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Abstract. Proofs from SMT solvers ensure correctness independently
from implementation, which is often a requirement when solvers are used
in safety-critical applications or proof assistants. Alethe is an established
SMT proof format generated by the solvers veriT and cvc5, with recon-
struction support in the proof assistants Isabelle/HOL and Coq. The for-
mat is close to SMT-LIB and allows both coarse- and fine-grained steps,
facilitating proof production. However, it lacks a stand-alone checker,
which harms its usability and hinders its adoption. Moreover, the coarse-
grained steps can be too expensive to check and lead to verification fail-
ures. We present Carcara, an independent proof checker and elaborator
for Alethe, implemented in Rust. It aims to increase the adoption of the
format by providing push-button proof-checking for Alethe proofs, focus-
ing on efficiency and usability; and by providing elaboration for coarse-
grained steps into fine-grained ones, increasing the potential success rate
of checking Alethe proofs in performance-critical validators, such as proof
assistants. We evaluate Carcara over a large set of Alethe proofs gen-
erated from SMT-LIB problems and show that it has good performance
and its elaboration techniques can make proofs easier to check.

1 Introduction

Satisfiability modulo theories (SMT) solvers are widely used as background tools
in various formal method applications, ranging from proof assistants to program
verification [9]. Since these applications rely on the SMT solver results, they must
trust their correctness. However, state-of-the-art SMT solvers are often found to
have bugs, despite the best efforts of developers [30, 38]. One way to address
this issue is to formally verify the solvers’ correctness (“certifying” them), but
this approach can be prohibitively expensive and time consuming, besides often
requiring performance compromises [19, 20, 27, 33] and increasing the evolution
cost of the systems [14]. Alternatively, solvers can produce proofs: independently
checkable certificates that justify the correctness of their results. Since proof
checking generally has lower complexity than solving, small and trusted checkers
can verify solver results in an scalable manner. Despite the successful adoption
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of this approach by several SMT solvers [7,13,15,24,37], no standard SMT proof
format has emerged, with each system using their own format and independent
toolchain. The Alethe1 format [35] for SMT proofs however can be emitted by
the veriT solver for several years [10] and recently2 also by the cvc5 solver [7].
Moreover, Alethe proofs can be reconstructed within the proof assistants Coq [4,
16] and Isabelle/HOL [11, 36], which allows leveraging solvers who support the
format (namely veriT and CVC4, the latter via a translator [16]) for automatic
theorem proving. In Isabelle/HOL in particular this integration has been very
successful with the veriT solver, significantly increasing the success rate of the
popular Sledgehammer tactic [36]. The format has been refined and extended
through the years [6], being now mature and used by multiple systems, with
support for core SMT theories, quantifiers, and pre-processing. It allows different
levels of granularity, so that solvers can provide coarse-grained proofs (which are
easier to produce), or take the effort to produce more detailed, fine-grained proofs
(which are often easier to check). It provides a term language close to SMT-
LIB [8], facilitating printing from solvers as well as validating the connection
between proofs and the corresponding proved problems. An overview of the
Alethe proof format is given in Section 2.

A significant drawback of the Alethe format, however, is that it does not
have an independent proof checker. This makes it harder for solvers to adopt
the format, since to test their proof production they must be directly integrated
with the proof assistants with Alethe reconstructions available. Moreover, these
reconstruction methods do not check whether proof steps comply to the format’s
semantics, but rather are used as hints for internal tactics. Finally, the recon-
struction techniques struggle with scalability due to well-known performance
issues in the proof assistants [12,36].

In this paper we introduce Carcara3 (Section 3), an independent proof
checker for Alethe proofs, implemented in a high-performance programming lan-
guage, Rust. Carcara is open-source and available under the Apache 2.0 license.
Proof checking (Section 3.1) is performed by a collection of modules specific for
each rule being checked. The presence of coarse-grained steps in Alethe requires
special handling in the checker to account for missing information, which are dis-
cussed in detail. Carcara also provides proof elaboration methods (Section 3.2)
for particularly impactful coarse-grained steps, so that they can be automati-
cally translated, offline from the solver, into easier-to-check fine-grained steps.
We evaluate (Section 4) Carcara’s proof checking on a large set of proofs
generated by veriT from SMT-LIB problems, analyzing its performance and ef-
fectiveness. The same set of proofs is used to evaluate the proof elaboration
methods, where we analyze how checking elaborated proofs compares with the

1 The format was previously known as the “veriT format”, but it has recently been
renamed to reflect its independence from any individual solver.

2 cvc5’s support for Alethe is still experimental and is under active development. Car-
cara can actually be instrumental for improving cvc5’s support for Alethe.

