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Abstract
In this paper, we explore a development paradigm for SMT solver developers where rewrite rules

are suggested to the developer using syntax-guided enumeration. We capitalize on the recent advances
in enumerative syntax-guided synthesis (SyGuS) techniques for efficiently enumerating terms in a
grammar of interest, and novel sampling techniques for testing equivalence between terms. We present
our preliminary experience with this feature in the SMT solver cvc4, showing its impact on its rewriting
capabilities using several internal metrics, and its subsequent impact on solving bit-vector and string
constraints.

1 Introduction
Developing a state-of-the-art SMT solver is a demanding process. In particular, implementing a basic
decision procedure for a specific theory is not enough, as in practice many problems can be solved only
after they have been simplified to a form for which the SMT solver is effective. We refer to the component
of the SMT solver that performs this simplification as its rewriter, which given a term t returns the
rewritten form of that term, denoted by t↓. Designing an effective and correct rewriter is challenging. It
requires extensive domain knowledge and an analysis of specific problem instances. New rewrites are
often created when a set of constraints cannot be solved unless it is first simplified in a particular way.
Depending on the theory, optimizing the implementation of its rewriter can be as important, or even more
important, than optimizing its decision procedure. Moreover, recent work [21, 20] has shown a generic
inference scheme can be integrated into CDCL(T) theory solvers based on using its rewriter as an oracle.

In this paper, we explore a development paradigm where the SMT solver itself guides the developer
in the implementation of the rewriter. Our twofold goal is to improve the performance of SMT solvers
on constraints of importance to applications and increase the productivity of the SMT solver developer
during this task. This preliminary work focuses mostly on the latter goal. Our approach differs from
automatic rewrite rules generators, such as SWAPPER [24] and Hazel [15], by being more flexible and
application-independent: the suggestion of rewrite rules is parameterized by a user-defined grammar,
which specifies a set of terms to be rewritten, rather than by particular problems.

AWorkflow for Developing Rewrite Rules in an SMT Solver An overview of our workflow is shown in
Figure 1. In Step 1, the developer provides a grammar and specification to the SMT solver.1 Conceptually,
this input describes the class of terms that the developer is interested in targeting in the rewriter. In Step
2, we use previous techniques (namely the syntax-guided synthesis module of the SMT solver cvc4 [19])
to efficiently enumerate target terms into a term database. In the third step, we pair those terms together
to form a candidate rewrite database. We then report to the developer, in Step 4, a subset of this database
as a set of unoriented pairs t1 ≈ s1, . . . , tn ≈ sn. These pairs have the following two key properties:

1 We give examples of user-provided grammars in Section 5.
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Figure 1: Overview of our workflow.

1. terms ti and si were inferred to be equivalent based on some criteria in Step 3, and
2. ti↓ is not equal to si↓, in other words, the current rewriter does not treat ti and si as equivalent.

Hence, this list can be understood as a to do list for the developer of the rewriter. In Step 5 of the workflow,
the developer uses this list to extend the implementation on the rewriter so that it rewrites more pairs of
equivalent terms to the same term. We stress that our goal is not to automate the implementation of the
rewriter. We have found that the workflow is most effective when candidate rewrite rules act as hints to
inspire the developer, who, through creativity and careful engineering, is subsequently able to implement
a better rewriter in Step 5. Automating this step is left to future work.

Outline We describe the steps of our workflow in more depth in the following. Steps 2, 3 and 4 are
described in Sections 2, 3 and 4 respectively. In Section 5, we give an overview of our first experience
with this workflow in the cvc4 solver [4], and give an initial evaluation of how improving the rewriter can
lead to improvements in SMT solving. We discuss related work in Section 6 and future work in Section 7.

2 Syntax-Guided Synthesis for Term Enumeration
In this section, we describe how syntax-guided techniques are used for enumerating terms in Step 2 in
the workflow of Figure 1. For this task, we leverage existing work on highly optimized enumerative
approaches to the syntax-guided synthesis problem [19].

A syntax-guided synthesis problem for a function f in a background theory T consists of:

1. a set of syntactic restrictions, given by a grammar R, and
2. a set of semantic restrictions, or specification, given by a (second-order) T-formula of the form
∃ f .∀x̄. ϕ[ f , x̄] where ϕ is (typically) a quantifier-free formula.

Formally, a grammar R is a triple (s0, S, R) where s0 is an initial symbol, S is a set of symbols with
s0 ∈ S, and R is a set of rules s → t, where s ∈ S and t is a term built from symbols in T’s signature, free
variables, and symbols from S. The rules define a rewrite relation over such terms, also denoted by→, as
expected. We say a term t is generated by R if s0 →

∗ t where→∗ is the reflexive-transitive closure of→
and t contain no symbols from S. A solution for f is a closed lambda term λ ȳ. t of the same type as f
such that t is generated by R and ∀x̄. ϕ[λ ȳ. t, x̄] is valid in T (modulo beta-reductions).



An enumerative approach to syntax-guided synthesis can be divided into two components:

1. a candidate solution generator, which produces a stream of terms t1, . . . , tn, . . . in the language
generated by grammar R, and

2. a verifier which, given a candidate solution ti , checks whether ∀x̄. ϕ[λ ȳ. ti, x̄] is valid in T .

The synthesis solver terminates as soon as it generates a candidate solution ti that passes the test in
Step 2 above. In practice, most state-of-the-art enumerative syntax-guided synthesis solvers [25, 2] are
implemented as a layer on top of an SMT solver with support for quantifier-free T-formulas, which can be
used as a verifier in this approach. An exception is the syntax-guided synthesis solver of cvc4, where a
single instance of the SMT solver acts as both the candidate solution generator and the verifier [19].

