
An Approach Using the B Method

to Formal Verification of PLC Programs
in an Industrial Setting�

Haniel Barbosa and David Déharbe

Departamento de Informática e Matemática Aplicada, UFRN, Brazil
hanielbbarbosa@gmail.com, deharbe@dimap.ufrn.br

Abstract. This paper presents an approach to verify PLCs, a common
platform to control systems in the industry. We automatically translate
PLC programs written in the languages of the IEC 61131-3 standard to
B models, amenable to formal analysis of safety constraints and general
structural properties of the application. This approach thus integrates
formal methods into existing industrial processes, increasing the confi-
dence in PLC applications, nowadays validated mostly through testing
and simulation. The transformation from the PLC programs to the B
models is described in detail in the paper. We also evaluate the ap-
proach’s potential with a case study in a real railway application.

Keywords: B method, PLC, IEC 61131-3, safety critical systems, for-
mal methods.

1 Introduction

Programmable Logic Controllers (from now on, PLCs) perform control opera-
tions in a system, running in execution cycles : they receive information from
the environment as inputs, process them and affect this environment with the
resulting outputs.

In many industries, such as mass transport and energy, it is very common
to use PLCs in control applications. Those applications are mostly programmed
according to IEC 61131-3 [1], an international standard that specifies the five
standard PLC programming languages, namely: LD (Ladder Diagram) and FBD
(Function Block Diagram), graphical languages; IL (Instruction List) and ST
(Structured Text), textual languages; and SFC (Sequential Function Chart),
that shows the structure and internal organization of a PLC. It is not rare that
a variation of such languages is employed too.

As the complexity of the PLC applications increases, and as various are safety
critical, it is important to ensure their reliability [2]. Since testing and simulation,
the de-facto method in many branches to perform verification, can leave flaws

� Project supported by ANP. CNPq grants 560014/2010-4 and 573964/2008-4
(National Institute of Science and Technology for Software Engineering—INES,
www.ines.org.br).

R. Gheyi and D. Naumann (Eds.): SBMF 2012, LNCS 7498, pp. 19–34, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.ines.org.br

20 H. Barbosa and D. Déharbe

undiscovered, something intolerable in safety-critical systems, another strategy
is necessary. A mean to fulfill this requirement is with formal methods. However,
they are difficult to integrate with the industrial process [3], since most control
engineers are not familiarized with formal verification [4].

Some recent works have been trying to integrate formal methods and PLC
programs verification, using different approaches. In [5], the authors created a
new language combining ST and Linear Temporal Logic, ST-LTL, to ease the use
of formal verification by control engineers. A method is presented in [6] to verify
applications using Safety Function Blocks with timed-automata through model-
checking and simulation. A model-driven engineering approach is used in [7] to
generate models in a FIACRE language from LD programs. To this date, these
approaches are concerned only with parts of the IEC 61131-3 standard.

Our approach consists of developing a tool that receives a PLC program based
in the IEC 61131-3 standard and builds an intermediary model from it. This
model is automatically translated to a formal model in the B notation [8]. Ad-
ditional safety constraints requirements are then manually inserted and verified
using theorem proving, thus avoiding state-explosion problems. We can also spec-
ify and verify dynamic properties, such as deadlock freedom, performing model
checking in the model using the tool ProB1, which also supports the definition
and verification of new constraints in Linear Temporal Logic. Our approach
is thus able to verify that the PLC is presenting the expected behavior in its
execution cycle.

We chose the B Method because it is used successfully in safety-critical ap-
plications, e.g. in the railway industry [12]. Besides, it has a strong support of
tools and the B language can handle decomposition, refinement and generation
of verified code. It is better discussed in 2.2.

In order to include all the IEC 61131-1 languages, we based our intermediary
model (from now on called “PLCmodel”) in the PLCopen [9] standard, which pro-
vides an interface representing all such languages in an XML-based format, work-
ing also as documentation. This PLCmodel stands between the PLCprogramsand
the formal models to be generated, then reducing the semantic gap between PLC
and B and defining a unique semantics for different PLC languages [7]. The pro-
cess also involves a customizable parser, so we can treat PLC programs that are
not strictly following the IEC standard; as numerous legacy systems deviate from
the standard, still our approach would thus be able to handle them.

Thus, as the generation of the formal model is automatic and as it makes
correctness, according to the specification, a realistic and achievable goal, we
facilitate the use of formal methods in industry and increase confidence in the
PLC applications.