3 We follow on the bird theme of the “Alethe” name. Carcará is the Portuguese word
for the crested caracara, a resourceful bird of prey native of South America.
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originals. Our analysis shows that Carcara has performant proof checking and
can identify wrong proofs produced by veriT. It also shows that elaboration can
in some cases generate proofs significantly easier to check than the original ones.

1.1 Related work

Carcara is inspired by the highly-successful DRAT-trim [23] proof checker
for SAT proofs, which has been instrumental to the extensive usage of proofs
in toolchains involving SAT solvers. It has also provided a basis for numerous
advances in SAT proofs, with new proof formats and new checking techniques.
We see its performant proof checking and elaboration techniques as the key
elements to its success, serving both as an independent checker and as a bridge
between solvers and performance-critical checkers, such as proof assistants or
certified checkers. Providing both these features is the main goal of Carcara.

The checker for the Logical Framework with Side Conditions (LFSC) [37], an
extension of Edinburgh’s Logical Framework (LF) [22], written in C++, is also a
stand-alone, non-certified, highly efficient proof checker. The logical framework,
where new rules can be mechanized in a language understood by the checker,
provides great flexibility, and LFSC has been successfully used as a proof format
for CVC4 [28] and cvc5 [5]. Similarly, Dedukti [25] is an OCaml checker for the
λΠ-calculus, another extension of LF, and has been applied to SMT proofs, in-
cluding to Alethe4. However, we are not aware of any mature implementation for
this end. Elaboration techniques have not been the focus in these tools. Another
difference is that they are based on dependently-typed languages far-removed
from SMT-LIB, and generating proofs from SMT solvers for them can be more
challenging, as well as relating the resulting proofs to the original problems.

An independent checker has been proposed for SMT proofs [34] from the
OpenSMT [26] solver. The checker targets problems with uninterpreted func-
tions and linear arithmetic, but does not support quantifiers nor pre-processing.
It leverages DRAT-trim for the propositional reasoning and employs Python
components for checking the other parts of the proof. Different components can
use different proof formats, and to the best of our knowledge no comprehensive
specification of the overall format is available. Some SMT solvers, such as SMT-
Interpol [24] and cvc5 [7], have internal checkers for their proofs. Since these are
not independent from the solvers, they are incomparable to our approach.

2 The Alethe Proof Format

Alethe was originally designed [10] as a proof-assistant friendly, easy-to-produce
proof format for SMT solvers. A clear specification of the rules in a reference
document [2] is provided, facilitating reconstruction within proof assistants by
avoiding ambiguous syntax or semantics. To facilitate proof production, Alethe
uses a term language that directly extends SMT-LIB, thus not requiring solvers

4 “Verine” library available at https://deducteam.github.io/data/libraries/verine.tar.gz

https://deducteam.github.io/data/libraries/verine.tar.gz
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to translate between different term languages when outputting proofs. More im-
portantly, Alethe’s proof calculus provides rules with varying levels of granular-
ity, allowing coarse-grained steps and relying on powerful proof checkers for filling
in the gaps. This reduces the burden on developers to track all reasoning steps
performed by the solver, a notoriously difficult task [7]. The set of rules in the
format captures SMT solving (as generally performed by CDCL(T )-based SMT
solvers [31]) for problems containing a mix of any of quantifiers, uninterpreted
functions, and linear arithmetic, as well as multiple pre-processing techniques. As
a testament of the format’s success, it has been refined and extended throughout
the years [6], and has been used as the basis for the integration, with the proof
assistants Isabelle/HOL and Coq, of the SMT solvers veriT [6, 36], CVC4 [16]
and cvc5 [5, Sec. 3].

Here we briefly overview the Alethe proof format. For the full description of
its syntax and semantics please see [2]. We assume the reader is familiar with
basic notions of many-sorted equational first-order logic [17]. Alethe proofs have
the form π : ϕ1 ∧ · · · ∧ ϕn → ⊥, i.e., they are refutations, where ⊥ is derived
from assumptions ϕ1, . . . , ϕn corresponding to the original SMT instance be-
ing refuted. Proofs are a series of steps represented as an indexed list of step

commands. The command assume is analogous to step but used only for intro-
ducing assumptions. The indexed steps induce a directed acyclic graph rooted
on the step concluding ⊥ and with the assumptions ϕ1, . . . , ϕn as leaves. Steps
represent inferences and abstractly have the form

c1, . . . , ck B i. ψ1, . . . , ψl (rule p1, . . . , pn) [a1, . . . , am]