The second step in our workflow in Figure 1 is to generate a database of terms that are eligible to
appear in rewrite rules. We observe that the existing enumerative syntax-guided synthesis solver of cvc4
can be used as a term generator in this step. In particular, the syntax-guided synthesis solver of cvc4 can
be instrumented to produce multiple solutions t1, t2, . . . to a syntax-guided synthesis problem specified in
Step 1 of the workflow. Each of these solutions is added to a term database.

The specification ∃ f .∀x̄. ϕ[ f , x̄] acts as a filtering mechanism, to discard terms that should not be
included in rewrite rules. For example, the specification ∃ f .∀x1x2. f (x1, x2) ≈ f (x2, x1) indicates that
we are only interested in enumerating terms that correspond to commutative functions. In contrast, if we
do not wish to impose any semantic restrictions, we can provide ∃ f .> as a specification, which amounts
to telling the system that we are interested in any terms that meet syntactic restrictions given by R.

Another key property of the syntax-guided synthesis solver of cvc4 is that it only enumerates solutions
that are unique according to the current rewriter. The motivation for this, in the context of syntax-guided
synthesis, is that if we enumerate a candidate solution t1 and ∀x̄. ϕ[λ ȳ. t1, x̄] is not T-valid, then it is
fruitless to try another solution t2 that is T-equivalent to t1 since ∀x̄. ϕ[λ ȳ. t2, x̄] is also not T-valid. In
cvc4’s synthesis solver, the rewriter is used as an oracle to under-approximate term equivalence in the
theory T (where the syntactic equality of t1↓ and t2↓ implies the equivalence of t1 and t2 in T). When the
syntax-guided synthesis solver of cvc4 discovers the equivalence of two terms t1 and t2, it adds symmetry
breaking constraints to ensure that subsequent solutions do not include t1 (resp., t2) as a subterm (see
Section 5.1 of [18] for a recent description of these techniques). As a consequence, cvc4 will never
generate two candidate solutions (and hence solutions) that are identical up to rewriting.

This last property is highly convenient in the context of Figure 1. Concretely, it ensures that the term
database generated as a result of Step 2 contains no terms t1 and t2 such that ti↓ = t j↓. This in turn
ensures that the rewrite rules generated in the next step are not redundant, that is, they do not rewrite a
term ti to a term t j where ti already has the same rewritten form as t j .

3 Equivalence Checking Techniques for Rewrite Rule Generation
In Step 3 of the workflow in Figure 1, we are given a database of terms (possibly containing free
variables ȳ2) generated by syntax-guided enumeration in the form of a set D, which we call our term
database. From this set, we generate a set of (unoriented) pairs of the form t1 ≈ s1, . . . , tn ≈ sn where
t1, . . . , tn, s1, . . . , sn ∈ D, and for each i = 1, . . . , n, terms ti and si meet some criteria for equivalence.
We call such pairs candidate rewrite rules.3 We describe different equivalence criteria in this section.

A naïve way to generate candidate rewrite rules from the set D would be to consider each distinct
pair of terms ti, t j in D, check the satisfiability of ∃ȳ. ti 6≈ t j , and return ti ≈ t j if this disequality is
unsatisfiable. Doing so is highly inefficient in practice, and may even be infeasible depending on the

2The tuple ȳ lists the formal arguments of the function f to be synthesized as specified in Step 1.
3 This is a slight misnomer since we do not insist on an orientation between ti and si .



background theory T . For instance, if T is the theory of strings with length, whose decidability is
unknown [9], a single check of this form may be non-terminating. Instead, we have developed novel
techniques that are based on testing the evaluation of terms ti and si on a set of concrete sample points.

In detail, our implementation of Step 3 of Figure 1 in cvc4 maintains an equivalence relation between
the terms in our (evolving) term database D. Each equivalence class {t1, . . . , tn} in this relation is such
that, for each i = 1, . . . , n, a pair of the form ti ≈ t j has been generated for some j. In other words, this
equivalence relation corresponds to the transitive closure of the pairs we have generated so far. Two
terms that are equivalent in this relation are conjectured to be equivalent in T based on a sampling of
their possible values. Now, let {r1, . . . , rn} ⊂ D be a set of representative terms from this equivalence
relation, that is, this set contains exactly one term from each equivalence class.4 When a new term t is
added to our term database D, we either (a) determine that t is equivalent to some ri , output t ≈ ri as a
candidate rewrite rule and add t to the equivalence class of ri , or (b) determine that t is not equivalent to
any of r1, . . . , rn and add {t} to our set of equivalence classes. We discuss below the criteria we use to
determine this equivalence via sampling methods, where two terms t1 and t2 are considered equivalent if
they rewrite to the same value for some list of value assignments to their variables. In other words, t1 and
t2 are equivalent iff [(t1{ ȳ 7→ c̄1})↓, . . . , (t1{ ȳ 7→ c̄n})↓] = [(t2{ ȳ 7→ c̄1})↓, . . . , (t2{ ȳ 7→ c̄n})↓]. We call
c̄1, . . . , c̄n sample points. Our equivalence checking criteria can thus be characterized by different choices
for constructing a set P of sample points.

Random Sampling A naïve method for constructing P is to choose N points at random. To do so, we
have implemented a random value generator for each of the types τ we are interested in. For some types
such as Bool and fixed-width bit-vectors Bv, this generator is straightforward: it returns a uniformly
random value in the (finite) range. For other types like the integers Int and the character strings Str, we
apply a recursive procedure that chooses a random digit/character and subsequently either repeats or
terminates with some probability (0.5 in our current implementation). For the reals Real, we return the
rational c1/c2 where c1 is an integer and c2 a non-zero integer chosen at random from some large interval.