We also present a case study in a real safety-critical railway system: the Cen-
tral Door Controller (from now on, CDC) of the doors subsystem of a train. We
show the step by step automatic generation of the formal specification from its
PLC program and, after defining the safety constraints, perform a full formal
verification in the application, at the end exhibiting the results.

1 http://www.stups.uni-duesseldorf.de/ProB

http://www.stups.uni-duesseldorf.de/ProB

Formal Verification of PLC Programs Using the B Method 21

This paper presents the continuation of the work in [10] and [11]. A new
definition of the formal model generated, as well as improvements on how it is
generated and an evaluation of the whole method in a real case study are the
main contributions of this new paper.

Structure of the paper. Section 2 presents in more detail PLCs and the B method.
In section 3 we have the description of the different phases of our method, and in
section 4 we present our case study. Section 5 concludes the paper and presents
future work.

2 Context and Techniques

2.1 Programmable Logic Controllers

We base our work with PLCs on the PLCopen standard. This standard is an
effort to gather all the information of the five different languages of the IEC
standard and provide an interface with their supporting tools, as well as the
ability to transfer information between different platforms. It is an XML- based
standard able to store not just the textual, but also the graphical information
of a project, allowing complete translation from a representation to another.

The PLCopen standard structures PLCs in three specific parts: the Headers
structures, containing information such as the project name, the company as-
sociated, etc.; the Instance specific part, representing the configurations of the
environment in which the PLC may operate; and the Type specific part, where
we have the Program Organization Units (POUs) and the defined Data Types.
In our approach we will consider only the elements of Type.

The Data Types are either elementary (Bool, Integer, etc.), derived (Enumer-
ation, Array, Structure, etc.) or extended (Pointers); generic data types can also
be defined. They are used to type the variables used in the POUs.

The POUs represent the PLC programs, being divided in three categories:
functions, function blocks and programs :

– The POU functions, when executed, produce exactly one data statement – a
variable typed according to one of the possible data types in the standard –,
the function result, and arbitrarily many additional output variables. These
POUs are stateless: they contain no state information, i.e., invocation of a
function with the same arguments shall always produce the same result.

– The POU function blocks produce one or more data statements as result.
The state of a function block persists from one execution to the next –
they are stateful – , therefore invocation with the the same arguments may
produce different results.

– The POU programs are defined as a “logical assembly of all the programming
language elements and constructs necessary for the intended signal process-
ing required for the control of a machine or process by a programmable
controller system”. Their declaration and usage is equivalent to the function
blocks. It also may use the previous two POU types as auxiliary elements.

22 H. Barbosa and D. Déharbe

The three POU elements have an interface with its several kinds of variables:
input, local, output, inout, etc. They also have a body, composed by IL (Instruc-
tion List), ST (Structured Text), LD (Ladder Diagram), FBD (Function Block
Diagram) or SFC (Sequential Function Chart) elements, according to the lan-
guage of the POU. In figure 1 we can see an example of a POU program in LD
that makes use of an instantiation of a POU function block in FBD. In section 4
bits of PLC programs in SFC and ST are shown as part of our case study. For
more details, see [1] and [9].

Fig. 1. LD program with rungs executed from left to right, sequentially. Boolean vari-
ables and a function block are evaluated in the execution.

2.2 B Method

The B Method [8] is a formal approach for the specification and development
of software. It includes a first-order logic with integers and sets, substitutions
and refinement rules. It is based on the Abstract Machine Notation (AMN),
which provides a unique language for the construction of machines, refinements
and implementations, thus representing the different levels of abstraction that
a specification of a system may take. Besides, the language supports decom-
position, since it is based around the concept of layered development and the
construction of larger components from collections of smaller ones.

The B Method provides a unified pragmatic and usable development method-
ology based on the concept of refinement, requiring the consistency verification
for each transformation of the specification from the abstract level towards the
concrete one. This, along with the generation and verification of proof obligations
to guarantee the consistency of the initial model, makes correctness according to
the specification a realistic and achievable goal throughout system development.

3 The Method

The method we are proposing consists of three main phases:

1. translate the information in the PLC programs into an intermediary model,
either from a standard or hybrid PLC program, or from an XML file in the
PLCopen standard;

Formal Verification of PLC Programs Using the B Method 23

2. generate from it a B model that makes possible to check the structural and
safety properties of the project;

3. and at last complete the formal model with such safety properties, derived
from the project requirements (manually, for now).