where rule names the inference rule used in this step. Every step has an iden-
tifier i and concludes a clause, represented as a list of literals ψ1, . . . , ψl. The
premises are identifiers p1, . . . , pn of previous steps or assumptions, and rule-
dependent arguments are terms a1, . . . , am; steps may occur under a context,
which is defined by bound variables or substitutions c1, . . . , ck. Contexts are in-
troduced by the anchor command, which opens subproofs. Subproofs simulate
the effect of the ⇒-introduction rule of Natural Deduction, where local assump-
tions are put in context and the last step in a subproof represents its conclusion
and the closing of its context. Besides arbitrary formulas, Alethe has support for
contexts which put in scope bound variables and substitutions, which are useful
for representing pre-processing techniques in the presence of binders [6], such as
Skolemization, let elimination and alpha-conversion.

The structure of Alethe proofs is motivated by SMT solvers generally oper-
ating with a cooperation of a SAT solver and multiple engines to perform theory
reasoning, deriving new facts and applying simplifications. The overall proof may
be seen as a ground first-order resolution proof with theory lemmas justified by
closed subproofs. Thus the emphasis on steps concluding clauses as term lists,
which avoids ambiguity as to what clause a disjunction represents. An example
is that whether a resolution step concluding the term A ∨B corresponds to the
clause [A, B] or [A∨B] depends on the premises. The use of identifiers for steps
allows representing proofs as directed acyclic graphs rather than trees. Similarly,
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(set-logic LIA)

(assert (forall ((x Int)) (> x 0)))

(assert (not (forall ((y Int)) (> y 0))))

(check-sat)

(assume h1 (forall ((x Int)) (> x 0)))

(assume h2 (not (forall ((y Int)) (> y 0))))

(anchor :step t3 :args ((y Int) (:= x y)))

(step t3.t1 (cl (= x y)) :rule refl)

(step t3.t2 (cl (= (> x 0) (> y 0))) :rule cong :premises (t3.t1))

(step t3 (cl (= (forall ((x Int)) (> x 0)) (forall ((y Int)) (> y 0))))

:rule bind)

(step t4 (cl (not (forall ((x Int)) (> x 0))) (forall ((y Int)) (> y 0)))

:rule equiv1 :premises (t3))

(step t5 (cl) :rule resolution :premises (t4 h1 h2))

Fig. 1: A simple SMT-LIB problem and an Alethe proof of its unsatisfiability.

term sharing can be achieved via the SMT-LIB :named attribute or define-fun
commands [8, Sec1 4.1.6], which both allow naming subterms. These measures
are essential for compact representation of proofs, which can be prohibitively
large otherwise. Explicitly providing the conclusion of proof steps aims to both
facilitate proof checking (as it allows steps to be verified locally) and proof pro-
duction, so coarse-grained rules that do not uniquely define their conclusions
from premises and arguments can be effectively checked.

Example 1. Figure 1 shows an SMT-LIB problem and an Alethe proof of its
unsatisfiability. Note that in Alethe’s concrete syntax clauses are represented via
the cl operator (the only exception are conclusions of assume commands, which
are considered unit clauses) and the context is not explicitly put in the steps, but
rather assumed for all steps under (potentially nested) anchors introducing its
elements. For this proof to be valid, three conditions need to be met: each assume

command must correspond to an assert command in the original problem,
every step command must be valid according to the semantics of its rule, and
the proof must end with a step that concludes the empty clause (cl). The
proof satisfies the first condition, as the terms in the assume commands are
precisely the asserted terms in the SMT problem. The third condition holds as
t5, the last step, concludes the empty clause. For the second condition, step t4

is a direct consequence of the equivalence in its premise, t3, so it remains to
check step t3, which is derived from a subproof. The anchor for t3 introduces a
bound variable y and a substitution {x 7→ y}. The steps in the subproof contain
terms with this new variable and operate under this substitution. The rule refl

models reflexivity modulo the cumulative, capture-avoiding substitution in the
(potentially nested) context, and thus t3.t1 holds since x = y{x 7→ y}. Step
t3.t2 is regular congruence with the operator “>” and does not depend on the
context. Finally, step t3 holds because its subproof shows the equivalence of the
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Fig. 2: Overview of the architecture of Carcara.

bodies of the quantifiers under the renaming, introduced in the context, into a
fresh variable relative to the left-hand side quantifier. Since all steps follow the
expected semantics, all conditions are met and the proof is valid.

In the next section we show how Carcara checks the above conditions,
highlighting some challenging rules and showing how some coarse-grained steps
are elaborated into proofs potentially simpler to check.