Grammar-Based Sampling While random sampling is very easy to implement, it is not very effective
at generating points that witness the non-equivalence of certain term pairs. For this reason, we have
implemented an alternative method that constructs points based on the user-provided grammar. In contrast
with random sampling, we construct a set P of N points by computing ((t1{ ȳ 7→ c̄1})↓, . . . , (tn{ ȳ 7→ c̄n})↓
where c̄1, . . . , c̄n are random points, and for i = 1, . . . , n, the term ti is generated by the grammar
R = (s0, S, R) starting from some symbol s ∈ S such that s → ti ∈ R. The intuition here is that sample
points of this form are biased towards interesting values. In particular notice that points of this form are
highly likely to include combinations of the user-provided constants that occur in the input grammar.

Exact Checking with Model-based Sampling In contrast to the previous two methods this one is exact,
that is, it makes two terms equivalent only if they are T-equivalent. It is based on satisfiability checking
and dynamic, model-based generation of our sample points P. The method maintains a growing set of
sample points P, initially empty. When a term t is generated, we check if it agrees on the current set
of sample points P with any previously generated term s. If so, we separately check the T-satisfiability
of ∃ȳ t 6≈ s where ȳ includes the free variables of s and of t. If this query is unsatisfiable, then t ≈ s is
guaranteed to be a correct rewrite rule and we output it. If instead, t 6≈ s is satisfied by some modelM,
then we add the evaluationM ( ȳ) of ȳ in the modelM as a new sample point to P, to be used for the
subsequently generated terms. Since, s and t are provably inequivalent in T , we return no rewrite rule for
this pair.

4 Typically, the representative of an equivalence class is the first term from the class that was added to D.



4 Filtering Techniques for Rewrite Rules
An important aspect in the workflow in Figure 1 from a developer’s perspective is that the system suggests
not only suitable rewrite rules but useful ones. In particular, it is preferable that the set of candidate rewrite
rules do not include trivial consequences of previous rewrite rules. Thus, we have implemented several
additional filtering techniques, which we describe in this section. In the following, we say a candidate
rewrite rule t ≈ s is redundant with respect to set {t1 ≈ s1, . . . , tn ≈ sn} if ∀ȳ (t1 ≈ s1 ∧ . . . ∧ tn ≈ sn)
entails ∀ȳ t ≈ s in theory T , where ȳ collects all the free variables in these terms. Checking this
entailment directly is impractical, since it involves first-order quantification modulo T . However, we have
implemented several efficient and sound techniques to prove entailments of this form. These significantly
reduce the number of rewrite rules we print in Step 4 of the workflow, as we discuss in Section 5.1.

Filtering based on Matching One simple way to infer that a rewrite rule is redundant is to check that
it is an instance of a previously generated rule. For example, y1 + 1 ≈ 1 + y1 is clearly redundant with
respect to any set that includes y1 + y2 ≈ y2 + y1. Our implementation filters rewrite rules like the one
above using a discrimination tree data structure over all representative terms generated as a result of our
equivalence checking in the previous step. When a new candidate rewrite rule t ≈ s is generated, we first
add the term t to this data structure. It outputs a set of matches of the form t1σ1, . . . , tnσn where for each
i = 1, . . . , n, we have that ti is a previous term added to the structure, and tiσi = t. If for any such i, we
have that ti ≈ si was a previously generated candidate rewrite rule, and siσi = s, we have inferred that
t ≈ s is an instance of the rule ti ≈ si for substitution σi , and hence t ≈ s is not reported to the user.

Filtering based on Congruence Another simple way to infer that a rewrite rule is redundant is to verify
that it can be inferred by congruence closure. For example, it is easy to infer, for any function f , that the
rule f (y1 + 0) ≈ f (y1) is redundant with respect to any set that contains y1 + 0 ≈ y1. Our implementation
filters candidate rewrite rules like the one above by maintaining a data structure that represents the
congruence closure C(E) of the current set E set of rewrite rules. That is, the smallest superset of E that
is closed under entailment in the theory of equality and (uninterpreted) function symbol5. We discard any
new candidate rewrite rule t ≈ s if the equality t ≈ s is already a consequence of C(E).

5 Preliminary Experience
We discuss our implementation of the proposed workflow, evaluate different configurations, and show
the impact on benchmarks. We ran all experiments on a cluster equipped with Intel E5-2637 v4 CPUs
running Ubuntu 16.04. We provisioned one core and 8 GB RAM for each job.

We have implemented our approach for generating rewrite rules in cvc4, a state-of-the-art SMT solver.
In the past few months, we generated rewrite rules using several grammars6 and started implementing
promising candidates in an extended rewriter, ext, that can be enabled optionally. The rewrites
implemented in ext are a superset of the rewrites in the default rewriter std. So far, we have used our
approach to implement rewrite rules in the theory of strings, the theory of bit-vectors and for Booleans.

In our experience, the rewrite rules suggested by our approach can be very subtle. For example, our
approach suggested that (str.substr "B" z z) can be rewritten to the empty string (if z is zero, then
the length of the substring is zero, so the result is the empty string and if z is one or greater, the substring
starts out of the bounds of the string "B", so the result is again the empty string). We implemented a
generalized form of this rewrite for arbitrary strings and for more complex start and length expressions.
We discovered and implemented approximately 45 classes of bit-vector rewrites during the course of
this work. Some examples are x + 1 { −∼ x, and classes that include x − (x & y) { x & ∼ y and

5We treat all symbols as uninterpreted functions in this setting
6 We give details on three of these in this section.



