-
nique could possibly be implemented using the method described in [6]. We should also be more generic,
by supporting more features of TSTP like typed formulas and definitions introduced by the prover.
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Automated theorem provers are now commonly used within interactive theorem provers to discharge
an increasingly large number of proof obligations. To maintain the trustworthiness of a proof, the
automatically found proof must be verified inside the proof assistant. We present here a reconstruc-
tion procedure in the proof assistant Isabelle/HOL for proofs generated by the satisfiability modulo
theories solver veriT which is part of the smt tactic. We describe in detail the architecture of our
improved reconstruction method and the challenges we faced in designing it. Our experiments show
that the veriT-powered smt tactic is regularly suggested by Sledgehammer as the fastest method to
automatically solve proof goals.

1 Introduction

Proof assistants are used in verification, formal mathematics, and other areas to provide trustworthy and
machine-checkable formal proofs of theorems. Proof automation allows the user to focus on the core of
their argument by reducing the burden of manual proof. A successful approach to automation is to invoke
an external automatic theorem prover (ATP), such as a satisfiability modulo theories (SMT) solver [5]
and to reconstruct any generated proofs using the proof assistant’s inference kernel. The usefulness of
this approach depends on the encoding of the proof goal into the language of the ATP, the capabilities of
the ATP, the quality of the generated proof output, and the reconstruction routine itself.

In the proof assistant Isabelle/HOL this approach is implemented in the smt tactic [8].1 This tactic
encodes the proof goal into the SMT-LIB language [4] and calls the SMT solver Z3 [14]. If Z3 is
successful in finding a proof of the input problem, the generated proof is reconstructed inside Isabelle. The
proof format, and hence the reconstruction process, is specific to Z3. If the reconstruction is successful,
the initial proof goal holds in the Isabelle/HOL logic. The reconstruction, however, might fail due to
errors (either due to a weakness in the reconstruction or due to errors to the solver) or timing out.

We have previously developed [2, 3] a prototype to reconstruct proofs generated by the SMT solver
veriT [9]. In this paper we have extended these works with proper support of term sharing, tested it on a
much larger scale, and present the reconstruction method in more detail. Furthermore, we reworked the
syntax of the proof output to adhere stronger to the SMT-LIB standard. Given the variety of capabilities
between ATPs, a greater diversity in supported systems increases the number of proof goals which can be
solved by automated tools. Moreover, the fine-grained proofs produced by veriT might allow for a higher
success rate in reconstruction. Lastly, the reconstruction efforts provide valuable insights for the design
of proof formats.

1Technically, smt is a proof method, but the difference (whether it requires an Isabelle context) does not matter here.
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Similar to the proofs generated by Z3, veriT’s proofs are based on the SMT-LIB language, but
are otherwise different. Proofs are a list of indexed steps which can reference steps appearing before
them in the list. Steps without references are tautologies and assumptions. The last step is always the
deduction of the empty clause. Furthermore, steps can be marked as subproofs, which are used for local
assumptions and to reason about bound variables. To shorten the proof length, we use term sharing,
which is implemented using the standard SMT-LIB name annotation mechanism. Major differences to
the proof format used by Z3 are the fine-grained steps for Skolemization and the presence of steps for the
manipulations of bound variables [2].

Our reconstruction routine inside Isabelle is structured as a pipeline. Once the proof is parsed into
a datatype and the term sharing is unfolded, the SMT-LIB terms are translated into Isabelle terms. At
this point the proof can be replayed step-by-step. Special care has to be taken to handle Skolem terms,
subproofs, and the unfolding of the encoding into the first-order logic of the SMT solver.

We validate our reconstruction approach in two ways. First, we replace the calls of the smt tactic
that are currently using Z3 by veriT. Second, we use Sledgehammer to validate the utility of veriT as
a backend solver for the smt tactic. Sledgehammer uses external ATPs to find a collection of theorems
from the background theory which are sufficient to prove the goal. It then tests a collection of automated
tactics on this set of theorems and suggests the fastest successful tactic to the user. On theories from
the Archive of Formal Proofs, Sledgehammer suggests the usage of the veriT-powered smt tactic on a
significant number of proof steps. This suggests that the overall checking speed can be improved by
switching to the veriT-powered smt tactic at these points.

2 The Proofs Generated by veriT

veriT is a CDCL(T )-based satisfiability modulo theories solver. It uses the SMT-LIB language as input
and output language and also utilizes the many-sorted classical first-order logic defined by this language.
If requested by the user, veriT outputs a proof if it can deduce that the input problem is unsatisfiable. In
proof production mode, veriT supports the theory of uninterpreted functions, the theory of linear integer
and real arithmetic, and quantifiers.

We assume the reader is familiar with many-sorted classical first-order logic. To simplify the notation
we will omit the sort of terms, except when absolutely needed. The available sorts depend on the selected
SMT-LIB theory and can also be extended by the user, but a distinguished Bool sort is always available.
We use the symbols x, y, z for variables, f , g, h for functions, and P, Q for predicates, i.e., functions with
result sort Bool. The symbols r, s, t, u stand for terms. The symbols ϕ,ψ denote formulas, i.e., terms of
sort Bool. We use σ to denote substitutions and tσ to denote the application of the substitution on the
term t. To denote the substitution which maps x to t we write [t/x]. We use = to denote syntactic equality
and ' to denote the sorted equality predicate. Since veriT implicitly removes double negations, we also
use the notion of complementary literals very liberally: ϕ = ψ̄ holds if the terms obtained after removing
all leading negations from ϕ and ψ̄ are syntactically equal and the number of leading negations is even
for ϕ and odd for ψ̄ , or vice versa.

A proof generated by veriT is a list of steps. A step consists of an index i ∈ N, a formula ϕ , a rule
name R taken from a set of possible rules, a possibly empty set of premises {p1, . . . , pn} with pi ∈ N, a
rule-dependent and possibly empty list of arguments [a1, . . . ,am], and a context Γ. The arguments ai are
either terms or tuples (xi, ti) where xi is a variable and ti is a term. The interpretation of the arguments
is rule specific. The context is a possible empty list [c1, . . . ,cl], where ci stands for either a variable or a
variable-term tuple (xi, ti). A context denotes a substitution as described in section 2.1. Every proof ends
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with a step with the empty clause as the step term and empty context. The list of premises only references
earlier steps, such that the proof forms a directed acyclic graph. In Appendix A we provide an overview
of all proof rules used by veriT.

To mimic the actual proof text generated by veriT we will use the following notation to denote a step:

c1, . . . , cl B i. ϕ (RULE; p1, . . . , pn; a1, . . . , am)

If an element of the context ci is of the form (xi, ti), we will write xi 7→ ti. If an element of the arguments
ai is of this form we will write xi := ti. Furthermore, the proofs can utilize Hilbert’s choice operator ε .
Choice acts like a binder. The term εx.ϕ stands for a value v, such that ϕ[v/x] is true if such a value exists.
Any value is possible otherwise.

The proof format used by veriT has been discussed in prior publications: the fundamental ideas behind
the proof format have been discussed in [6]; proposed rules for quantifier instantiation can be found in [11];
and more recently, veriT gained proof rules to express reasoning typically used for processing, such as
Skolemization, renaming of variables, and other manipulations of bound variables [2]. As veriT develops,
so does the format of the proofs generated by it. There also have been efforts to improve the proof
generation process. We now give an overview of the core ideas of the proofs generated by veriT before
describing the concrete syntax of the proof output.

2.1 Core Concepts of the Proof Format

Assumptions. The ASSUME rule introduces a term as an assumption. The proof starts with a number
of ASSUME steps. Each step corresponds to an assertion after some implicit transformations have been
applied as described below. Additional assumptions can be introduced too. In this case each assumption
must be discharged with an appropriate step. The only rule to do so is the SUBPROOF rule. From an
assumption ϕ and a formula ψ proved by intermediate steps from ϕ , the SUBPROOF step deduces ¬ϕ ∨ψ
and discharges ϕ .

Tautologous rules and simple deduction. Most rules emitted by veriT introduce tautologies. One
example is the AND POS rule: ¬(ϕ1∧ϕ2∧·· ·∧ϕn)∨ϕi. Other rules operate on only one premise. Those
rules are primarily used to simplify Boolean connectives during preprocessing. For example, the IMPLIES

rule removes an implication: From ϕ1 =⇒ ϕ2 it deduces ¬ϕ1∨ϕ2.

Resolution. The proofs produced by veriT use a generalized propositional resolution rule with the rule
name RESOLUTION or TH RESOLUTION. Both names denote the same rule. The difference only serves
to distinguish if the rule was introduced by the SAT solver or by a theory solver. The resolution step is
purely propositional; there is currently no notion of a unifier.

The premises of a resolution step are clauses and the conclusion is a clause that has been derived from
the premises by some binary resolution steps.

Quantifier Instantiation. To express quantifier instantiation, the rule FORALL INST is used. It pro-
duces a formula of the form (¬∀x1 . . .xn.ϕ)∨ϕ[t1/x1] . . . [tn/xn], where ϕ is a term containing the free
variables (xi)1≤i≤n, and ti are new variable free terms with the same sort as xi.