3 Architecture and core components

Carcara is developed in the Rust programming language, and is publicly avail-
able5 under the Apache 2.0 license. Its architecture is shown in Figure 2. It pro-
vides both a command line interface and bindings for a Rust API. The main
component is the proof checking one, with 6.5k LOC, which is a collection of
procedures for each rule to be checked (Section 3.1). The elaborator has 1k
LOC and has an interface to the cvc5 solver, as well as a collection of elabo-
ration methods and a post-processing module to knit together the elaborated
proof (Section 3.2). The other components together have 6k LOC, including a
handwritten 2k LOC SMT-LIB and Alethe parser, and an Alethe printer.

The inputs of Carcara are an SMT-LIB problem ϕ and an Alethe proof
π : ϕ→ ⊥. In proof-checking mode it checks each step in π with the respective
procedure for its rule and prints either valid, when all steps are successfully
checked and the proof concludes the empty clause (cl), holey when π is valid
but contains steps that are not checked (“holes”), and invalid otherwise, to-
gether with an error message indicating the first step where checking failed and
why. In proof-elaboration mode it converts π into π′ : ϕ→ ⊥, where some steps
may be replaced by a series of steps elaborating them, and prints π′.

5
https://github.com/ufmg-smite/carcara

https://github.com/ufmg-smite/carcara
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3.1 Checking Alethe proofs

First the original SMT-LIB problem and its Alethe proof are parsed. The prob-
lem provides the declaration of sorts and symbols that may be used in the proof,
as well as the original assertions, which must match the assumptions in the proof.
Symbol definitions in the proof for term sharing are expanded during parsing.
Terms are internally represented as directed acyclic graphs, using hash consing
for maximal sharing and constant-time syntactically-equality tests. The proof is
represented internally as an array of command objects, each corresponding ei-
ther to an Alethe assume or step command, or a subproof, which is represented
as a step with an (arbitrarily) nested array of command objects. Step identifiers
are converted into indices for the arrays, so that access is constant-time.

Each command is checked individually by the rule checker corresponding to
the rule in that command. That component takes as input the conclusion, the
conclusions of its premises, and the arguments of the command, as well as the
context it is in. As the Alethe format currently has 90 possible rules, Carcara
has 90 rule checkers. We highlight below some of the rule checkers as well as
some challenges for checking Alethe proofs and how we addressed them.

Term equality tests. Terms introduced by Alethe rules may have equality sub-
terms implicitly reordered, but the rules are still valid if the conclusion changes
only in this way. This flexibility is motivated by solvers often internally repre-
senting equalities ignoring order, which may lead to equalities being implicitly
reordered when appearing in facts derived by these components. The congruence
closure procedure [29] commonly used in SMT is an example of such a compo-
nent. Since equality symmetry justifies these reorderings, but keeping track of
all the changes can be challenging, the format allows them to be implicit.

As a consequence, syntactic equality cannot be the only test for whether two
terms are the same. For example, the terms (and p (= a b)) and (and p (=

b a)) may be required to be equal. Thus Carcara tests equality in two phases:
first if they are syntactically equal, in which case they can be compared in con-
stant time; otherwise they are simultaneously traversed and equality subterms
in the same position are compared modulo equality reordering, failing as soon as
subterms differ. We refer to this as a polyequal test. As we will see in Section 4.1,
these tests can be a substantial portion of overall checking time in some cases.

Checking initial assumptions. The initial assume commands in an Alethe proof
must correspond to assertions in the original problem, so their checker searches
through the assertions to find a match. In general, this can be done efficiently:
assertions are stored in a hash set during parsing, and these assume commands
are valid if their conclusions occur in the set. However, assume commands are
also impacted by implicit equality reordering, thus requiring polyequal tests.
When an assumption does not occur in the assertions hash set, the checker
attempts to match it to each assertion in turn, performing a polyequal test.
As a consequence, when the original problem is large and the assertions similar
and deep, checking assume steps may dominate overall checking time, as our
experiments show (Section 4.1).
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Checking contextual steps. Steps within subproofs may depend on their context
to be valid, so before checking these steps, a context object is built based on the
anchor opening the subproof. As shown in Section 2, context elements on which
rules may depend are bound variables and substitutions. The former make new
symbols available to build terms, while the latter allows steps to be valid modulo
applying these substitutions.

Substitutions in Alethe are capture-avoiding, renaming bound variables dur-
ing application, which facilitates producing proofs with binders [6]. However, it
has the side effect of also preventing constant-time equality tests, since we must
rather check α-equivalence, i.e., a term with bound variables may be required to
be equal6 to the result of applying a substitution that may have renamed some
of these variables. To avoid spurious renaming when applying substitutions, the
checker only renames bound variables which occur as free variables in the substi-
tution range. Since computing free variables is itself costly, it is done lazily, only
when the substitution is to be applied under a binder, and the result is cached.