(synth-fun f
((x String) (y String) (z Int))
String (
(Start String (
x y "A" "B" ""
(str.++ Start Start)
(str.replace Start Start Start)
(str.at Start ie)
(int.to.str ie)
(str.substr Start ie ie)))
(ie Int (
0 1 z
(+ ie ie)
(- ie ie)
(str.len Start)
(str.to.int Start)
(str.indexof Start Start ie)))))

(synth-fun f ((s (BitVec 4))
(t (BitVec 4)))

(BitVec 4) (
(Start (BitVec 4) (
s t #x0
(bvneg Start)
(bvnot Start)
(bvadd Start Start)
(bvmul Start Start)
(bvand Start Start)
(bvlshr Start Start)
(bvor Start Start)
(bvshl Start Start)))))

(synth-fun f
((x Bool) (y Bool)
(z Bool) (w Bool))
Bool (
(Start Bool (
(and d1 d1) (not d1)
(or d1 d1) (xor d1 d1)))
(d1 Bool (
x (and d2 d2) (not d2)
(or d2 d2) (xor d2 d2)))
(d2 Bool (
w (and d3 d3) (not d3)
(or d3 d3) (xor d3 d3)))
(d3 Bool (
y (and d4 d4) (not d4)
(or d4 d4) (xor d4 d4)))
(d4 Bool (z))))

Figure 2: Grammars used for comparisons. From left to right: strterm, bvterm (4-bit variant), crci.

x & ∼x { 0. For Booleans, we implemented several classes of rewrite rules for negation normal form,
commutative argument sorting, equality chain normalization and Boolean constraint propagation which
are not enabled in the default rewriter of cvc4.

5.1 Evaluating Internal Metrics of Our Workflow
In this section, we evaluate the effectiveness of our workflow, addressing the following questions:

• Given a grammar, how does the number of terms grow in comparison to the number of terms that
are unique up to T-equivalence?

• How do different rewriters affect the number of redundant terms and the performance of our
enumeration?

• What is the accuracy and performance of different equivalence checks?
• How many rewrites do our filtering techniques eliminate?

For our evaluation, we consider three grammars: strterm for the theory of strings, bvterm for the
theory of bit-vectors, and crci for Booleans. For bvterm, we consider two variants, 4-bit (bvterm4)
and 32-bit (bvterm32), that use different bitwidths for constants, variables and operations variants to
show the impact of the bitwidth. Figure 2 lists the grammars in SyGuS syntax [17]. Each SyGuS problem
specifies a function f with a set of parameters (e.g. two strings x and y and an integer z in the case of
strterm) and a return type (e.g. a function returning a string for strterm) to synthesize. The initial
symbol of the grammar is always Start and the rules of the grammar are given by a symbol (e.g. ie
in strterm) and a list of terms (e.g. the constants 0, 1 and the functions str.len, str.to.int for
the grammar symbol ie). SyGuS problems generally have semantic constraints for the functions to be
synthesized but for our use case we want to enumerate as many terms as possible for a given grammar,
so do not provide any, and let our implementation enumerate all solutions. Note that the number of
solutions is generally infinite, so our evaluation restricts the search for candidate rewrites by limiting the
size of the enumerated terms and using a 24h timeout for each measurement. We define the size of a
term as the number of non-nullary symbols in it. Our implementation provides three different settings for
rewriting: none performs no rewriting at all; std corresponds to the rewriter in cvc4 1.5 and reflects
a typical rewriter in a state-of-the-art solver; and ext corresponds to a rewriter that implements the
rules that we discovered through the approach presented in this work. For equivalence checking, we



none std ext

Grammar Size Terms Unique Redundancy Time Redundancy Time Redundancy Time

strterm
1 218 86 60.6% 0.47 17.3% 0.28 0.0% 0.29
2 24587 ≥4181 ≤83.0% 352.83 ≤49.7% 90.02 ≤28.8% 60.87

bvterm4

1 63 22 65.1% 0.20 0.0% 0.00 0.0% 0.24
2 2343 288 87.7% 4.91 22.0% 0.97 0.7% 0.77
3 110583 4744 95.7% 5714.03 39.3% 96.35 9.7% 55.42
4 5865303 84050 — t/o — t/o 23.6% 25403.53

bvterm32

1 63 22 65.1% 0.29 8.3% 0.10 0.0% 0.15
2 2343 290 87.6% 24.90 21.4% 2.44 0.0% 1.66
3 110583 ≥4746∗ — t/o ≤39.2% 233.05 ≤9.7% 123.99

crci

1 4 3 25.0% 0.22 25.0% 0.22 0.0% 0.20
2 32 12 62.5% 0.18 52.0% 0.27 0.0% 0.17
3 276 44 84.1% 1.05 74.4% 0.86 8.3% 0.66
4 2656 176 93.4% 8.88 87.5% 8.79 17.0% 3.21
5 17920 228 98.7% 132.73 96.9% 81.64 25.0% 15.11
6 107632 348 99.7% 4127.80 99.0% 1156.01 60.5% 40.58
7 588064 396 — t/o 99.8% 19128.83 82.2% 60.65

Table 1: Impact of different rewriters on the amount of redundant terms generated, using grammar
equivalence checking. All times are given in seconds. ∗ indicates that the estimate is based on the variant
with the lower bit-width.

implemented the three methods described in Section 3: random performs random sampling; grammar
performs grammar-based sampling; and exact performs exact equivalence checking.