The arguments of a FORALL INST step are the list x1 := t1, . . . ,xn := tn. While this information can
be recovered from the term, providing this information explicitly aids reconstruction because the implicit
transformations applied to terms (see below) obscure which terms have been used as instances. Existential
quantifiers are handled by Skolemization.
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Skolemization and other preprocessing steps. veriT uses the notion of a context to reason about
bound variables. As defined above, a context is a (possibly empty) list of variables or variable term pairs.
The context is modified like a stack: rules can either append elements to the right of the current context
or remove elements from the right. A context Γ corresponds to a substitution σΓ. This substitution is
recursively defined. If Γ is the empty list, then σΓ is the empty substitution, i.e., the identity function. If
Γ is of the form Γ′,x then σΓ(v) = σΓ′(v) if v 6= x, otherwise σΓ(v) = x. Finally, if Γ = Γ′,x 7→ ϕ then
σΓ′,x 7→ϕ = σΓ′ ◦ [ϕ/x]. Hence, the context allows one to build a substitution with the additional possibility
to overwrite prior substitutions for a variable.

Contexts are processed step by step: If one step extends the context this new context is used in all
subsequent steps in the step list until the context is modified again. Only a limited number of rules can be
applied when the context is non-empty. All of those rules have equalities as premises and conclusion. A
step with term ϕ1 ' ϕ2 and context Γ expresses the judgment that ϕ1σΓ = ϕ2.

One typical example for a rule with context is the SKO EX rule, which is used to express Skolemization
of an existentially quantified variable. It is a applied to a premise n with a context that maps a variable x
to the appropriate Skolem term and produces a step m (m > n) where the veriable is quantified.

Γ,x 7→ (εx.ϕ) B n. ϕ ' ψ (. . . )
Γ B m. (∃x.ϕ)' ψ (SKO EX; n)

Example 1. To illustrate how such a rule is applied, consider the following example taken from [2].
Here the term ¬p(εx.¬p(x)) is Skolemized. The REFL rule expresses a simple tautology on the equality
(reflexivity in this case), CONG is functional congruence, and SKO FORALL works like SKO EX, except
that the choice term is εx.¬ϕ .

x 7→ (εx.¬p(x)) B 1. x' εx.¬p(x) (REFL)

x 7→ (εx.¬p(x)) B 2. p(x)' p(εx.¬p(x)) (CONG; 1)
B 3. (∀x.p(x))' p(εx.¬p(x)) (SKO FORALL; 2)
B 4. (¬∀x.p(x))' ¬p(εx.¬p(x)) (CONG; 3)

Linear arithmetic. Proofs for linear arithmetic use a number of straightforward rules, such as LA -
TOTALITY: t1 ≤ t2 ∨ t2 ≤ t1 and the main rule LA GENERIC. The conclusion of an LA GENERIC step
is a tautology of the form (¬ϕ1)∨ (¬ϕ2)∨ ·· · ∨ (¬ϕn) where the ϕi are linear (in)equalities. Checking
the validity of this formula amounts to checking the unsatisfiability of the system of linear equations
ϕ1,ϕ2, . . . ,ϕn. While Isabelle provides tactics to decide the validity of a set of linear equations, the
non-trivial complexity of this task was a challenge for the proof reconstruction (see Section 3.2.4).
Example 2. The following example is the proof generated by veriT for the unsatisfiability of (x+ y <
1)∨ (3 < x), x' 2, and 0' y.

B 1. (3 < x)∨ (x+ y < 1) (ASSUME)

B 2. x' 2 (ASSUME)

B 3. 0' y (ASSUME)

B 4. ¬(3 < x)∨¬(x' 2) (LA GENERIC)

B 5. ¬(3 < x) (RESOLUTION; 2,4)
B 6. x+ y < 1 (RESOLUTION; 1,5)
B 7. ¬(x+ y < 1)∨¬(x' 2)∨¬(0' y) (LA GENERIC)

B 8. ⊥ (RESOLUTION; 7,6,2,3)
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1 (assume h1 (not (p a)))

2 (assume h2 (forall ((z1 U)) (forall ((z2 U)) (p z2))))

3 ...

4 (anchor :step t9 :args ((:= z2 vr4)))

5 (step t9.t1 (cl (= z2 vr4)) :rule refl)

6 (step t9.t2 (cl (= (p z2) (p vr4))) :rule cong :premises (t9.t1))

7 (step t9 (cl (= (forall ((z2 U)) (p z2)) (forall ((vr4 U)) (p vr4))))

8 :rule bind)

9 ...

10 (step t14 (cl (forall ((vr5 U)) (p vr5)))

11 :rule th_resolution :premises (t11 t12 t13))

12 (step t15 (cl (or (not (forall ((vr5 U)) (p vr5))) (p a)))

13 :rule forall_inst :args ((:= vr5 a)))

14 (step t16 (cl (not (forall ((vr5 U)) (p vr5))) (p a)) :rule or :premises (t15))

15 (step t17 (cl) :rule resolution :premises (t16 h1 t14))

Figure 1: Example proof output. Assumptions are introduced (line 1–2); a subproof renames bound
variables (line 4–8); the proof finishes with instantiaton and resolution steps (line 10–15)

Implicit transformations. In addition to the explicit steps, veriT performs some transformations on
proof terms implicitly without creating steps. To ensure compatibility with future versions of veriT, proof
reconstruction must assume that those transformations are applied between any two steps. Furthermore,
veriT can not introduce additional types of implicit transformations.

• Removal of double negation: Formulas of the form ¬(¬ϕ) are silently simplified to ϕ .

• Removal of repeated literals: If the step formula is of the form ϕ1∨ϕ2∨·· ·∨ϕn with ϕi = ϕ j for
some i 6= j, then ϕ j is removed. This is repeated until no more terms can be removed.

• Simplification of tautological formulas: If the step formula is of the form ϕ1∨ϕ2∨ ·· ·∨ϕn with
ϕi = ϕ̄ j for some i 6= j, then the formula is replaced by >.

• Reorienting equalities: veriT applies the symmetry of equality implicitly.

2.2 Concrete Syntax

The concrete text representation of the proofs generated by veriT is based on the SMT-LIB standard.
Figure 1 shows an exemplary proof as printed by veriT lightly edited for readability.

We also reworked the proof syntax. Our goal is to follow the SMT-LIB standard when possible. While
those modifications do not aid reconstruction inside Isabelle/HOL, they will simplify further development
of the proof output. Previously, veriT produced nested steps. This was changed to a flat list of commands.
The arguments of the commands are now given as annotations instead of a flat list. Since the changes are
syntactical, the old format is still supported by veriT and can be selected using a command-line switch2.

Figure 2 shows the grammar of the proof text generated by veriT. It is based on the SMT-LIB
grammar, as defined in the SMT-LIB standard version 2.6 Appendix B3. The nonterminals 〈symbol〉,

2The option --proof-version=N, where N is either 1, 2, or 3.
3Available online at: http://smtlib.cs.uiowa.edu/language.shtml
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〈proof〉 ::= 〈proof_command〉∗
〈proof_command〉 ::= (assume 〈symbol〉 〈proof_term〉 )

| (step 〈symbol〉 〈clause〉 :rule 〈symbol〉 〈step_annotation〉 )
| (anchor :step 〈symbol〉 )
| (anchor :step 〈symbol〉 :args 〈proof_args〉 )
| (define-fun 〈function_def〉 )

〈clause〉 ::= (cl 〈proof_term〉∗ )
〈step_annotation〉 ::= :premises ( 〈symbol〉+ )

| :args 〈proof_args〉
| :premises ( 〈symbol〉+ ) :args 〈proof_args〉

〈proof_args〉 ::= ( 〈proof_arg〉+ )

〈proof_arg〉 ::= 〈symbol〉 | ( 〈symbol〉 〈proof_term〉 )
〈proof_term〉 ::= 〈term〉 extended with (choice ( 〈sorted_var〉+ ) 〈proof_term〉 )

Figure 2: The proof grammar

〈function_def〉, 〈sorted_var〉, and 〈term〉 are as defined in the standard. The 〈proof_term〉 is the
recursive 〈term〉 nonterminal redefined with the additional production for the choice binder.

Input problems in the SMT-LIB standard contain a list of commands that modify the internal state of
the solver. In agreement with this approach veriT’s proofs are also formed by a list of commands. The
assume command introduces a new assumption. While this command could also be expressed using
the step command with a special rule, the special semantic of an assumption justifies the presence of a
dedicated command: assumptions are neither tautological nor derived from premises. The step command,
on the other hand, introduces a derived or tautological term. Both commands assume and step require
an index as the first argument to later refer back to it. This index is an arbitrary SMT-LIB symbol. The
only restriction is that it must be unique for each assume and step command. The second argument is
the term introduced by the command. For a step, this term is always a clause. To express disjunctions in
SMT-LIB the or operator is used. Unfortunately, this operator needs at least two arguments and cannot
represent unary or empty clauses. To circumvent this we introduce a new cl operator. It corresponds
the standard or function extended to one argument, where it is equal to the identity, and zero arguments,
where it is equal to false. The :premises annotation denotes the premises and is skipped if they are
none. If the rule carries arguments, the :args annotation is used to denote them.