Note that, as subproofs can be nested, the substitution in context for a step
is the composition of a stack of substitutions σ1, . . . , σn. To avoid sequential
application of substitutions, Alethe requires the substitution σ in context to be
a cumulative substitution in which every term t in the range of the substitution
σi+1 is replaced by tσi. Thus σ can be applied simultaneously and correspond to
a sequential application of σ1, . . . , σn. As a result of these requirements, handling
and applying substitutions can be expensive in Alethe, as shown in Section 4.1.

Finally, the rules enclosing subproofs must be checked to whether their con-
clusions are valid from the introduced context and resulting subproof. For exam-
ple, the bind rule in Example 1 requires that the bound variable in the quantifier
at the right-hand side of the equality matches the range of the substitution put
in context for its subproof. The subproof rule, which introduces local assump-
tions a1, . . . , an, and concludes a formula ¬a′1 ∨ · · · ¬a′n ∨ ϕ, requires that the
enclosed subproof derives ϕ and that each ai match a′i.

We now highlight coarse-grained rules whose checking is more intricate and
expensive.

Resolution. The rule resolution in Alethe captures hyper-resolution on ground
first-order clauses, i.e.,

C1 · · · Cn

C
resolution, p1, p2, . . . , pn−1

where C1, . . . , Cn are premises; pi the pivot for the binary resolution between Ci

and Ci+1, occurring as is in Ci and as ¬pi in Ci+1; and C the conclusion. While
it is simple to check such steps, Alethe allows resolution steps to not provide
the pivots, for the sake of facilitating proof-production in solvers. Checking such
steps requires searching for the pivots and in which binary resolution they are to

6 Since Alethe has bound-variable renaming rules, the checker requires names to be
handled properly, rather than normalizing all binders internally via De Brujin indices.
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be used, but Carcara applies an incomplete heuristic where pivots are inferred
between the difference of literals in the premises and in the conclusion (i.e.,
literals not in the conclusion must have been pivots eventually eliminated). If
that fails, we apply a reverse unit propagation (RUP) test [21], i.e., the step is
valid if we can derive a conflict via Boolean Constraint Propagation from the
premises and the negated conclusion. Note that Carcara also allows the pivots
to be provided as arguments, in which case checking is simple, as expected.

AC simplification. Normalization modulo associativity and commutativity for
conjunction and disjunction can be represented in Alethe via the ac simp rule,
which establishes the equality between a term t and a term t′ that is t but
with nested occurrences of these connectives flattened and duplicate arguments
removed, until a fix-point. While this simplification is performance-critical [6,
Sec. 4.6], checking the corresponding rule requires traversing t and performing
the normalization, which is proportional to t’s depth.

Arithmetic reasoning. Apart from simplification rules, arithmetic reasoning in
Alethe is mainly captured by two rules: la generic and lia generic. Both
rules conclude a clause of negated linear inequalities, which is valid due to the
Farkas’ lemma [18] guaranteeing that there exists a linear combination of these
inequalities equivalent to ⊥. The la generic rule takes as arguments the coeffi-
cients of this linear combination, with which the rule can be checked by applying
simple (but costly) operations on the coefficients to reduce the linear combina-
tion to ⊥ (see [2, Sec 5.4, Rule 9] for the algorithm). The checker uses GMP [1]
for efficiently performing the required computations with the coefficients.

While la generic can be checked effectively, lia generic cannot. It pro-
vides only the negated inequalities, which would require searching for the coef-
ficients to perform the checking, essentially requiring the arithmetic solving to
be repeated in the checker. As a consequence this rule is considered a hole and
Carcara ignores it during proof checking, issuing a warning.

3.2 Elaborating Alethe proofs

In order to mitigate bottlenecks in checking some Alethe steps, Carcara can
also elaborate Alethe proofs into easier-to-check ones by filling in missing details
from the original proofs. This is done by replacing coarse-grained steps with fine-
grained proofs of their conclusions, producing a new overall proof equivalent to
the original, but with some coarse-grained steps broken down into fine-grained
ones. Formally, a proof as the one below on the left, with a coarse step concluding
ψ from premises ψ1, . . . , ψn, is elaborated into the proof on the right where the
coarse step is replaced by a proof π, with fine-grained steps, rooted on ψ and
with ψ1, . . . , ψn as leaves:

ψ1 · · · ψn

ψ
coarseStep

· · ·
Θ

rule
⇒elab

ψ1 · · · ψn

π

ψ · · ·
Θ

rule
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(step t2.t1 (cl (not (= a b)) (not (= b c)) (not (= c d)) (= a d))

:rule eq_transitive)

(step t2.t2 (cl (not (= b a)) (= a b)) :rule eq_symmetric)

(step t2.t3 (cl (not (= c b)) (= b c)) :rule eq_symmetric)

(step t2.t4 (cl (not (= c d)) (= a d) (not (= b a)) (not (= c b)))

:rule resolution :premises (t2.t1 t2.t2 t2.t3))

(step t2 (cl (not (= b a)) (not (= c d)) (not (= c b)) (= a d))

:rule reordering :premises (t2.t4))

Fig. 3: Elaboration of an eq transitive step. Note the new eq transitive step
is easy to check, and the new t2 step has the same conclusion as the original.