Figure 2 illustrates the method. A case study covering all the phases of this
method is shown in section 4.

Fig. 2. Illustration of the complete method

3.1 Towards the PLC Model

The PLC model may be generated either directly from an PLCopen XML-based
representation, from the programs in the standard languages or from programs
in some hybrid language, presenting differences from the IEC 61131-3 standard.
Such languages are common, as adaptations to specific domain PLCs may be
necessary.

We projected a parser to analyze the programs; it deals with the elements
of the standard languages and may be customized to specified differences, to
accommodate new languages. This way we can deal with legacy programs that
are not strictly standard compliant. To handle XML, we developed a reader
module along with the default parser to load the PLC model.

Once the PLC model is constructed, we are able to work independently from
the PLC programs to generate the B specification. It is also possible to generate
a PLCopen XML, as documentation, to the PLCs that were not in this format.

3.2 Generation of the B Model

A good architecture is essential to generate a good model, as well as to define
which information from the PLC model will be responsible for which elements of
the B model. The architecture of this model is depicted in figure 3. It represents
a POU program and the auxiliary POU functions or function blocks that it may

24 H. Barbosa and D. Déharbe

Fig. 3. B model representing a POU program and its use of auxiliary function and
function block POUs

use; in the sense of B, they are included by the refinement of the component
representing the POU program.

For the POU program2, the operations are derived from the SFC steps. At the
machine level, the bodies of the operations only make non-deterministic assign-
ments to the variables modified in the respective step; the translation of the ST
statements in the SFC action associated to the step forms the operation’s body
at the refinement level. The precondition of an operation is derived from the
translation of the ST statements in the SFC transition preceding the respective
step.

Variables are created to represent the internal representation of the POU
inputs, named by the prefix “int ” plus the input’s original name. These inputs
are received as parameters in a Start operation, representing the initialization of
the POU in each execution cycle. In the body of this operation, at the refinement
level, each internal variable receives the value of its corresponding input.

The POU outputs are treated as local variables; it is no loss of generality to
deal with them like that since we are dealing with the POUs only as independent
components. The safety constraints will concern mostly these outputs.

To emulate the execution cycle of the POU, non-existent in B, a boolean
variable is created for each step, named by the step’s original name plus the
suffix “ done”. It is stated true as the respective operation is performed and
falsified as the correspondent next operation in the execution cycle is reached.
These variables will be part of the operations’ preconditions: the predecessors
step variables must be valid so that a step can be reached.

A variable beginning is also created, stated true in the INITIALISATION
clause of the refinement, and is part of the precondition of the Start operation.
It marks the first execution cycle, when Start must always be available. In its
body beginning will be falsified.

In the auxPOU n components, the operations are constructed with the
translated statements from the auxiliary POUs, functions or function blocks,
either in ST, IL, LD or FBD. In the POU program’s machine and refinement
are created and typed variables according to the return type of these opera-
tions’ outputs; they are used whenever one of them is invoked.

Further refinements may be performed to optimize the model, like adding
invariants or changing its structure to facilitate automated proof.

2 Due to space limitations and to the fact that our case study in this paper deals partic-
ulary with SFC and ST, this explanation covers only the elements of these languages.

Formal Verification of PLC Programs Using the B Method 25

3.3 Inserting the Safety Constraints

The next phase is to add safety constraints. Since PLC programs do not represent
such constraints explicitly, they have to be manually extracted from the project
requirements and modeled to be used in the formal models. This is a hard
task and still an open issue in the industry [13], and we have not decided yet
which methodology to adopt to tackle this problem. However, some promising
approaches as [14] and [15] may be suited for our purpose; the latter was used
in our case study.

Fig. 4. SFC program for CDC. Execution goes from the initial step to sequential ones
according to the validation of the transitions; the actions performed in each step are
implemented in ST.

Once the safety constraints are defined, they are inserted into the model as
invariants in the POU components, conditions that must always hold as the
PLC actions are performed. Tools such as Atelier B3 can perform automatic
verification of their consistency and point out where lies any problem, guiding
its treatment.

To guarantee that the PLC performs the expected behavior of its execution
cycle we may create LTL formulas over the variables representing the opera-
tions’ execution, verifying, e.g., if a given operation is ever reached from a
predecessor one.