The anchor and define-fun commands are used for subproofs and sharing, respectively. The
define-fun command corresponds exactly to the define-fun command of the SMT-LIB language.

2.3 Subproofs

As the name suggests, the SUBPROOF rule expresses subproofs. This is possible because its application
is restricted: the assumption used as premise for the SUBPROOF step must be the assumption introduced
last. Hence, the ASSUME, SUBPROOF pairs are nested. The context is manipulated in the same way: if
a step pops c1, . . . ,cn from a context Γ, there is a earlier step which pushes precisely c1, . . . ,cn onto the
context. Since contexts can only be manipulated by push and pop, context manipulations are also nested.
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Because of this nesting, veriT uses the concept of subproofs. A subproof is started right before
an ASSUME command or a command which pushes onto the context. We call this point the anchor.
The subproof ends with the matching SUBPROOF command or command which pops from the context,
respectively. The :step annotation of the anchor command is used to indicate the step command which
will end the subproof. The term of this step command is the conclusion of the subproof. If the subproof
uses a context, the :args annotation of the anchor command indicates the arguments added to the
context for this subproof. In the example proof (Figure 1) a subproof starts on line four. It ends on line
seven with the BIND steps which finished the proof for the renaming of the bound variable z2 to vr4.

A further restriction applies: only the conclusion of a subproof can be used as a premise outside of
the subproof. Hence, a proof checking tool can remove the steps of the subproof from memory after
checking it.

2.4 Sharing and Skolem Terms

The proof output generated by veriT is generally large. One reason for this is that veriT can store terms
internally much more efficiently. By utilizing a perfect sharing data structure, every term is stored in
memory precisely once. When printing the proof this compact storage is unfolded.

The user of veriT can optionally activate sharing4 to print common subterms only once. This is
realized using the standard naming mechanism of SMT-LIB. In the language of SMT-LIB it is possible
to annotate every term t with a name n by writing (! t :named n ) where n is a symbol. After a
term is annotated with a name, the name can be used in place of the term. This is a purely syntactical
replacement.

To limit the number of names introduced we use a simple approach: before printing the proof we
iterate over all terms of the proof and recursively descend into the terms. We mark every unmarked
subterm we visit. If we visit a marked term, this term gets a name. If a term already has a name, we do
not descend further into this term. By doing so, we ensure that only terms that appear as child of two
different parent terms get a name. Thanks to the perfect sharing representation testing if a term is marked
takes constant time and the overall traversal takes linear time in the proof size.

To simplify reconstruction veriT can optionally5 define Skolem constants as functions. If activated,
this option adds a list of define-fun command to define shorthand 0-ary functions for the (choice . . .)
terms needed. Without this option, no define-fun commands are issued and the constants are inlined.

3 Proof Reconstruction in Isabelle/HOL

Proof reconstruction is done in Isabelle in two steps presented in Figure 3: first, the proof is parsed and
the terms are transformed into Isabelle terms (Section 3.1). Then we can reconstruct the proof itself by
reconstructing the steps one-by-one. Some of the steps require some care (Section 3.2).

3.1 Parsing and Preprocessing

Parsing the proof is simple thanks to the infrastructure developed to reconstruct Z3 proofs for the smt

tactic. This infrastructure is able to parse a generalized version of the SMT-LIB syntax, including the
proofs generated by veriT. It produces a raw version of the proof. We only have to extract the structure

4By using the command-line option --proof-with-sharing.
5By using the command-line option --proof-define-skolems.
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veriT proof Unshared structured proof

Parse raw proof?

and unfold sharing

Preprocessed proof

Convert to Isabelle/HOL terms?

and add dependencies

Proof
Replay

List of steps Replayed Proof

⊥

Unfold FO encoding
Replay other steps† Discharge Skolems

?shared with the reconstruction
for Z3 [8].
†only resolution is shared with
Z3 [8]. Most methods changed
from [2].

Figure 3: The reconstruction pipeline

(indices, steps, . . . ) from the raw proof. During parsing of the raw proof we also unfold the sharing,
because Isabelle does not offer any sharing functionality.

The first transformation is a change of the disjunction representation. In the proof output, veriT
represents the outermost disjunction as a multiset by using the cl operator. In Isabelle, we replace this
multiset by a disjunction. veriT explicitly applies the rule OR to convert disjunctions to multisets. In
Isabelle, these steps are simply the identity.

After that, we convert the SMT-LIB terms to Isabelle terms. This reuses again some of the infrastruc-
ture developed for Z3. An important difference with Z3 is the declaration of variables. When converting
to Isabelle terms, types are inferred. However, some expressions like x 7→ y of the context cannot be typed
without extracting the types from the conclusion.

Finally, we preprocess the proofs to ease the reconstruction further:

• We add the implicit dependency between the last step of each subproof and its conclusion. In the
example of Figure 1, it is the dependency from t9 to t9.t2. Spelling it out explicitly makes the
reconstruction more regular.

• We add missing dependencies to the definitions of Skolem terms: veriT applies definitions implic-
itly, but we have to unfold the definitions explicitly to reconstruct Skolemization steps in Isabelle.

The Isabelle semantics of the proof steps are slightly different than the semantics in veriT. First, the
context is seen as a list of equalities instead of a list of mappings. Second, the conclusion uses the equality
symbol instead of ' and a substitution. If the proof step is y 7→ z,x 7→ s B n. ϕ ' ψ , Isabelle sees it as:
y = z,x = s I n. ϕ = ψ , where the context are assumptions. The advantage of this different semantics
is that it requires fewer transformations on the input term, as it avoids adding lambda abstractions, and
makes the Isabelle tactics easier to use for reconstructions.

The difference in the semantics is small and rarely important. They only differ for variables that can
syntactically appear on the left and on the right-hand side with different semantics. For example, consider
y 7→ z,x 7→ y B n. Pxy' Pyz. This is a tautology, because Pxy is Pyz after substitution (remember that
the substitution only applies on the left-hand side). However, the naive conversion to the Isabelle version
yields y = z,x = y I n. Pxy' Pyz, which is a different term, namely Pzz = Pzz

To avoid the difference in semantics, we rename terms when they have already been bound: we
rename the occurrences on the right-hand side of ' of y by the new fresh name xy. The step y 7→ z,x 7→
y B n. ϕ ' ψ becomes y = z,x = xy I n. ϕ = ψ[xy/x].
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3.2 Reconstructing Parsed Proofs

After parsing, we reconstruct the proof steps in Isabelle. Overall, the proof reconstruction works by
replaying each step and unifying the assumptions with the premises. At the end, we get a proof of ⊥.

For most steps, the rule can be spelled out as an Isabelle theorem and the only issues are implicit steps
(Section 3.2.1). Unlike the reconstruction of Z3 proofs, we reconstruct subproofs as they are printed by
veriT (Section 3.2.2). Finally, some rules require special care or are tricky to reconstruct: Skolemization
steps, if done naively, can produce terms that are too large to be handled efficiently (Section 3.2.3);
Isabelle’s arithmetic procedure is incomplete and not very efficient when reconstructing arithmetic steps
(Section 3.2.4); for efficiency, some rules are reconstructed heuristically (Section 3.2.5).

3.2.1 Application of Theorems

Most rules that can be applied are either tautologies or applications of theorems that can be easily ex-
pressed: The rule TRUE is the tautology used to prove that the theorem > holds. Similarly, the transitivity
rule EQ TRANSITIVE transforms the assumptions (t j ' t j+1) j<n into t0 ' tn.

In practice, there are two main difficulties: double negations can be simplified and equalities can be
reoriented. The reorientation is implementation dependent, which prohibits us from relying on the order
as given by the input problem. The reordering and simplification have consequences that either make
reconstruction harder or require additional annotations in the proof output:

• Duplicate literals are implicitly removed. This is rarely an issue in practice, but we have seen this
happening in some test cases like the ITE2 rule. This rule introduces the tautology (if ¬ϕ then ψ1
else ψ2)∨ϕ ∨ψ2, but if ϕ = ψ2 the it produces the simplified clause (if ¬ϕ then ψ1 else ψ2)∨ϕ .

• The rules can be applied up to additional negations. For example, the ITE2 rule can be applied to
get (if ϕ then ψ1 else ψ2)∨ (¬ϕ)∨ψ2.

The individual steps are reconstructed by:
• taking into account the additional information provided in the proof output. This can require some

preprocessing on the formula: in veriT instantiation (rule FORALL INST) can be done to quantifiers
that do not appear at the outermost level, but inside the formula. Preprocessing is used to transform
∀x.(P =⇒ ¬(∃y.Qy)) into ∀xy.(P =⇒ Qy). This is easier to reconstruct, because all quantifiers
to instantiate are now at the outmost level and forall quantifiers.

• applying the theorem or finding the instantiations and then using simp to reorder the equalities and
prove that the terms are equal. For the ITE2 on (if ¬ϕ then ψ1 else ψ2)∨ϕ ′∨ψ ′2, we identify the
terms, ϕ , ψ1, and ψ2, and generate the tautology (if ¬ϕ then ψ1 else ψ2)∨ϕ ∨ψ2, that can be used
by simp to discharge the goal by showing ϕ = ϕ ′ and ψ2 = ψ ′2. The search space is very large and
the search can be very time consuming during the reconstruction.