Note the expansion only affects the proof locally, since any step using the conclu-
sion of the coarse step as a premise may use the conclusion of π interchangeably.

There are many Alethe rules whose checking would be simpler if elaborated,
but we have focused initially on what we believe can be more impactful: removing
implicit equality reordering, and thus polyequal tests, which affects virtually
every Alethe rule; and providing checkable justifications for lia generic steps,
to remove holes from proofs. Before detailing these methods, we illustrate the
elaboration process with an example.

Elaborating transitivity steps. The eq transitive rule concludes a valid clause
composed of negated equalities followed by a single positive equality, such that
the negated equalities form a transitive chain resulting in the final equality.
However, the specification does not impose an order on the negated equalities
(which can, remember, also be implicitly reordered). So the following step must
also be valid, with a “shuffled” chain:

(step t2 (cl (not (= b a)) (not (= c d)) (not (= c b)) (= a d))

:rule eq_transitive)

This permissive specification again facilitates proof production (particularly
from congruence closure procedures), but requires the eq transitive checker,
for every link in the chain, to potentially traverse the whole clause searching for
the next one, performing polyequal tests throughout. The goal of elaborating
eq transitive steps is that steps like t2 are justified in a fine-grained manner.
If we changed the conclusion of the step, this would impact the rest of the proof,
if t2 is used anywhere as a premise. We instead introduce a fine-grained proof
for t2’s conclusion, as shown in Figure 3: an easy-to-check eq transitive step
(t2.t1), eq symmetric steps to flip the equalities (t2.t2, t2.t3), resolution
(t2.t4) and reordering (t2.t5) steps to derive the original conclusion.

Elaborating implicit equality reordering. Similarly to above, steps concluding a
term t, with some subterm equality implicitly reordered, have their conclusion
replaced by t′ where that subterm is not reordered and a fine-grained proof of
the conversion of t′ into t is added. Figure 4 illustrates this process for an assume
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(set-logic QF_UF)

(declare-const a Bool)

(declare-const b Bool)

(declare-const p Bool)

(assert (not (or p (= a b))))

(assert (or p (= b a)))

(check-sat)

Fig. 4a: An example SMT problem in-
stance.

(assume h1 (not (or p (= a b))))

(assume h2 (or p (= a b)))

(step t3 (cl) :rule resolution

:premises (h1 h2))

Fig. 4b: An Alethe proof for the SMT
problem in Figure 4a. Notice that this
proof makes use of implicit reordering
of equalities in h2.

(assume h1 (not (or p (= a b))))

(assume h2 (or p (= b a)))

(step h2.t1 (cl (= (= b a) (= a b))) :rule equiv_simplify)

(step h2.t2 (cl (= (or p (= b a)) (or p (= a b))))

:rule cong :premises (h2.t1))

(step h2.t3 (cl (not (or p (= b a))) (or p (= a b)))

:rule equiv1 :premises (h2.t2))

(step h2.t4 (cl (or p (= a b))) :rule resolution :premises (h2 h2.t3))

(step t3 (cl) :rule resolution :premises (h1 h2.t4))

Fig. 4c: The elaborated proof without implicit equality reordering.

Fig. 4: An example of the elaboration to remove implicit equality reordering.

command, where note that step h2.t1 is the rewriting justifying the equality
reordering of the subterm and the following steps rebuild the original conclusion.

In the original proof, the assume command h2 introduces the term (or p (=

a b)), which is the original assertion (or p (= b a)) with the equality (= b

a) implicitly reordered. In the elaborated proof (Figure 4c), the conclusion of
h2 is replaced by one without implicit equality reordering, but step t3 expects
the original conclusion. The steps h2.t1 to h2.t4 convert the new h2 conclusion
into the original one, relying on standard equality reasoning and on resolution to
connect the introduced steps. Notice that the t3 step, which originally refered
to h2 as a premise, now refers to h2.t4.