Unique Solutions In Table 1, we provide an overview of the number of terms and the number of
unique terms modulo T-equivalence at different sizes for each grammar. We established the number
of unique terms for the Boolean and bit-vector grammars using the exact equivalence checking, and
approximated the number of unique terms for the string grammar using grammar with 10,000 samples.
We use grammar-based sampling for strings because it is currently not known whether the theory of
strings is decidable [9] and the procedure for the theory of strings in cvc4 [14] is not guaranteed to
terminate. None of our equivalence checks may result in false negatives, i.e. they will never declare two
terms to be different when they are actually equivalent. Thus, the number of unique terms reported by
grammar is a lower bound of the actual number of unique terms. For all grammars, the number of terms
grows rapidly with increasing size while the number of unique terms grows much slower. As the size
increases, the relative number of redundant terms quickly approaches 100% when none is used. This
indicates enumerating terms without filtering based on rewriting can be very inefficient for larger sizes,
and suggests that there is high potential for rewrite rules in these domains. Interestingly, the number
of unique terms differs between the 4-bit and the 32-bit versions of bvterm at size 2. This is due to
bit-width dependent rewrites that are valid for smaller bit-widths only.

Rewriter Comparison To measure the impact of the rewriter, we used our three rewriter configurations
and measured their term redundancy7 for the set of terms up to given sizes for each grammar, as well as
the wall-clock time to enumerate and check all the solutions. We used grammar with 1,000 samples for
the equivalence checks. Table 1 summarizes the results. Without a rewriter, the redundancy is very high
at larger sizes, whereas std keeps the redundancy much lower, except in the case of crci. This is due to

7 We define the term redundancy of a rewriter (.)↓ with respect to a (non-empty) set of terms S to be (n − u)/n, where n is the
cardinality of {t↓ | t ∈ S } and u is the number of unique terms in S (the size of a maximal subset of S whose terms are pairwise
T -disequivalent), where notice that n ≥ u.



no-eqc random grammar exact

Grammar Size Time Error Time Error Time Error Time
Rewrites
Filtered

Confidence
Overhead

strterm
1 0.23 0.0% 0.22 0.0% 0.29 0.0% 0.32 0.0% 137.9%
2 41.30 ≤6.6% 73.13 ≤1.1% 60.87 — t/o 64.0% 121.9%

bvterm4

1 0.06 0.0% 0.13 0.0% 0.09 0.0% 66.7%
2 0.61 0.0% 0.71 0.0% 0.70 50.0% 110.4%
3 47.84 0.0% 56.21 0.0% 50.91 43.2% 96.6%
4 21141.60 0.0% 26213.56 0.0% 25321.95 49.4% —

bvterm32

1 0.09 27.3% 0.07 0.0% 0.15 0.0% 0.14 0.0% 93.3%
2 0.69 62.8% 2.84 15.9% 1.66 0.0% 1.15 0.0% 753.6%
3 42.57 ≤79.1% 177.98 ≤38.7% 123.99 — t/o 46.1% 341.7%

crci

1 0.05 0.0% 0.07 0.0% 0.06 0.0% 90.0%
2 0.07 0.0% 0.07 0.0% 0.12 0.0% 200.0%
3 0.61 0.0% 0.57 0.0% 0.56 0.0% 51.5%
4 3.08 0.0% 3.25 0.0% 3.13 11.1% 12.8%
5 15.05 0.0% 15.01 0.0% 14.66 23.7% 5.7%
6 37.31 0.0% 40.55 0.0% 39.02 28.3% 8.1%
7 55.63 0.0% 62.56 0.0% 71.52 26.6% 14.8%

Table 2: Comparison of different equivalence checks, the relative number of candidates filtered and the
overhead of checking rewrites for soundness, using the ext rewriter. All times are given in in seconds.
For bvterm4 and crci there is no difference between random and grammar.

the fact that the existing Boolean rewriter in cvc4 only performs basic rewriting because cvc4 relies on a
SAT solver to perform Boolean reasoning. As expected, ext fares much better in all cases, lowering the
percentage of redundant terms by over 70% in the case of crci at size 5. This has a significant effect on
the time it takes to enumerate all solutions: ext consistently and significantly outperforms std, in some
cases by more than five times, especially at larger sizes. Compared to none both std and ext perform
much better.

Equivalence Check Comparison To compare the different equivalence checks, we measured their error8
with respect to the set of terms enumerated by the ext rewriter, and the wall-clock time to enumerate
all the solutions. For both random and grammar, we used 1,000 samples. We summarize the results in
Table 2. For crci and the 4-bit variant of bvterm, 1,000 samples are enough to cover all possible inputs,
so there is no error in those cases. For both variants of bvterm4 and crci, there is no difference between
random and grammar, which is why we only report the former. While sampling performs similarly to
exact for crci and the 4-bit variant of bvterm, for the 32-bit variant, it is significantly more precise and
slightly faster for size 2. At size 3, exact consumed more than 8 GB RAM and was killed. For strterm,
the error is relative to grammar with 10,000 samples and despite an order of magnitude difference in
the number of samples, the error stays small while the larger number of samples increases the overall
computation time by a factor of 3.8. This indicates that a smaller number of samples is likely good
enough in a lot of cases. As expected, exact gets stuck and times out for strterm at size 2. The first
difficult query is proving the equivalence of (str.replace x (str.replace x "B" x) x) and x.
We plan to collect these problems that are challenging to the current decision procedure and use them to
improve the rewriter as well as the decision procedure itself.

Impact of Filtering In Table 2, we report how many candidate rewrites were filtered using our filtering
techniques described in Section 4. We used ext and exact if available and grammar otherwise. Our

8 Similarly, we define the error of an equivalence check with respect to a (non-empty) set of terms S to be (u − n)/u, where n
is number of equivalence classes of S induced by the check and u is the number of unique terms in S, where notice that u ≥ n.
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Figure 3: Impact of new rewrites for SyGuS benchmarks over Strings, Bitvector and Boolean logics. All
benchmarks run with a 3600 second timeout.

filtering techniques eliminate up to 64.0% of the rules, which significantly lowers the burden on the
developer when analyzing the proposed rewrite rules.