• providing various version of the lemmas to accommodate negations: for Isabelle, the theorem
(if ¬ϕ then ψ1 else ψ2)∨ϕ ∨ψ2 cannot be applied to prove (if ϕ then ψ1 else ψ2)∨¬ϕ ∨ψ2.

In practice the reordering happens mostly when producing new terms (during parsing or instantiation).
However, we do not want to rely on this specific behavior which could change in a future version.

3.2.2 Subproofs

Unlike Z3, veriT has subproofs. Subproofs fall into two categories: proofs used to justify proof steps (e.g.
for Skolemization) and lemmas with assumptions and fixed variables. In Isabelle, both are modeled by
the notions of contexts that encapsulate all the assumptions and fixed variables present at a given point.
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The first kind of subproofs are proofs of lemmas that come with additional assumptions. They are used
for example for proofs like P =⇒ ⊥. P is an assumption of the proof (given by an ASSUME command)
and ⊥ is the conclusion. In Isabelle, we start by extracting all the assumptions when entering the proof.
This creates a new context. Then, we replay the proof in the new context. The ASSUME commands are
now entailed by the context are replayed as such. Finally, the conclusion is exported to the outer context.

Replaying subproofs is similar to replaying lemmas in the proof: we enter contexts with new assump-
tions and variables, depending on the rule. At the end of the subproof the last step is exported back to the
outer context and is used to discharge the conclusion. For example, the subproof of a simple BIND step
will be of the form ∀xy.(x = y =⇒ Px = Qy) to prove that (∀x.Px) = (∀y.Qy)

3.2.3 Skolemizations

Skolemization is an important but subtle point, which slightly differs between Isabelle and veriT. While
defining the constants is easy, the definitions themselves do not exactly match the natural ones and
reconstructing the proof can be difficult.

Technically, Skolem constants are not introduced with a definition, but as an assumption of the form
X = (εx. . . .). At the end of the reconstruction, we get the theorem ∀X .(X = (εx.¬Px) =⇒ ⊥), from
which we can trivially derive the theorem ⊥.

Internally, veriT directly Skolemizes formulas: The term ∀xy. Pxy becomes after Skolemization
PX Y , i.e., P (εx.¬(∀y. Pxy)) (εy.¬P (εx.¬(∀y. Pxy))), where X and Y are defined to be the two Skolem
constants. However, in the logged proof, ∀xy.Pxy becomes ∀y.PX y, i.e., ∀y.P (εx.¬(∀y. Pxy)) y, which
in turns naturally becomes PX

(
εy.¬PX y

)
. Therefore, in Isabelle, we fold the definition of the Skolems

inside each other to get Y =
(
εy.¬PX y

)
and try to prove the goal. This might, however, fail due to the

implicit steps. Hence, if required, we unfold all definitions and prove the result. This could explode for
non-trivial terms, but we did not have issues with this during our experiments.

A major issue of the reconstruction is the size of generated terms. While developing the reconstruction,
we found a case where four variables were Skolemized in a single step, and the generated term was so
big that Isabelle was not able to replace the third variable by the equivalent choice: the application of the
theorem (∀x.Px) ⇐⇒ P(εx.¬Px) was too slow. We now aggressively fold the Skolem constants inside
the term.

3.2.4 Arithmetic

To replay arithmetic steps, we use Isabelle’s procedure linarith. This tactic is a decision procedure for
real numbers, but not for integers or natural numbers. Internally, it uses the Fourier–Motzkin elimina-
tion [17]: it derives a contradiction via a linear combination of the equations.

veriT with proof production only supports linear arithmetic. On linear problems, however, it is
stronger than Isabelle’s tactic: Isabelle does not simplify equations. If we have the equations 5×x+10×
y' 15, it will not be simplified to x+2× y' 3 in Isabelle. This happens neither as preprocessing, nor
during the search for the linear combination. In one case over the Archive of Formal Proofs, this makes
the following problem impossible to reconstruct:

¬ 0 ≤ y ∧ ¬ 10× x < 4+14× z ∧
10× x ≤ 15+25× y ∧ ¬ 10× x+10× z ≤ 30+25× y

This goal is produced as an arithmetic tautology by veriT, but linarith is not able to prove it. Before
simplification, the inequality 16 ≤ 10× x− 25× y is derived. After simplification, the equivalent (but
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SMT calls Number of occurrences

Successful reconstruction 447
Failed reconstruction 4
veriT timeouts 47
veriT unknown 4

Table 1: Result of using veriT instead of Z3 in existing smt calls

seemingly stronger) inequality 20≤ 10× x−25× y is derived because x and y are integers. The coeffi-
cients of the second inequality are different enough to allow linarith to find a contradiction, which it
was unable to find otherwise.

We strengthened the reconstruction by implementing a simplification procedure that divides each
equation by its greatest common divisor. It could be activated more globally, but currently conflicts with
two other simplification procedures: one of them sorts terms, while the other does not.

3.2.5 Other Rules

The reconstruction of the rules is often guided by the efficiency of the reconstruction, how often a
rule is used, and concrete examples. One of the most prominent rules is CONNECTIVE EQUIV. It is a
simplification step and can involve simplifications of the Boolean structure and arithmetic. At first, we
reconstructed CONNECTIVE EQUIV steps with auto, a tactic that simplifies the terms and performs some
logical reasoning. However, this turned out to be too inefficient on large terms. Moreover, often only the
Boolean structure is modified and not the terms or the order of equalities. Therefore, we now first abstract
over the non-Boolean terms and check only the modifications on the Boolean structure by fast. Only if
this fails is auto tried. If that also fails, metis is tried as a fallback tactic. We do not attempt to select
the right tactic, but simply try them in this order.

4 Experimental Results

We experiment on the Isabelle reconstruction in two ways. The first one is to replace all the smt calls
that are in the Isabelle distribution and are currently powered by Z3 by the version of smt with veriT.
These smt calls have been selected by the developer of the library who provided the theory, because
Z3 is able to find a proof and the reconstruction is fast. While this experiment provides insight into the
performance of the veriT-powered smt tactic relative to the Z3-powered variant, it does not tell us if the
veriT-powered one is a useful and supplementary addition to the family of automated tactics provided by
Isabelle. Towards that end, we try to generate new veriT-powered smt calls by using Sledgehammer [7],
an Isabelle tool able to find proofs.

4.1 Replacing the smt calls

There are already many smt calls in the theories included in the Isabelle distribution and the Archive of
Formal Proofs. The latter did not allow smt calls until a few years ago. We replaced the Z3 as a backend
for the smt calls, by veriT. The results are summarized in Table 1. Testing revealed:

• that veriT is not able to find all the proofs that Z3 is able to find. On the one hand, this does not
corroborate the findings from the SMT competition where veriT performs better than Z3 on some
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categories. On the other hand, the problems have been specifically selected to be solvable by Z3.
We did not include the problems specifically relying on Z3 extensions (e.g. the division operator)
or features not supported by veriT (bit vectors).

• a bug in the proof generation. veriT does not correctly print some substeps: a term is replaced by
an equivalent term, but this replacement is not logged. We are currently fixing this bug in veriT.
In Isabelle, this leads to an error in the reconstruction and we do not attempt to reconstruct the
following steps.

• the problem in the reconstruction of arithmetic steps described in Section 3.2.4. Only one of those
benchmarks could not be reconstructed without the simplification procedure.

The results are promising: we are able to reconstruct nearly all of the proofs that veriT is able to find.
We cannot replace Z3 by veriT in the Isabelle distribution, but this was not the aim of this experiment.

4.2 Generating calls with Sledgehammer

Hammers, like Sledgehammer, select facts from the background theory, translate them to the input
language of the provers, and then attempt to use the generated proof if a proof is found within a given
timeout. The proof can be used in different ways. One approach is to gather the facts required to find
a proof with one of the builtin tactics of the proof assistant. Another approach is to replay the proof
within the core by an smt-like method or to translate it into the user-facing language of the assistant.
Sledgehammer supports all of these approaches.

By default, Sledgehammer uses the following strategy: first, it tries several Isabelle tactics, including
detailed proof reconstruction by the Z3-powered smt tactic, with a timeout of 1 s. If this is successful,
it returns the tactic that was the fastest to prove the goal in Isabelle. This tactic can be inserted in
the theory. If none of them is fast enough to find a proof, reconstruction of a proof in the user-facing
language is attempted. We have changed Sledgehammer to additionally test the veriT-powered smt tactic.
Sledgehammer tries to find a proof and to minimize the involved facts. Even when Z3 finds the proof,
reconstruction with veriT can be faster.

We tested this approach on two formalizations: an ordered resolution prover [15, 16] and the SSA
language [10, 19]. We tested all theories included in the formalization. We selected the first develop-
ment because we knew that Sledgehammer was useful during the development. We selected the second
formalization because it is a very different theme. Due to time constraints, we did not test more theories.