When applied to every concluding terms with implicit equality reordering,
the result of this elaboration method is a proof where equality tests are only
syntactic, erasing the overhead of checking assumptions and polyequal tests.

Elaborating lia generic steps. As discussed in Section 3.1, Carcara considers
lia generic steps holes in the proof, as their checking is as hard as solving. Since
our goal is to keep Carcara as simple as possible, we rely on an external tool to
elaborate the step by solving a problem corresponding to it in a proof-producing
manner, then import the proof, checking it and guaranteeing that it is sound to
replace the original step. Any tool producing detailed Alethe proofs for linear-
integer arithmetic reasoning can be used to this end, but currently only cvc5
can do so [7]. We note that cvc5 currently has the limitation that its Alethe
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proofs may contain rewrite steps not yet modeled in the Alethe simplification
rules [2, Sec 5.11], and are thus not supported by Carcara. They are considered
holes, but since these are generally simple simplification rules, are much less
harmful than lia generic ones.

In detail, the elaboration method, when encountering a lia generic step
S concluding the negated inequalities ¬l1 ∨ · · · ∨ ¬ln, generates an SMT-LIB
problem asserting l1 ∧ · · · ∧ ln and invokes cvc5 on it, expecting an Alethe proof
π : (l1 ∧ · · · ∧ ln)→ ⊥. Carcara will check each step in π and, if they are not
invalid, will replace step S in the original proof by a proof of the form:

(anchor :step S.t_m+1)

(assume S.h_1 l1)

...

(assume S.h_n ln)

...

(step S.t_m (cl false) :rule ...)

(step S.t_m+1 (cl (not l1) ... (not ln) false) :rule subproof)

(step S.t_m+2 (cl (not false)) :rule false)

(step S (cl (not l1) ... (not ln))

:rule resolution :premises (S.t_m+1 S.t_m+2))

where steps S.h 1 until S.t m are imported from the cvc5 proof. As a result the
lia generic step S in the original proof will have been replaced by a detailed
justification whose correctness can be independently established by Carcara.

4 Evaluation

We evaluate Carcara for proof-checking performance and the impact of elabo-
ration methods. We use the veriT solver [13], version 2021.06-40-rmx, to generate
Alethe proofs from all problems in the SMT-LIB benchmark library7 whose logic
it supports, with a 120 seconds timeout. We did not consider cvc5 as its support
for Alethe is not yet as mature or complete. The veriT solver produced 39,229
proofs. They total 92gb, but vary greatly in size. The biggest proof has 4.5gb,
fourteen have at least 1gb and over a hundred have more than 100mb, while
almost 90% are under 1mb. All the experiments were run on a server equipped
with AWS Graviton2 2.5 GHz ARM CPUs, with 4 GB of memory for each job.

4.1 Proof checking

We ran Carcara on each proof until checking succeeded or failed. Only 378 had
checking failures, which were due to incorrect8 steps for quantifier simplifications
(Skolemization and elimination of one-point quantifiers) and AC normalization.
The issues have been communicated to the solver developers. For the success-
ful proofs, a summary is given in Table 1, for each SMT-LIB logic, with the
cumulative solving time by veriT and checking time by Carcara.

7 https://smtlib.cs.uiowa.edu/benchmarks.shtml
8 In a superficial analysis the steps seemed sound, but the proofs were incorrect.
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Logic Problems Solving time (s) Checking time (s) Ratio

AUFLIA 2135 1094.67 12.51 87.53
AUFLIRA 19200 248.95 144.03 1.73
UF 2885 2858.14 30.95 92.35
UFIDL 55 0.54 0.66 0.82
UFLIA 7221 3547.78 136.21 26.05
UFLRA 10 0.02 0.01 3.05

QF ALIA 16 0.79 1.39 0.57
QF AUFLIA 256 0.34 0.11 3.04
QF IDL 609 3316.08 2240.10 1.48
QF LIA 1018 5975.36 742.73 8.05
QF LRA 537 3629.39 258.60 14.03
QF RDL 81 620.46 123.14 5.04
QF UF 4180 3857.34 1881.55 2.05
QF UFIDL 66 396.74 87.58 4.53
QF UFLIA 167 1194.51 4.70 254.41
QF UFLRA 415 141.82 65.14 2.18

Total: 38851 26882.93 5729.39 4.69

Table 1: Total solving and proof-checking time per logic for veriT and Carcara.

As expected, the comparison is heavily logic-dependent. In quantified log-
ics (top of the table), checking is generally significantly cheaper than solving.
An outlier is AUFLIRA, which is explained by the problems to which veriT
could produce proofs being all both simple to solve and check. In logics such as
QF UF and QF IDL, which can have very large proofs, overall checking time is
comparable to solving time, if still noticeably smaller in total.