5.2 Improving Confidence in the Rewriter
Soundness is of utmost importance when implementing a rewriter in an SMT solver. An unsound
rewriter9 often implies that the overall SMT solver is unsound. To accommodate the rapid development
of new rewrite rules in our workflow in Figure 1, we have instrumented an optional mode of cvc4 that
attempts to detect unsoundness in the implementation of its current rewriter. When this mode is enabled,
for each term t enumerated in Step 2, we use the grammar-based technique from Section 3 to test the
equivalence of t and t↓. This functionality has been critical for catching subtle bugs in implementation of
new rewrite rules. In Table 2, we provide a column that indicates the overhead of running this checking
for each grammar and term size, where grammar-based sampling is used both for computing the rewrite
rules and for checking the soundness of the ext rewriter. For example, adding checks that ensure that no
unsound rewrites are produced for terms up to size 3 in the bvterm32 grammar has a 341.7% overhead,
or is roughly four and a half times slower. Overall, this option leads to a noticeable, but not prohibitively
large, slowdown in the run-time of the overall system.

5.3 Impact of Rewrites on Solving
We give a brief evaluation of the impact of our newly developed rewrites have had on solving times of
cvc4. We focus on two categories: syntax-guided synthesis problems and traditional SMT problems.

Syntax-guided Synthesis In Figure 3, we give three scatter plots that compare the syntax-guided
synthesis solver of cvc4 that is instrumented to use the extended rewriter developed as the result of
this work (ext), and the rewriter from version 1.5 (std). All plots use a logarithmic scale. The string
problems come from a programming-by-examples application [10] and the Boolean problems come from
a cryptographic circuit synthesis application [8]. For these two, the grammars are similar to those shown
in Figure 2. The bit-vector problems cover a range of applications [12, 1, 13], where the grammars vary
significantly. We observe that the performance of cvc4’s enumerative syntax-guided synthesis solver
is highly related to the speed at which it is able to enumerate terms that are unique up to equivalence.
Concretely, this means that solving time in this domain is directly proportional to the time columns

9 A rewriter is unsound if there exists a pair of T -disequivalent terms t and s such that t↓ = s↓.



from Table 1 for the various rewriters and sizes. Overall, on the benchmarks that both configurations of
cvc4 solved, the use of the extended rewriter was on average a factor of 1.54 times faster on the strings
benchmarks, a factor of 1.08 faster on the bit-vector benchmarks and a factor of 2.96 times faster on the
Boolean benchmarks. Additionally, the use of the extended rewriter enabled us to solve 4 more bit-vector
problems and 24 more Boolean problems within a 3600 second timeout.

SMT Solving While the above evaluation shows that improving a rewriter has a clear positive impact on
syntax-guided synthesis solving, our updates to the rewriter in cvc4 so far have a mixed impact on general
SMT solving. We considered 25421 strings benchmarks corresponding to symbolic execution of Python
programs [21], 40043 benchmarks in the quantifier-free bit-vector logic of SMT-LIB [5] (QF_BV). and
5151 benchmarks in the quantified bit-vector logic (BV). We used a 30 second timeout for the first set and
a 300 second timeout for the other two. For the first two sets, cvc4 with the extended rewriter ext had a
positive impact on unsatisfiable benchmarks where it was (+12, -1) on the strings set and (+232,-158) on
QF_BV, but a negative impact on satisfiable benchmarks where it was (+13, -94) on the strings set and
(+143, -236) on QF_BV. For the quantified bit-vector set, cvc4 with the extended rewriter has an overall
positive impact for both satisfiable and unsatisfiable benchmarks, where it was a combined (+42,-15)
with respect to cvc4 with its default rewriter. We believe this indicates the importance of selecting a
subset of possible rewrites to be enabled based on the application.

6 Related Work

A number of techniques have been proposed for automatically generating rewrite rules for bit-vectors. For
some examples, SWAPPER [24] is an automatic formula simplifier generator based on machine learning
and program synthesis techniques. In the context of symbolic execution, Romanoe et al. [22] propose
an approach that learns rewrite rules to simplify expressions before sending them to an SMT solver. In
contrast to these works, our approach targets the developer of the SMT solver itself. A related approach
was explored by Hansen [11], which generates all the terms that fit a grammar and finds equivalent pairs
that can the be used by the developer to implement new rules. In contrast to our work, the candidate
rules are not filtered, the grammar is hard-coded and only considers bit-vector operations. Other work by
Nadel [15] proposes generating bit-vector rewrite rules in SMT solvers at runtime for a given problem.
Syntax-guided synthesis was used by Niemetz et al. [16] to synthesize conditions that characterize when
bit-vector constraints have solutions. Rewrite rules in SMT solvers—especially the ones for the theories of
bit-vectors and Booleans—bear similarities with local optimizations in compilers [3, 6]. Finally, caching
counterexamples as we do in our exact equivalence check is similar to techniques used in symbolic
execution engines, e.g. KLEE [7], and superoptimizers, e.g. STOKE [23].

7 Conclusion

We have presented a paradigm for rewrite rule development in SMT solvers and an encouraging report of
our preliminary experience with it. In ongoing work, we plan to (partially) automate the implementation
of the rewriter in Step 5 by automatically inferring optimal configurations that enable or disable specific
rewrites that the developer implements. This is a key component towards developing a rewriter that is
optimal for SMT constraints in applications. We are also working on providing an interface for external
users who are interested in enumerating rewrite rules relative to a user-provided rewriter.
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A Example Output
We provide sample output of cvc4 in its rewrite rule enumeration mode. For each grammar, we give
the results of cvc4 with no rewriter (none), its rewriter from cvc4 version 1.5 (std), and the rewriter
we generated as a result of this work so far (ext). In each case, the output is a list of unoriented pairs
indicating possible rewrites. All variables x, y, z,w, s, t, . . . should be interpreted as universal, in that the
rewrite holds for all values of x, y, z,w, s, t, . . .. Intuitively, the output when using none corresponds to a
list of rewrites over terms in the grammar if the developer was writing a rewriter from scratch; the output
when using std (resp. ext) corresponds to the simplest rewrites, measured in term size, over the terms
from the grammar that the given rewriter currently cannot infer.