The results are given in Table 2. They show that veriT-powered smt calls happen in practice and can
improve the speed of the overall proof processing. We do not know why veriT performs much worse
on the formal SSA theory, but we believe that some rules that we do not reconstruct efficiently enough
(possibly the QNT SIMPLIFY rule that simplifies quantifiers) appear more often in this theory. The row
‘Oracle’ denotes calls to solvers that found a proof that could not be reconstructed. Many of these failed
calls are proofs found by the SMT solver CVC4 that can either not be found or not be reconstructed by
veriT and Z3-powered smt.

5 Related Work

Reconstruction of proofs generated by external theorem provers has been implemented in various systems
including CVC in HOL Light [13], Z3 in HOL4 and Isabelle/HOL [8], and SMTCoq reconstructs veriT [1]
and CVC4 [12] proofs in Coq. None of the other solvers produce detailed proofs or information on
Skolemization. For veriT proofs, SMTCoq currently supports a different version of the proof output
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Theory Ordered Resolution Prover Formal SSA

Found proofs 5019 5961
Z3-powered smt proofs 90 109
veriT-powered smt proofs 25 4
Oracle 9 63

Table 2: Proofs found by Sledgehammer on two Isabelle formalizations

(version 1) that has different rules and an older version of veriT (the version is from 2016), which does
not record detailed information for Skolemization and has worse performance.

The reconstruction of Z3 proofs in HOL4 and Isabelle/HOL is one of the most advanced and well
tested. It has been used to check proofs generated on problems from the SMT competition. Sadly, the
code to read the SMT-LIB input problems was never included in the standard Isabelle distribution and
is now lost. Proof reconstruction has been heavily tested and succeeds in more than 90% of the cases
according to Sledgehammer benchmark [7, Section 9], and is very efficient.

The SMT solver CVC4 follows a different philosophy from veriT and Z3: it produces proofs in a
logical framework with side conditions [18]. The output can contain programs to check certain rules. The
CVC4 proof format is quite flexible but currently CVC4 does not produce proofs for quantifiers.

6 Conclusion and Future Work

We presented the syntax and semantics of the proofs generated by veriT and the reconstruction of those
proofs in Isabelle. During the development, the format was extended to ease reconstruction by printing
more information like the instantiations. We hope to integrate our code in the next Isabelle release.

Overall, having more details in the proofs helps to make the reconstruction more robust, because each
step is simpler to check. For example, veriT detailed information on Skolemization, makes it easier to
replay than the one from Z3: the reconstruction can call the ordered resolution prover metis. For now,
the implicit simplifications prevents us from reconstructing proof more efficiently than Z3.

Another challenge is to translate the proof to the more readable Isar format. It is useful for two main
reasons. First, it gives the Isabelle user more information on how the proof works and potentially what
kind of lemmas would be interesting to create. Second, if the reconstruction fails, it allows the user to fix
the failing part. Generating readable proofs can be done automatically by Sledgehammer for most solvers,
but this does not work for veriT proofs. One reason is that, Sledgehammer does not support subproofs
and inlining the assumptions each time is not very readable. Another reason is that the Skolems constants
implicitly introduce a context where these constants are defined. This introduces an implicit dependency
order between the definitions and every step where the defined constant appears. We could unfold the
definitions to use the choice version instead, but that would harm the readability of the proof. Finally, the
proofs generated by veriT often follow the scheme “ϕ holds; ϕ↔ψ also holds; hence ψ holds”, whereas
“ϕ hence ψ” is easier to understand.

There are various useful pieces of information that are found by the solver but are not presented
to the user. For example, in the case of linear arithmetic a contradiction is derived by finding a linear
combination of the equations, but the coefficients are not printed. Therefore, Isabelle must find these
same coefficients again. The reconstruction would be faster if they were in the proof output.



M. Fleury and H.-J. Schurr 49

Acknowledgments. We thank Alex Brick, Daniel El Ouraoui, and Pascal Fontaine for suggesting
many textual improvements. The work has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement
No. 713999, Matryoshka). Previous experiments were carried out using the Grid’5000 testbed (https:
//www.grid5000.fr/), supported by a scientific interest group hosted by Inria and including CNRS,
RENATER, and several universities as well as other organizations.

References
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A List of Proof Rules

Rule Description

TRUE, FALSE, AND POS, AND NEQ, OR POS, OR NEG,
IMPLIES POS, IMPLIES NEG1, IMPLIES NEG2, EQUIV POS1,
EQUIV POS2, EQUIV NEG1, EQUIV NEG2, ITE POS1, ITE POS2,
ITE NEG1, ITE NEG2, EQ REFLEXIVE, REFL,TRANS,CONG,
NOT OR, IMPLIES, NOT IMPLIES1, NOT IMPLIES2,
EQUIV1,EQUIV2, NOT EQUIV1, NOT EQUIV2, ITE1, ITE2,
NOT ITE1, NOT ITE2, ITE INTRO

Simple rules without premises

OR, BIND, EQ TRANSITIVE Simple rules with premises

EQ CONGRUENT, EQ CONGRUENT PRED
Congruence. Reconstruction can be
problematic due to the FO encoding.

LA RW EQ, LA GENERIC, LIA GENERIC, LA DISEQUALITY,
LA TOTALITY, LA TAUTOLOGY

Linear arithmetics

FORALL INST Variable instantiation

TH RESOLUTION, RESOLUTION
Resolution reconstructed with a
simple SAT solver in Isabelle

CONNECTIVE EQUIV Arithmetics and logic simplification

TMP AC SIMP
Simplification modulo associativity
and commutativity

SUBPROOF Implication from assumption

SKO EX, SKO FORALL Skolemization

QNT SIMPLIFY, QNT JOIN, QNT RM UNUSED, TMP BFUN ELIM Quantifier simplification

LET, XOR1, XOR2, NOT XOR1, NOT XOR2, XOR POS1,
XOR POS2, XOR NEG1, XOR NEG2, DISTINCT ELIM

Unused: Isabelle does not generates
XOR or lets

NLA GENERIC, TMP SKOLEMIZE Unused: experimental features
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Technical University of Dortmund,

Dortmund, Germany
{fadil.kallat, tristan.schaefer, anna.vasileva}@tu-dortmund.de

We introduce an approach that aims to combine the usage of satisfiability modulo theories
(SMT) solvers with the Combinatory Logic Synthesizer (CL)S framework. (CL)S is a tool
for the automatic composition of software components from a user-specified repository. The
framework yields a tree grammar that contains all composed terms that comply with a
target type. Type specifications for (CL)S are based on combinatory logic with intersection
types. Our approach translates the tree grammar into SMT functions, which allows the
consideration of additional domain-specific constraints. We demonstrate the usefulness of
our approach in several experiments.

1 Introduction
In component-based software synthesis, programs are not build from scratch but composed
from a repository of typed combinators. Combinators help to reduce the search space so that
the inherent complexity of software synthesis problems can be handled. Moreover, additional
domain-specific knowledge is contained in the semantic type layer of a repository. The underlying
type system is well suited to express feature vectors of programs and software components.
A user-specified repository Γ includes typed combinators that represent software components
(c : σ) where c is the component name and σ is an intersection type [9, 8].

The Combinatory Logic Synthesizer (CL)S is a synthesis framework based on a type inhabi-
tation algorithm for combinatory logic with intersection types [26, 9]. The algorithm searches for
terms that are formed from the combinators and have a given target type τ . (CL)S is intended
to be used for the automatic composition of software [5, 6, 9, 15, 21]. Besides the synthesis from
software components, the (CL)S framework allows the synthesis of data structures, for instance
of BPMN 2.0 processes [9] or planning processes [33].

Obviously, the expression of domain-specific knowledge is limited by the underlying type
system. Intersection types do not explicitly take the logical connectives conjunction, disjunction
and negation into consideration. Moreover, the input-output behaviour of the resulting program
cannot be expressed by types. The combinatory approach allows to specify local typing infor-
mation of a combinator but lacks expressivity regarding the global structure of result terms. For
instance, it is not possible to state that a combinator c0 must contain combinator c1 anywhere in
the subtree of its arguments. In some situations, not all well-formed terms might be considered
to be reasonable results. Different terms might also show identical execution results and runtime
behaviour.

Software synthesis is an established research topic that offers a broad range of specification
formalisms such as examples [16, 17, 28, 32], types [16, 20, 25] or first-order-logic [27, 31]. For
this paper, we followed the intuition that the joint usage of (complementary) formalisms can
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yield a synthesis approach that combines the respective strengths of the underlying techniques.
Precisely, we identified SMT to be well working with combinatory logic. There are different
possible scenarios to incorporate these techniques. For example, SMT could generate parts of
combinators or parametrize synthesized programs. In this paper, we show how to use SMT to
filter a complete enumeration of inhabitants. We implemented our approach in a tool called
CLS-SMT.

The combinatory logic synthesis yields a tree grammar that describes the set of valid inhab-
itants. We use this grammar to automatically construct a set of adequate SMT formulas. By
solving these formulas, we receive a tree model that represents a word of the grammar. The
(possibly infinite) set of inhabitants is further narrowed by introducing domain-specific struc-
tural constraints on terms. That way, we can regulate the selection of result programs while
avoiding trivial solutions.