3 http://www.atelierb.eu/

http://www.atelierb.eu/

26 H. Barbosa and D. Déharbe

We may also verify properties that cannot be modeled with regular first or-
der logic, requiring modalities found in LTL: one example is the condition that
whenever a given variable has a given value, there must be some state reached by
the PLC where another certain variable receives another certain value. This can
be modeled with the operators �, meaning “it will always be the case that...”;
and �, meaning “it will eventually be the case that...”.

ProB is an animator and LTL model checker capable of handling B machines.
It also provides support to verify structural properties such as deadlock-freedom.

4 Case Study

Our case study is the CDC (Central Door Controller), a PLC part of the doors
subsystem of trains in the Metro-DF project, developed by AeS4, a small com-
pany in Brazil specialized in railway projects.

The CDC is responsible for controlling the opening and closing of the doors in
the train, guaranteeing that these actions are only executed under safe circum-
stances. It also controls the emergency situations that the train may be involved
in, which must be taken in consideration to determine whether a given scenario
is safe.

It receives, as input, information about the state of the train, such as the
current speed, and commands to open or close the doors. After verifying if the
conditions to execute some action are fulfilled, the CDC sends out commands,
as outputs, allowing or not the required actions.

Fig. 5. ST action associated to the SFC program of CDC. Tests if the conditions to
open the doors of the train are satisfied.

A simplified PLC representing the CDC is shown in figure 4, with a POU pro-
gram in SFC, and its transitions and actions written in ST – they are not all pre-
sented due to space limitations, but in figure 5 we have the action Test Opening
in detail. The CDC interface is shown in table 1. Associated with the CDC is
also a POU function, isHigher op, which receives an integer as input and returns
a boolean result indicating whether the input is higher than 6. This function is
used to check the speed of the train.

4 http://www.grupo-aes.com.br/site/home/

http://www.grupo-aes.com.br/site/home/

Formal Verification of PLC Programs Using the B Method 27

Table 1. Interface of CDC

Name Class Type

train stopped Input BOOL
train in platform Input BOOL
train speed Input INT
train mode Input OPERATION MODES
mech emg actuated Input BOOL
close from ATC Input BOOL
close from cabin Input BOOL

doors closed InOut BOOL

ok opening Local BOOL
ok closing Local BOOL
emergency evaluated Local BOOL

control mech emg actuated Output BOOL
authorize emergency Output BOOL
cab emg sound Output BOOL
interlock doors traction Output BOOL
apply emg breaks Output BOOL

– Inputs: environment state and com-
mands.

– Locals: CDC operational variables.
– Outputs: Results of the CDC opera-

tions.

The execution begins at the step Start: the PLC reads the inputs of the ex-
ternal system and initialize its local variables. The transitions T1 and T2 will
test if an opening or closing operation, respectively, was requested, then direct-
ing the execution to Step1, where the CDC tests if the conditions to open the
doors are satisfied; or to Step2, where the CDC tests if the conditions to close
the doors are satisfied. If the conditions either to open or to close the doors were
satisfied, situation controlled respectively by the local variables ok opening and
ok closing, the execution continues; otherwise it goes back to Start, where the
CDC will wait until the next reading of inputs. In Step3 or Step4, responsi-
ble respectively for opening and closing operations, the outputs controlling the
state of the doors are modified, corresponding to the kind of action performed
– opening or closing; the emergency circumstances are evaluated in these steps;
the corresponding controlling outputs are also modified here.

4.1 Applying the Method

We use the tool Beremiz5 to create the PLC program and obtain a PLCopen
XML document representing the CDC. We translate the information in it into
our PLCmodel, then generate a B model representing the CDC. The architecture
of the generated model is presented in figure 6. This process is fully automatic.

The variables with the prefix “int ” are the internal variables created to rep-
resent the inputs received by the PLC. The local and the output variables are
created with the same names as the ones shown in table 1. The auxiliary variable
aux bool is created to be used when the operation isHigher op is invoked in
CDC r. The others are the step variables, used to represent the execution cycle,
plus beginning, signaling the first execution.

In figure 7, we can see part of the B operation produced by the translation of
Start. The precondition types the inputs and specify the conditions when Start
can be executed: the first execution cycle – beginning = TRUE; the condition
of transition T3 is satisfied and the execution is in Step1; the condition of
transition T6 is satisfied and the execution is in Step2; or the condition of
transition T7 is satisfied and the execution is in Step3 or Step4.