A.1 strterm

Listing 1: none
( c a nd i d a t e − r e w r i t e ( s t r .++ x " " ) x )
( c a nd i d a t e − r e w r i t e ( s t r .++ "" x ) x )
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e x x x ) x )
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e x x y ) y )
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e x y y ) x )
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e x " " x ) ( s t r .++ x x ) )
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e x " " y ) ( s t r .++ y x ) )
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e "A" "B" x ) "A" )
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( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e "B" "A" x ) "B" )
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e " " x " " ) " " )

Listing 2: std
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e x x y ) y )
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e " " x " " ) " " )
( c a nd i d a t e − r e w r i t e ( s t r . a t " " z ) " " )
( c a nd i d a t e − r e w r i t e ( s t r . s u b s t r "A" 1 z ) " " )
( c a nd i d a t e − r e w r i t e ( s t r . s u b s t r "A" z z ) " " )
( c a nd i d a t e − r e w r i t e ( s t r . s u b s t r "B" 1 z ) " " )
( c a nd i d a t e − r e w r i t e ( s t r . s u b s t r "B" z z ) " " )
( c a nd i d a t e − r e w r i t e ( s t r . s u b s t r " " 0 z ) " " )
( c a nd i d a t e − r e w r i t e ( s t r . s u b s t r " " 1 z ) " " )
( c a nd i d a t e − r e w r i t e ( s t r . s u b s t r " " z z ) " " )

Listing 3: ext
( c a nd i d a t e − r e w r i t e ( s t r .++ "A" ( s t r . r e p l a c e " " x "A" ) ) ( s t r . r e p l a c e "A" x "A" ) )
( c a nd i d a t e − r e w r i t e ( s t r .++ "B" ( s t r . r e p l a c e " " x "B " ) ) ( s t r . r e p l a c e "B" x "B " ) )
( c a nd i d a t e − r e w r i t e ( s t r .++ ( s t r . r e p l a c e " " x y ) x ) ( s t r .++ x ( s t r . r e p l a c e " " x y ) ) )
( c a nd i d a t e − r e w r i t e ( s t r .++ ( s t r . r e p l a c e "A" x "A" ) "A" ) ( s t r .++ "A" ( s t r . r e p l a c e "A" x "A" ) ) )
( c a nd i d a t e − r e w r i t e ( s t r .++ ( s t r . r e p l a c e "B" x "B" ) "B" ) ( s t r .++ "B" ( s t r . r e p l a c e "B" x "B " ) ) )
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e x ( s t r .++ x x ) y ) ( s t r .++ x ( s t r . r e p l a c e " " x y ) ) )
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e x ( s t r .++ y x ) y ) ( s t r . r e p l a c e x ( s t r .++ x y ) y ) )
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e x ( s t r .++ y x ) "A" ) ( s t r . r e p l a c e x ( s t r .++ x y ) "A" ) )
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e x ( s t r .++ y x ) "B" ) ( s t r . r e p l a c e x ( s t r .++ x y ) "B " ) )
( c a nd i d a t e − r e w r i t e ( s t r . r e p l a c e x ( s t r .++ x x ) " " ) x )

A.2 bvterm4

Listing 4: none
( c a nd i d a t e − r e w r i t e ( bvneg #x0 ) #x0 )
( c a nd i d a t e − r e w r i t e ( bvadd s #x0 ) s )
( c a nd i d a t e − r e w r i t e ( bvadd t s ) ( bvadd s t ) )
( c a nd i d a t e − r e w r i t e ( bvmul s #x0 ) #x0 )
( c a nd i d a t e − r e w r i t e ( bvmul t s ) ( bvmul s t ) )
( c a nd i d a t e − r e w r i t e ( bvand s s ) s )
( c a nd i d a t e − r e w r i t e ( bvand s #x0 ) #x0 )
( c a nd i d a t e − r e w r i t e ( bvand t s ) ( bvand s t ) )
( c a nd i d a t e − r e w r i t e ( b v l s h r s s ) #x0 )
( c a nd i d a t e − r e w r i t e ( b v l s h r s #x0 ) s )

Listing 5: std
( c a nd i d a t e − r e w r i t e ( b v l s h r s s ) #x0 )
( c a nd i d a t e − r e w r i t e ( bvneg ( b v l s h r s s ) ) #x0 )
( c a nd i d a t e − r e w r i t e ( bvadd ( bvno t s ) s ) ( bvno t #x0 ) )
( c a nd i d a t e − r e w r i t e ( bvadd ( bvno t #x0 ) s ) ( bvno t ( bvneg s ) ) )
( c a nd i d a t e − r e w r i t e ( bvadd ( b v l s h r s s ) s ) s )
( c a nd i d a t e − r e w r i t e ( bvmul ( bvadd s s ) t ) ( bvmul ( bvadd t t ) s ) )
( c a nd i d a t e − r e w r i t e ( bvmul ( b v l s h r s s ) s ) #x0 )
( c a nd i d a t e − r e w r i t e ( bvmul ( b v l s h r s s ) t ) #x0 )
( c a nd i d a t e − r e w r i t e ( bvmul ( bv sh l s s ) t ) ( bvmul ( bv sh l t s ) s ) )
( c a nd i d a t e − r e w r i t e ( bvand ( b v l s h r s s ) s ) #x0 )