The paper is organized as follows: In Section 2 we briefly introduce the composition synthesis
framework (CL)S, its underlying theoretical background and the formalism of tree grammars.
Section 3 includes a presentation of CLS-SMT and the details about the translation of tree
grammars into SMT formulas. In Section 4 we evaluate our approach considering an example
for sort programs and a labyrinth example. Section 5 includes an overview of related work.
Finally, the conclusion gives a brief summary.

2 Combinatory Logic Synthesizer (CL)S
The developing tool Combinatory Logic Synthesizer (CL)S provides an implementation of a type
inhabitation algorithm for combinatory logic with intersection types that is fully integrated into
the Scala programming language. The framework is publicly available [7].

The automatic software synthesis is performed by answering the type inhabitation question:
Γ⊢? : τ . The problem of inhabitation asks for all well-typed applicative terms that can be formed
from typed combinators in a user-specified set Γ and have a given type τ . Applicative terms are
defined as:

M,N ::= c | (MN)

A term is constructed by using named component or combinator c and application of M to
N , (MN). If there exists a combinatory expression M such that Γ ⊢M : τ then M is called
inhabitant of τ . The type expressions that represent the specifications of term M are denoted
σ, τ and are defined as follows:

σ,τ ::= a | α | σ→ τ | σ ∩ τ

Type constants (a) can be native or semantic types. Type variables (α) are substituted with
type constants and facilitate generic components. Furthermore, types can be constructed from
function types (σ→ τ) or intersections (σ∩ τ).

There are four rules that control the type inhabitation process. According to these rules,
types are assigned to combinatory terms [14]. The first rule (var) allows the usage of any
combinator c from the typed repository Γ that has type τ using substitutions. It is defined as
follows:

(var)Γ, c : τ ⊢ c : S(τ)
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Furthermore, it allows to assume that this combinator c has type S(τ), where S is a well-
formed substitution on Γ(c) mapping type variables to simple types. The inhabitation problem
in general is undecidable. A restriction on variable substitution is needed to ensure decidability
[14].

The following rule, arrow elimination (→ E), allows the application of combinators with
function types to appropriately typed arguments to form terms.

Γ ⊢M : σ→ τ Γ ⊢N : σ (→ E)Γ ⊢MN : τ

The intersection introduction rule (∩I), shown below, allows to type a term M with two types,
if there are proofs that M has type σ and type τ .

Γ ⊢M : σ Γ ⊢M : τ (∩I)Γ ⊢M : σ∩ τ

The fourth rule (≤) deals with subtyping.

Γ ⊢M : σ σ ≤ τ (≤)Γ ⊢M : τ

The subtyping rules are based on the Barendregt-Coppo-Dezani-Ciancaglini (BCD) [3] subtyping
relation. These include for example:

A2 ≤A1 B1 ≤B2
A1→B1 ≤A2→B2

to allow co- and contra-variant subtyping of functions and

A∩B ≤A A∩B ≤B

to have intersection as the least upper bound. The BCD system is also extended with type
constructors, which was proposed in [23, 10].

2.1 Tree Grammar

The (CL)S framework recursively computes all possible solutions in form of tree grammars [11].
We consider the generalized case of normalized regular tree grammars, which are well-known
from literature [13].

Definition 1 (Tree Grammars, Tree Grammar Languages)
A tree grammar G is a 4-tuple (S,N ,F ,R) with

• a start symbol S ∈N
• a set N of nonterminals,

• a set F of terminal symbols,

• a set R of productions rules of form α1 7→ {c1(β1,β2, . . . βn), c2(γ1,γ2, . . .γm)}, where n,m≥
0, α1,β1,β2, . . . ,βn,γ1,γ2, . . . ,γm ∈N are nonterminal and c1, c2 ∈ F are terminal symbols.
We consider tree grammars without restriction on the arity of the terminal symbols, e.g.
we can have α1 7→ c1(β1,β2) and α2 7→ c1(β1) with α2 ∈ N .
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For a given tree grammar G = (S,N ,F ,R) and nonterminal α∈N , Lα(G) is the least set closed
under the rule

if α 7→ c(β1,β2, . . . ,βn) ∈R and for all 1≤ k ≤ n : tk ∈ Lβk
(G) then

c(t1, t2, . . . , tn) ∈ Lα(G)

We define L(G) = LS(G) to be the language of grammar G.

For request Γ ⊢? : τ , (CL)S constructs a tree grammar G = (τ,N ,F ,R) where τ ∈ N . The
right hand sides of rules start with a combinator symbol c where c ∈ F is followed by the
types of arguments required to obtain the type on the left hand side of the rule by applying
the combinator. When (CL)S constructs a tree grammar, we have a word M ∈ Lτ (G). The
computed grammar G is sound because the word M is well-typed term. Furthermore, G is
complete because all requested well-typed terms are words of the grammar derived for the target
type τ .

2.2 Scala Implementation
The integration of the (CL)S algorithm into Scala allows simple specification of combinators
[11]. A typical type specification of the repository Γ for two combinators describing a start
position and an up movement in a game is

Γ = {start : Pos(3,4),
up : (Pos(3,4)→ Pos(3,3))∩ (Pos(3,3)→ Pos(3,2))}.

Here, arrows are function types and the binary intersection type operator ∩ means that a
combinator has two types simultaneously. Similar to dependent types [12], specifications can
include arbitrary constants and types can encode precomputed function tables. This specification
mechanism is Turing complete in general [14], but in practice we use some restrictions, rendering
the existence of terms for the type inhabitation problem decidable. In the current version, (CL)S
accepts specifications in almost mathematical notation, allowing to state the example for Γ above
as:

va l Gamma = Map(” s t a r t ” −> ’ Pos ( ’ 3 , ’ 4 ) ,
”up” −> ( ’ Pos ( ’ 3 , ’ 4 ) =>: ’ Pos ( ’ 3 , ’ 3 ) ) :&:

( ’ Pos ( ’ 3 , ’ 3 ) =>: ’ Pos ( ’ 3 , ’ 2 ) ) )

It can also extract type information from combinators with implementations attached to them,
allowing to enter the combinator up from Γ according to the Scala representation in Listing 1. We
obtain the specification with native and semantic types: (Pos(3,4)→ Pos(3,3))∩ (Pos(3,3)→
Pos(3,2))∩ (Player→ Player).

@combinator ob j ec t up {
def apply ( p layer : Player ) : Player = p layer . goUp ( )
va l semanticType =

( ’ Pos ( ’ 3 , ’ 4 ) =>: ’ Pos ( ’ 3 , ’ 3 ) ) :&:
( ’ Pos ( ’ 3 , ’ 3 ) =>: ’ Pos ( ’ 3 , ’ 2 ) ) ) }

Listing 1: Scala representation of a combinator with native and semantic types
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The intersection type operator is represented by : & : and the function types by =>:. The
signature of apply is automatically translated from its native Scala type. Additional semantic
type information is taken as-is and used only to impose more conditions on the use of up,
which are user specified. The term returned for question Γ ⊢? : Pos(3,3) is up(start), which,
when providing combinator implementations, is automatically translated to the method calls
up.apply(start.apply). The following tree grammar is the result of the inhabitation:

G = {Pos(3,4) 7→ {start()},
Pos(3,3) 7→ {up(Pos(3,4))},
Pos(3,2) 7→ {up(Pos(3,3))} }

3 CLS-SMT
This section describes the key aspects of CLS-SMT. The production rules in the grammar are
used to formulate SMT constraints by using uninterpreted functions. Any SMT model satisfying
the given constraints represents a tree, which is necessarily a word of the tree grammar.

We define a data structure that represents applicative terms and show how a (CL)S tree
grammar can be translated to an adequate SMT formulation.

Definition 2 (Inhabitant Tree)
An inhabitant tree is a binary tree over integers. Let n denote the finite number of combina-

tors used in the tree grammar and C ⊂ N range over {1, ...,n}. With c ∈ C, an inhabitant tree
is defined as follows:

inhabT ree = 0 (leftChild inhabT ree) (rightChild inhabT ree) | c

Accordingly, the tree’s alphabet of vertex labels ΣV is {0}∪C. A vertex labeled 0 is called
application node and denoted by @. An @ node has exactly two children (i.e. 0 is a binary sym-
bol), the function is the left child and argument is the right child. All elements of C are constants
so that @ nodes are the only elements of the tree that are allowed to have children. A combinator
with n arguments is represented by a tree that consists of (at least1) n application nodes and
the combinator symbol on the leftmost leaf. The n-th argument of a combinator is the right
child of the combinators n-th parent. As an example, we consider the term ((c (arg1)) arg2),
which represents the application of the binary combinator c to the arguments arg1 and arg2.

We assume that c is encoded as 1, arg1 as 2 and arg2 as 3. The corresponding inhabitant
tree is 0 (leftChild (0 (leftChild 1) (rightChild 2)) (rightChild 3). A visual representation is
as follows:

@

@

c arg1

arg2

3.1 Constraint Representation
Due to the completeness of the inhabitation algorithm, there is at least one applicative term that
can be build from a non-empty tree grammar. Thus, an SMT encoding of the tree grammar on its

1more @ nodes could be contained in the subtrees representing the arguments
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own will always be satisfiable. There is no need for an encoding of the subtyping relation because
subtyping is considered in the inhabitation algorithm. Accordingly, the tree grammar only
contains nonterminals representing types and there is a production rule for every nonterminal
used.