5 http://www.beremiz.org/

http://www.beremiz.org/

28 H. Barbosa and D. Déharbe

Fig. 6. Architecture of the B model generated representing the CDC

Start(train stopped,train in platform, train speed, train mode,mech emg actuated,
close from ATC, close from cabin, doors closed) =

PRE
train stopped : BOOL & train in platform : BOOL & train speed : {0, 5, 10}
& mech emg actuated : BOOL & close from ATC : BOOL &
close from cabin : BOOL& train mode : OPERATION MODES &
doors closed : BOOL & (beginning = TRUE or ((not(ok opening = TRUE)
& step1 done=TRUE) or (not(ok closing = TRUE) & step2 done=TRUE)
or (emergency evaluated = TRUE & (step3 done = TRUE or
step4 done = TRUE))))

(...)

Fig. 7. Start operation in the CDC machine. Only the precondition is exhibited.

The body of the Start operation at the refinement level, shown in 8, consists
of the translation of the statements in the ST action—the initialization of the
local variables—, plus the generated initialization of the variables representing
the outputs; then the assignments of the inputs to its internal variables; and
finally the initialization of the step variables, marking the active step as Start
– start done := TRUE.

Formal Verification of PLC Programs Using the B Method 29

Start(train stopped,train in platform,train speed,train mode,mech emg actuated,
close from ATC, close from cabin, doors closed) =

BEGIN
ok opening :=FALSE; ok closing :=TRUE; emergency evaluated :=FALSE;

control mech emg actuation := FALSE; authorize emergency := FALSE;
cab emg sound := FALSE; interlock doors traction := FALSE;
apply emg breaks := FALSE;

int train stopped := train stopped; int train in platform := train in platform;
int train speed := train speed; int mech emg actuated := mech emg actuated;
int close from ATC := close from ATC;
int close from cabin := close from cabin;
beginning := FALSE; start done := TRUE; step1 done := FALSE;
step2 done := FALSE; step3 done := FALSE; step4 done := FALSE

END

Fig. 8. Start operation in the CDC r refinement

Step1 =
PRE

not(int close from ATC = TRUE or int close from cabin = TRUE)T1

& start done = TRUE
THEN

start done := FALSE; auxBool < −− isHigher op(int train speed);
IF auxBool = TRUE THEN

/*block opening*/
ok opening := FALSE

ELSE IF ((int train mode = MAN) or ((int train mode = MCS or
int train mode = ATO) & (int train stopped = TRUE)
& (int train in platform = TRUE)))
THEN

/*Opening allowed*/
ok opening := TRUE

ELSE
/*block opening*/
ok opening := FALSE

END
END;
step1 done := TRUE

END

Fig. 9. Operation representing Step1 (The precondition of the machine operation is
exhibited together with the refinement operation due to space limitations

The B operation resulting from the translation of Step1 is shown in figure 9.
In its precondition we have T1 and the obligation that Step1’s predecessor step

30 H. Barbosa and D. Déharbe

INVARIANT
((ok opening = TRUE) =>

((int train speed<=6) & (((int train mode=MCS or int train mode=ATO)
& (int train stopped = TRUE) & (int train in platform = TRUE))
or (int train mode = MAN))

)
) &
((ok closing = FALSE) =>

(int train mode = ATO & int close from cabin = TRUE)
)

Fig. 10. Invariants concerning opening and closing safety

variable, start done, must be valid. Its body statements are the translation of the
ST statements in the step’s associated action, Test Opening, shown in figure 5.

The other operations are generated according to the same guidelines. Once
the B model is ready, the next phase in our method is to insert, manually, the
safety constraints of the project as invariants. We used the ProR approach [15] to
define the formal constraints from the natural language requirements, easing the
process and assuring reliable traceability; the whole effort is in [16]. We present
here only the results to the following requirements, concerning the opening and
closing operations:

1. The doors shall open only when the train’s speed is lower than or equal to
6km/h.

2. The conditions to open all the doors located in one or in the other side of the
train, when in the operation mode ATO or MCS, are the train be stopped
and in the platform.

3. The condition to open all the doors located in one or in the other side of the
train, when in the operation mode MAN, is the train’s speed be lower than
or equal to 6km/h.

4. In ATO mode, the Central Door Controller must not close the doors while
receiving the command to open them from the driver push buttons.

We have the resulting B invariants in figure 10. The first invariant, referring to
the situations where opening is allowed, covers the items 1, 2 and 3. The second
invariant, referring to the situation where closing is prohibited, covers the item 4.
The model is then ready to formally verify them.