Listing 6: ext
( c a nd i d a t e − r e w r i t e ( bv sh l ( b v sh l s s ) s ) ( b v s h l ( bvadd s s ) s ) )
( c a nd i d a t e − r e w r i t e ( bvadd ( bvno t ( bvadd s s ) ) s ) ( bvno t s ) )
( c a nd i d a t e − r e w r i t e ( bvadd ( bvor ( bvno t s ) t ) s ) ( bvno t ( bvneg ( bvand s t ) ) ) )
( c a nd i d a t e − r e w r i t e ( bvadd ( bvor ( bvno t t ) s ) t ) ( bvno t ( bvneg ( bvand s t ) ) ) )
( c a nd i d a t e − r e w r i t e ( bvadd ( bvno t s ) ( bvor s t ) ) ( bvadd ( bvno t ( bvand s t ) ) t ) )



( c a nd i d a t e − r e w r i t e ( bvadd ( bvno t t ) ( bvor s t ) ) ( bvadd ( bvno t ( bvand s t ) ) s ) )
( c a nd i d a t e − r e w r i t e ( bvadd ( bvand s t ) ( bvor s t ) ) ( bvadd s t ) )
( c a nd i d a t e − r e w r i t e ( bvmul ( bvmul ( bv sh l s s ) s ) s ) ( bvmul ( bv sh l s s ) s ) )
( c a nd i d a t e − r e w r i t e ( bvmul ( b v l s h r ( bvno t s ) s ) s ) ( bvmul ( b v l s h r ( bvneg s ) s ) s ) )
( c a nd i d a t e − r e w r i t e ( bvmul ( bv sh l ( bvadd s s ) s ) s ) ( b v s h l ( bvadd s s ) s ) )

A.3 crci

Listing 7: none
( c a nd i d a t e − r e w r i t e ( o r x x ) ( and x x ) )
( c a nd i d a t e − r e w r i t e ( and ( o r w w) x ) ( and ( and w w) x ) )
( c a nd i d a t e − r e w r i t e ( and ( xor w w) x ) ( xor x x ) )
( c a nd i d a t e − r e w r i t e ( and x ( and w w) ) ( and ( and w w) x ) )
( c a nd i d a t e − r e w r i t e ( and x ( no t w) ) ( and ( no t w) x ) )
( c a nd i d a t e − r e w r i t e ( and x ( o r w w) ) ( and ( and w w) x ) )
( c a nd i d a t e − r e w r i t e ( and x ( xor w w) ) ( xor x x ) )
( c a nd i d a t e − r e w r i t e ( no t ( o r w w) ) ( no t ( and w w) ) )
( c a nd i d a t e − r e w r i t e ( o r ( o r w w) x ) ( o r ( and w w) x ) )
( c a nd i d a t e − r e w r i t e ( o r ( xor w w) x ) ( and x x ) )

Listing 8: std
( c a nd i d a t e − r e w r i t e ( o r x x ) ( and x x ) )
( c a nd i d a t e − r e w r i t e ( and ( o r w w) x ) ( and ( and w w) x ) )
( c a nd i d a t e − r e w r i t e ( and x ( no t w) ) ( and ( no t w) x ) )
( c a nd i d a t e − r e w r i t e ( and x ( o r w w) ) ( and ( and w w) x ) )
( c a nd i d a t e − r e w r i t e ( no t ( o r w w) ) ( no t ( and w w) ) )
( c a nd i d a t e − r e w r i t e ( o r ( o r w w) x ) ( o r ( and w w) x ) )
( c a nd i d a t e − r e w r i t e ( o r ( xor w w) x ) ( and x x ) )
( c a nd i d a t e − r e w r i t e ( o r x ( and w w) ) ( o r ( and w w) x ) )
( c a nd i d a t e − r e w r i t e ( o r x ( no t w) ) ( o r ( no t w) x ) )
( c a nd i d a t e − r e w r i t e ( xor ( o r w w) x ) ( xor ( and w w) x ) )

Listing 9: ext
( c a nd i d a t e − r e w r i t e ( xor x ( and ( and y y ) w) ) ( xor ( and ( and y y ) w) x ) )
( c a nd i d a t e − r e w r i t e ( xor x ( and ( no t y ) w) ) ( xor ( and ( no t y ) w) x ) )
( c a nd i d a t e − r e w r i t e ( xor x ( o r ( and y y ) w) ) ( xor ( o r ( and y y ) w) x ) )
( c a nd i d a t e − r e w r i t e ( xor x ( o r ( no t y ) w) ) ( xor ( o r ( no t y ) w) x ) )
( c a nd i d a t e − r e w r i t e ( and ( xor w ( and ( and z z ) y ) ) x ) ( and ( xor ( and ( and z z ) y ) w) x ) )
( c a nd i d a t e − r e w r i t e ( and ( xor w ( and ( no t z ) y ) ) x ) ( and ( xor ( and ( no t z ) y ) w) x ) )
( c a nd i d a t e − r e w r i t e ( and ( xor w ( o r ( and z z ) y ) ) x ) ( and ( xor ( o r ( and z z ) y ) w) x ) )
( c a nd i d a t e − r e w r i t e ( and ( xor w ( o r ( no t z ) y ) ) x ) ( and ( xor ( o r ( no t z ) y ) w) x ) )
( c a nd i d a t e − r e w r i t e ( o r ( xor w ( and ( and z z ) y ) ) x ) ( o r ( xor ( and ( and z z ) y ) w) x ) )
( c a nd i d a t e − r e w r i t e ( o r ( xor w ( and ( no t z ) y ) ) x ) ( o r ( xor ( and ( no t z ) y ) w) x ) )
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