Let V be the finite set of vertices. The labelling function inhabitant : V 7→ ΣV can be used
for a total representation of a tree if the rules given in Definition 2 are respected. We use
the production rules in the tree grammar to formulate structural constraints on the tree. Let
n ∈N and N denote the set of nonterminals of the grammar. We introduce the partial function
ty : V 7→N , which maps vertices of a tree to a nonterminal representing a type. The information
provided by a production rule of the tree grammar can now be used to systematically build
constraints for the corresponding subtree. We consider the production rule {α 7→ {(c(β1, β2)}}
and its incomplete tree representation that is supplemented with the associated nonterminals:

@:α

@

c ?:β1

?:β2

Its possible to derive the following constraints from this production rule. Let i denote the
root node of the applicative composition of the combinator and its arguments. If node i has
type represented by nonterminal α then the vertex (leftChild (leftChild i)) must be c, the
first argument (at position (rightChild (leftChild i))) must be typed according to β1 and
the second argument (at (rightChild i)) must be typed corresponding to β2. The constraints
for subtrees denoted by β1 and β2 can be formulated accordingly. Following this approach,
the contents of a tree grammar can be translated into SMT constraints. Adequate assertions
are formulated and supplied to the SMT solver to find implementations for the uninterpreted
functions inhabitant and ty. We currently use Z3 from Microsoft Research [24] to solve our
formulation with the background theory LIA [4] (i.e. the linear fragment of the theory of
Integers). A more detailed look at the translation will be given in the next section.

3.2 Grammar Translation

We translate the grammar by applying Translate Production Rule shown in Algorithm
1 to every production rule of the grammar. The algorithm produces SMT boolean expressions
that must evaluate to true for all vertices of a valid tree. We make use of the aforementioned
functions inhabitant and ty to formulate these constraints. The set of constraint functions is
incorporated in an assertion with a forall expression where the universal quantified variable i
represents the vertices. Consequently, every solution found by the SMT solver must be a word
of the grammar.

Inside Translate Production Rule, the function Translate_Combinator is applied to
every possible combinator listed in this specific production rule. The resulting set of boolean
expressions is joined with the xor connective as we must use one combinator subtree exclusively
at a given type annotated vertex. For the sake of readability, we assume that xor and and are
applicable to sets.

An n-ary combinator is translated by using the universal quantified variable i and its asso-
ciated children to describe the vertices of the respective subtree. The labelling is formulated
by placing constraints on the ty and inhabitant functions. We reverse the list of nonterminals
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args that describes the required types of a combinator’s arguments in order to address the struc-
ture of inhabitant trees. That way, we can start at the root node of the current subtree and build
successive address terms for each loop iteration by applying leftChild to the current address
term. The complete structure of the subtree must satisfy all constraints that were produced
in the loop, so we return the corresponding conjunction. After translating the grammar rules,
we also include a root node constraint. It states that ty must map node 1 of the tree to the
nonterminal representing the synthesis goal type.

Algorithm 1 Production Rule Translation
function Translate Production Rule(typeId,values)

xorSet←∅
for all (combinator,parameters) in values do

cT ransl←Translate Combinator(combinator, parameters)
xorSet ← xorSet ∪ cT ransl

end for
return (ite (= (ty i) typeId) (xor xorSet) true)

end function

function Translate Combinator(combinator,args)
constrSet←∅
currentAddress← i
pList← args.reverse
for all p in pList do

constrSet← constrSet ∪ (= (ty (rightChild currentAddress)) p)
constrSet← constrSet ∪ (= (inhabitant currentAddress) 0)
currentAddress← (leftChild currentAddress)

end for
combinatorConstraint← (= (inhabitant currentAddress) combinator)
combinedSet← combinatorConstraint∪ constrSet
return (and (combinedSet))

end function

Any tree model M∗ that satisfies these constraints represents a word M of the grammar and
every word M can be translated to a model M∗ that satisfies these constraints. The translation
is straight-forward and is thus be omitted. Let ϕ denote the conjunction of the constraints and
τ denote the inhabitation target type, then: M∗ �LIA ϕ⇔M ∈ Lτ (G).

4 Experiments
In this section, we discuss the advantages and the usefulness of our approach by means of a
composition of sort programs and a path finding scenario.

4.1 Sort
We consider a small repository Γ shown in Fig. 1 that can be used to compose sort programs.
It contains a sort combinator for lists that applies a function to each element before performing
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the sorting. The id combinator typed α→ α can be used if we want to sort the unmodified list
values. Moreover, the inverse function can be applied to double values. Further combinators
could include the abs function to compare absolute values or a dist combinator to calculate the
distance to a given value.

Γ = { values : List(double),
id : α→ α,

inv : double→ double,

sortmap : (α→ α)→ List(α)→ SortedList(α),
min : double→ SortedList(double)→minimal∩double,

default : double }

Figure 1: Repository for the sort example

In some cases, it might be required to sort a double list and additionally determine its
minimal value. The corresponding combinator min will be implemented by extracting the first
value of a sorted list (assuming that we always sort in an ascending order). The result type of
min is an intersection of minimal and double. For empty lists, a default value will be returned.
In this example, such a value is held in the component default, which has the type double. The
inhabitation request Γ ⊢? : minimal∩double yields the following grammar G:

G = {SortedList(double) 7→ {sortmap(double→ double,List(double))},
minimal∩double 7→ {id(minimal∩double),min(double,SortedList(double))},
double 7→ {id(double),default(), inv(double),min(double,SortedList(double))},
double→ double 7→ {id(), inv()}
List(double) 7→ {id(List(double)),values()} }

Figure 2: Tree grammar for the sort example, Γ ⊢? : minimal∩double

A double value can be formed by applying id or inv to any term with type double. Obviously,
terms like inv and id can be applied an arbitrary number of times to arguments of type double.
Thus, the range of terms with type double is infinite. Moreover, a term typed minimal∩double
can also be used as the first argument of the min operator. The grammar describes all well-
formed solutions that comply to the target type. However, it is clearly not desirable to compose
infinite range of trivial solutions. With extensions formulated as SMT constraints, we can further
filter the result set without specializing Γ too much.

In order to avoid trivial solutions, we specify id and inv to be used only as arguments.
Moreover, the first argument of min must be a terminal. Given the indices 2, 3 and 5 for the
combinators id, min and inv, the following assertions are added to the SMT script:
( a s s e r t ( f o r a l l ( ( i In t ) ) ( not (= ( inhab i tan t ( l e f t C h i l d i ) ) 2 ) ) ) )
( a s s e r t ( f o r a l l ( ( i In t ) ) ( not (= ( inhab i tan t ( l e f t C h i l d i ) ) 5 ) ) ) )
( a s s e r t ( f o r a l l ( ( i In t ) )

( i t e (= ( inhab i tan t ( l e f t C h i l d i ) ) 3)
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( not (= ( inhab i tan t ( r i gh tCh i ld i ) ) 0 ) ) true ) ) )

With these constraints at hand, only two valid solutions are found for the inhabitation
request Γ ⊢? : minimal∩double:

((min default) ((sortmap inv) values)) and
((min default) ((sortmap id) values))

The combinator min is applied to the terms yielded by the combinators default and sortmap.
For this particular example, the combinator mapping in the table shown below was used. In
order to illustrate the first result term as a tree, we use the following labelling pattern:
combinator name : (vertex id, combinator id)

name id
default 1
id 2
min 3
values 4
inv 5
sortmap 6

@:(1,0)

@:(2,0)

min:(4,3) default:(5,1)

@:(3,0)

@:(6,0)

sortmap:(12,6) inv:(13,5)

values:(7,4)

4.2 Labyrinth Example

In the following labyrinth example, it is possible to go up, down, left or right, if the new position
is not occupied by obstacles [11]. Fig. 3 illustrates a 3 × 4 labyrinth example. The starting
position is (0,2) (shown as •) and the goal position (1,0) (shown as ⋆).

0 1 2
0 ⋆
1
2 •
3

Figure 3: Labyrinth example

The repository with typed combinators for this example is represented in Fig. 4.



60 Bringing Together (CL)S and SMT

ΓLab = { left : (Pos(1,1)→ Pos(0,1))∩Pos(2,1)→ Pos(1,1)) ∩
(Pos(1,3)→ Pos(0,3))∩ (Pos(2,3)→ Pos(1,3)),

right : (Pos(0,1)→ Pos(1,1))∩ (Pos(1,1)→ Pos(2,1)) ∩
(Pos(0,3)→ Pos(1,3))∩ (Pos(1,3)→ Pos(2,3)),

up : (Pos(0,3)→ Pos(0,2))∩ (Pos(2,3)→ Pos(2,2)) ∩
(Pos(1,1)→ Pos(1,0))∩ (Pos(0,2)→ Pos(0,1)) ∩
(Pos(2,2)→ Pos(2,1)),

down : (Pos(1,0)→ Pos(1,1))∩ (Pos(0,1)→ Pos(0,2)) ∩
(Pos(2,1)→ Pos(2,2))∩ (Pos(0,2)→ Pos(0,3)) ∩
(Pos(2,2)→ Pos(2,3)),

start : Pos(0,2) }

Figure 4: Repository for the labyrinth example shown in Fig. 3

The combinators up, down, left, and right can be used to go from position Pos(x,y) to an
accessible neighbouring position. The types Pos(x,y) represent the column and row positions.
For example, combinator left can be used to go from position Pos(1,1) to position Pos(0,1) as
well as from Pos(2,1) to Pos(1,1), from Pos(1,3) to Pos(0,3), and from Pos(2,3) to Pos(1,3).
The combinator start provides the starting position.