The last phase of the process is to create the LTL formulas to check if the
PLC program’s behavior is as expected. Concerning the execution cycle, the
conditions to be verified and the respective formulas are shown below:

Formal Verification of PLC Programs Using the B Method 31

1: Start is reachable :
2: Step2 must be reachable from
Start when Step1 is not :
3: Step1 must be reachable from
Start when Step2 is not :
4: Step3 must be reachable from
Step1 when Start is not :
5: Start must be reachable from
Step1 when Step3 is not :
6: Step4 must be reachable from
Step2 when Start is not :
7: Start must be reachable from
Step2 when Step4 is not :
8: Start must be reachable from
Step3 or Step4 :

1: � start done
2: �((start done ∧ ¬ � step1 done)
⇒ �step2 done)
3: �((start done ∧ ¬ � step2 done)
⇒ �step1 done)
4: �((step1 done ∧ ¬ � start done)
⇒ �step3 done)
5: �((step1 done ∧ ¬ � step3 done)
⇒ �start done)
6: �((step2 done ∧ ¬ � start done)
⇒ �step4 done)
7: �((step2 done ∧ ¬ � step4 done)
⇒ �start done)
8: �((step3 done ∨ step4 done)
⇒ �start done)

We also verify constraints non-expressible through the invariants, such as:

9: Always when the CDC attests
that the conditions to open are
satisfied, then the doors must open
at some point of its execution :
10: Always when the CDC at-
tests that the conditions to close
are satisfied, then the doors must
close at some point of its execution :

9: �(ok opening ⇒
� ¬int doors closed)

10: �(ok closing ⇒
� int doors closed)

4.2 Results

Once the model is complemented with the invariants representing the safety
constraints and the LTL formulas to verify the program’s behavior are defined,
we are in position to carry on formal verification through theorem proving of
proof obligations, model checking and LTL formulas check.

Ten proof obligations were generated to verify the invariants inserted in the
model: 6 in the operation Step1, related to the invariant concerning the opening
conditions; and 3 in the operation Step4, associated with the invariants repre-
senting the emergency conditions, not exhibited here due to space limitations.
The Atelier B theorem prover was able to prove them all automatically, without
any user interaction. The operation Step2 does not generate proof obligations
because its statements are strictly equal to the invariant concerning the closing
conditions, and the operation Step3, as it opens the doors, directly satisfies all
the invariants concerning emergency conditions, by vacuity.

Next, we model check the model for the properties not covered by the proof
obligations, such as deadlock-freedom and liveness. As a result we had 4969
states, all free from deadlock, and a total of 1792080 transitions were necessary

32 H. Barbosa and D. Déharbe

to cover them all. An important observation is that in order to avoid a state-
explosion problem we restricted, only for the model checking phase, the values of
the INT variables - train speed and int train speed - to {0, 5, 10}; there is no loss
of generality, since the chosen values represent the three possible states of the
train: “stopped”, “in movement and with its speed lower than 6km/h” and “in
movement and with its speed not lower than 6km/h”. Without this restriction
an infinite number of states would have be generated by the model checker to
cover the possible values of the INT variables.

We can see in table 2 that most of the operations performed in the model
checking phase were at Start, where the inputs are received and the execution
cycle of the PLC is initiated. The computing time was of ten minutes.

Table 2. Total of transitions covered

Operation Number of visits

Initialisation 1536
Start 1787904
Step1 384
Step2 1152
Step3 48
Step4 1056

The final step was to check the LTL formulas to verify if the PLC was present-
ing the expected behavior. All the formulas were proven correct, so the CDC was
indeed executing as planned. The computing time was of less than one minute
per formula.

5 Conclusions and Future Work

We have overviewed a method to carry out formal verification of PLC programs,
according to the IEC 61131-3 standard, through the automatic generation of a
B specification. Safety constraints are inserted in the formal model and then
verified through theorem proving; we also verify structural properties and if the
PLC presents the expected behavior performing model checking and using LTL
formulas. Thus we increase the reliability of the application, having correctness
according to the specification as a realistic and achievable goal.

Another key point of our approach is that, as it allows the users to generate
the B models automatically from the PLC programs, only lacking the safety
properties, it boosts the process of formal verification of such programs, skip-
ping all the hard work to design and construct the model that prevents formal
methods from being easily inserted in industrial projects.