To get all possible paths from start (0,2) to goal position (1,0), we ask for:

Γ ⊢? : Pos(1,0)

For this goal position the algorithm computes the grammar shown in Fig. 5.

G = {Pos(1,0) 7→ {up(Pos(1,1))},
Pos(1,1) 7→ {right(Pos(0,1)), left(Pos(2,1)), down(Pos(1,0))},
Pos(1,1) 7→ {up(Pos(0,2)), left(Pos(1,1))},
Pos(2,1) 7→ {up(Pos(2,2)), right(Pos(1,1))},
Pos(2,2) 7→ {down(Pos(2,1)), up(Pos(2,3))},
Pos(0,1) 7→ {up(Pos(0,2)), left(Pos(1,1))},
Pos(0,3) 7→ {down(Pos(0,2)), left(Pos(1,3))},
Pos(0,2) 7→ {down(Pos(0,1)), up(Pos(0,3)), start()},
Pos(1,3) 7→ {left(Pos(2,3)), right(Pos(0,3))},
Pos(2,3) 7→ {down(Pos(2,2)), right(Pos(1,3))}}

Figure 5: Tree grammar for the labyrinth example

For the path going up, right, and up the algorithm constructs a term up(right(up(start))).
In this example, there are also terms that represent trivial paths with cycles. For example:

up(right(up(down(up(down(up(start))))))),
down(up(up(right(up(start))))), ...
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By means of SMT solvers, we can restrict the number of solutions computed by (CL)S in order
to avoid trivial terms. For example, we can decide, which combinators have to be used and how
often. As presented in Section 3 we translate the computed tree grammar (s. Fig. 5) to SMT
expressions by means of algorithm 1.

In order to filter the inhabitants, we consider domain-specific constraints. We are able to
select, which combinators should be used in the solution. For instance, Fig. 6 shows a formula
that states a term should not include combinator down (translated as (= (inhabitant i) 1)).
This way, we constrain the usage of certain combinator. In this particular example (see Fig. 3),
we might want to avoid the down combinator, because the robot has to get to the top-right goal
position.

( a s s e r t ( f o r a l l ( ( i In t ) ) ( not (= ( inhab i tan t i ) 1 ) ) ) )

Figure 6: Assertion for filtering of combinator

We reduce the number of cycles and define the order of usage of the combinators in order to
avoid unnecessary paths. For example, we can formulate a constraint that forbids the application
of combinator down (index 1) to combinator up (index 2) and vice versa. The same applies to
combinators left (index 3) and right (index 4). Fig. 7 shows the definition of this rule.

( a s s e r t ( f o r a l l ( ( i In t ) )
( and

( not ( and (= ( inhab i tan t ( l e f t C h i l d i ) ) 3)
(= ( inhab i tan t ( l e f t C h i l d ( r i gh tCh i ld i ) ) ) 4 ) ) )
( not ( and (= ( inhab i tan t ( l e f t C h i l d i ) ) 4)
(= ( inhab i tan t ( l e f t C h i l d ( r i gh tCh i ld i ) ) ) 3 ) ) )
( not ( and (= ( inhab i tan t ( l e f t C h i l d i ) ) 2)
(= ( inhab i tan t ( l e f t C h i l d ( r i gh tCh i ld i ) ) ) 1 ) ) )
( not ( and (= ( inhab i tan t ( l e f t C h i l d i ) ) 1)
(= ( inhab i tan t ( l e f t C h i l d ( r i gh tCh i ld i ) ) ) 2 ) ) ) )

) )

Figure 7: Formula for definition of order

5 Related Work
Type-theoretical specification

There are various approaches to solve synthesis problems by means of type theory. For in-
stance, Polikarpova et al. synthesized recursive functions satisfying a specification in the form
of polymorphic refinement types [25]. Zdancewic et al. demonstrated that examples in example-
directed synthesis can be interpreted as refinement types [16]. They provided an example-based
specification language by using intersection types with singletons. In contrast, (CL)S expresses
semantic specifications with intersection types. Kuncak et al. used type inhabitation in the
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simply typed lambda calculus to support developers by generating a list of valid expressions of
a given type for code completion [20].

SMT

In the last decades, there have been many approaches using SMT solvers for synthesis. A
common property of those methodologies is the use of syntactic constraints and a correctness
specification. In 2006, preliminary work in template-based synthesis was undertaken by Solar-
Lezama et al. [29]. In Sketching, a partial implementation is given and synthesis completes
missing parts by considering a specification of the desired functionality [29]. Following this
idea, loop-free bitvector programs [18] and deobfuscating programs [22] were synthesized in a
component-based manner. In contrast to our work, desired functionality and components were
specified as logical relations between the input and output variables [18, 22]. Another approach
in SMT based synthesis is programming by examples. A user specifies the behaviour of the
desired program by a number of input-output examples [19]. Singh and Gulwani transformed
strings and data types in spreadsheets [17, 28] and Udupa et al. were able to synthesize protocols
from a given skeleton and examples [32].

In 2013, a number of researchers picked up the main ideas of the projects above to formulate
the problem of syntax-guided synthesis (SyGuS) [1]. The Counterexample-Guided Inductive
Synthesis (CEGIS) architecture describes how SyGuS problems can be tackled by learning from
counterexamples provided by a verification oracle, which is often implemented by off-the-shelf
SMT solvers [1].

Most of the synthesis algorithms based on CEGIS variants are solving ∃∀-formulas iteratively
using SMT solvers [1]. Similar to Reynolds et al. we consider synthesis as a theorem-proving
problem. In our case, the problem is solved in combinatory logic and later refined by a SMT
solver, whereas in [27] the problem is solely solved within the SMT solver. The main difference is
the way of specification. Like in many traditional synthesis approaches [16, 17, 28, 32], targets in
[27] are specified by using properties of executed programs. More specifically, relations on inputs
and outputs are defined. This allows for a fine-granular specification on program behaviour, but
it is hard to control the structure of synthesized programs. It can also be hard to specify the
program behaviour in the SMT solver, which becomes especially apparent in the presence of
side effects or exceptions. In (CL)S, these concerns are hidden behind the interfaces of types.
Types are particularly easy to define, because they already exist in most programming languages
and do not need to be specified just for synthesis. They can encode taxonomic concepts via
semantic types and subtyping, which is usually a very natural way of expression [30]. In future
work, it might be interesting to consider bridging the gap between behavioural and type-based
specifications. In particular, the approach in [27] could be used to synthesize the implementation
for individual combinators, which are then composed by (CL)S and CLS-SMT.

6 Conclusion
In our work we combined Combinatory Logic Synthesis and Satisfiability Modulo Theories in a
tool called CLS-SMT. In this way, we are able to compensate limitations of one technology by
taking advantage of the other and vice versa. The synthesis framework (CL)S generates a tree
grammar from a given repository of typed components that contains domain-specific knowledge.
We should emphasize that the tree grammar is complete and describes all well-formed solutions.
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CLS-SMT translates the grammar into SMT formulas and further domain-specific constraints
are added. The SMT solver Z3 finds a model considering the translated tree grammar and
constraints.

By having further constraints formulated as SMT formulas, we are able to restrict inhabitants
without restricting the types of the (CL)S component repository. That way, we benefit from
the expressiveness of first-order logic and background theories. Combinatory logic synthesis
reduces the search space of the SMT solver. In general, SMT considers this structure of the
programs, whereas components in (CL)S contain domain-specific details. Combinatory logic
with intersection types is a Turing complete formalism that allows to define semantic taxonomies
based on subtyping [9].

Although SMT solvers are highly efficient through decades of research and improvements,
handling quantified formulas is still challenging. Congruence Closure with Free Variables (CCFV)
[2] is a framework that is based on the E-ground (dis)unification problem and unifies major in-
stantiation techniques in SMT solving. Experimental evaluation shows that CCFV improved
the performance of the solvers CVC4 and veriT significantly, so that the former outranks the
state-of-the-art in instantiation based SMT solving. Within our research, the replacement of
solvers is possible with reasonable effort due to the SMT-LIB standard. Further performance
enhancements could be achieved by exploring the usage of data types to express the tree.

We have applied CLS-SMT to synthesize sort programs and motion plans. Motion plan-
ning problems are an interesting topic for program synthesis because of the associated scaling
problems. Our examination shows that synthesis of small motion plans is successful. On the
other hand, we found that larger examples do not scale properly. Our approach is well-suited
for motion plans with up to 10×10 tiles. Scaling problems do not apply to other use cases such
as the sort example. Future work considers an investigation of motion planning problems with
multiple robot instances and obstacles.
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