We also presented a case study in a real railway application where our ap-
proach was applied with success. We were able to attest the efficacy of the
automatic provers and verify the safety constraints of the project.

Formal Verification of PLC Programs Using the B Method 33

Future work lies mostly in expanding and adjusting the generation of the B
models, improving the way the method deals with some issues, such as multi-
dimensional arrays, loops and data types supported, for instance. Scalability is
also an issue, since the bigger and more complex the generated models are, the
harder it is to verify them; we plan to tackle this exploiting the decomposition
support of B, splitting the complexity of the application in several components
and verifying them independently.

The results obtained from the model and LTL checking can be used to improve
the PLC, but we have not defined yet an appropriate methodology on how to
perform this improvement; that is in our future works as well. We are also
studying the automatization of the process of deriving the safety constraints
from the requirements.

To improve the confidence in our translation method, another future work
is to make the inverse process: generate the former PLC programs from the B
models, so that we can apply testing technique to validate our approach.

As we expand the scope of our method, we also intend to perform more case
studies. We are about to start one with the company ClearSy6, strongly involved
with the B method and safety critical systems engineering, in a real project also
in the railway field, to execute problem diagnosis in high speed trains.

References

1. IEC (2003): IEC 61131-3 - Programmable controllers. International Electrotechni-
cal Comission Standards (2003)

2. Kron, H.: On the evaluation of risk acceptance principles. In: 19th Dresden Con-
ference on Traffic and Transportation Science (2003)

3. Amey, P.: Dear sir, yours faithfully: an everyday story of formality. IN Proc. 12th
Safety-Critical Systems Symposium, p. 318 (2004)

4. Parnas, D.: Really rethinking ‘formal methods’. Computer (January 2010),
http://portal.acm.org/citation.cfm?id=1724964.1724987

5. Ljungkrantz, O., Åkesson, K., Fabian, M., Yuan, C.: A Formal Specification lan-
guage for PLC-based Control Logic. In: Proc. of 8th IEEE International Conference
on Industrial Informatics, pp. 1067–1072 (2010)

6. Soliman, D., Frey, G.: Verification and Validation of Safety Applications based on
PLcopen Safety Function Blocks using Timed Automata in Uppaal. In: Proceed-
ings of the Second IDAC Workshop on Dependable Control of Discrete Systems
(DCDS), pp. 39–44 (2009)

7. Farines, J., de Queiroz, M.H., da Rocha, V.G., Carpes, A.A.M., Vernadat, F.,
Crégut, X.: A model-driven engineering approach to formal verification of PLC
programs. In: IEEE EFTA (2011)

8. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge University
Press, Cambridge (2005)

9. PLCopen : XML Formats for IEC 61131-3. PLCopen Technical Committee, 6
(2009)

10. Barbosa, H., Déharbe, D.: Towards formal verification of PLC programs. In: 14th
Brazilian Symposium on Formal Methods: Short Papers, São Paulo- SP (2011)

6 http://www.clearsy.com/

http://portal.acm.org/citation.cfm?id=1724964.1724987
http://www.clearsy.com/

34 H. Barbosa and D. Déharbe

11. Barbosa, H., Déharbe, D.: Formal Verification of PLC Programs Using the B
Method. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M.,
Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 353–356. Springer,
Heidelberg (2012)

12. Lecomte, T., Servat, T., Pouzancre, G.: Formal methods in safety-critical railway
systems. In: Proc. Brazilian Symposium on Formal Methods: SMBF (January 2007)

13. Abrial, J.R.: Formal methods in industry: achievements, problems, future. In: Pro-
ceedings of the 28th International Conference on Software Engineering, pp. 761–768
(2006)

14. Cabral, G., Sampaio, A.: Formal Specification Generation from Requirement Doc-
uments. In: SBMF (2006)

15. Ladenberger, L., Jastram, M.: Requirements Traceability between Textual Require-
ments and Formal Models Using ProR

16. Barbosa, H.: Desenvolvendo um sistema cŕıtico através de formalização de requi-
sitos utilizando o método B. B.Sc. Thesis, UFRN, DIMAp, Natal, Brazil (2010)

	An Approach Using the B Method to Formal Verification of PLC Programs in an Industrial Setting
	Introduction
	Context and Techniques
	Programmable Logic Controllers
	B Method

	The Method
	Towards the PLC Model
	Generation of the B Model
	Inserting the Safety Constraints

	Case Study
	Applying the Method
	Results

	Conclusions and Future Work
	References