When comparing per-problem, for the large majority of proofs (81.61%) the
checking time was smaller than the solving time. Furthermore, for 3.96% of the
proofs, checking was more than 10 times faster than solving the problem, and
for 0.96%, that ratio was of 100 times. There were only 24 instances where the
checking time was more than 10 times bigger than the solving time, and, in all
of them, the checking time was less than 0.6 seconds.

We also evaluate the per-rule frequency, as shown in Figure 5b, and checking
time, with Figure 6a showing the cumulative checking times and Figure 5a a
box plot considering individual rule checks. The lower whisker represents the
5th percentile, the lower bound of the box represents the first quartile, the line
inside the box represents the median, the upper bound of the box represents the
third quartile, and the upper whisker represents the 95th percentile9. Rules that
are rare and have negligible checking time are omitted. The data is gathered
from proof checking in all proofs, even those that failed.

The assume commands account for a large proportion of the total time.
This is justified by their checking, due to implicit equality reordering, being
potentially proportional to both the quantity and the depth of assertions in the
original problems. The box plot shows that the worse cases lead to the most
expensive rule checks among all rules.

9 The plots follow the same criteria of the evaluation in [36].
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Fig. 5a: Box plot for checking time per rule.

Rule %

cong 31%
resolution 27%
refl 17%
comp simplify 5%
eq transitive 4%
la rw eq 2%
ac simp 1%
and pos 1%
and 1%
bind 1%
trans < 1%
or < 1%
equiv pos2 < 1%
eq congruent < 1%
la generic < 1%
. . . < 1%

Fig. 5b: Perc. of
total steps per
rule (only most
frequent shown).

Rules with highest overall time are resolution, ac simp and la generic.
For resolution this is explained mainly by its high frequency (this is similarly
the case for cong), as well as by some more expensive checks (veriT does not
provide pivots), as shown in the box plot. As for ac simp and la generic, while
they are much less frequent, their checking is expensive (Section 3.1).

Other expensive rules to note are those related to contexts involving sub-
stitutions10, specially let, for let elimination, and refl. It is common for let

subproofs to be deeply nested, leading to large cumulative substitutions needing
to be computed. As for refl, besides being one of the most frequent rules, about
a third of its total time is spent on polyequal tests, and most of the rest is related
to handling and applying substitutions, as well as checking alpha-equivalence.

4.2 Proof elaboration

We ran Carcara, on each successfully checked proof, in proof-elaboration mode
with the elaboration of transitivity steps and, more importantly, the removal of
implicit equality reordering. On average, excluding parsing, elaboration takes
40% of the time required for checking. We focus on the impact on proof checking
of the result of elaboration.

In Figure 7 we have the comparison, per proof, of the proof-checking time on
the original proof and on the elaborated one (excluding parsing time). There is
not a clear winner, but note that for harder proofs (those originally requiring at
least 1s), checking the elaborated proof is often significantly faster. A per-rule
analysis is shown in Figure 6b, with the proportion of the checking time spent

10 The ones shown in the plots are let, bind, sko forall, and onepoint.
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Fig. 6a: Total checking time per rule. Fig. 6b: Times after elaboration.

in each rule, for the elaborated proofs. Comparing to Figure 6a, the checking
time for assume steps becomes negligible in the elaborated proofs, as checking
them now amounts to checking occurrence in a hash set. The overall time for
refl also decreases, but only by 10%. This can be explained by the refl steps
added during elaboration. While checking each refl is now potentially cheaper,
this is offset by their increased number. Note that these additions also impact
other rules, specially cong, whose cumulative time increased by 13%. Overall,
proof elaboration resulted in a net improvement in checking time of 6%. Parsing
time, however, increased, which made the overall runtime for proof-checking the
original proofs virtually the same as for the elaborated proofs.

Fig. 7: Before vs after elaboration.

The results indicate that elaborat-
ing implicit equality reordering is not
always worth it, specially for high-
performant tools. However, it success-
fully yields proofs not requiring polye-
qual tests, which may help performance
in other scenarios. For example, the
reconstruction of Alethe proofs in Is-
abelle/HOL requires equality tests to be
done by applying a normalizer to both
terms and then testing them for syntactic
equality. This leads to performance issues
for reconstructing some rules [36], which
this elaboration method would avoid.

Elaborating lia generic steps. In our
benchmark set, 276 proofs contain a total of 127k lia generic steps. As a
proof of concept we instrumented Carcara to apply the elaboration method
described in Section 3.2 via a connection with cvc511. Due to the still experimen-
tal Alethe proof production in cvc5, we only considered SMT problems derived

11 cvc5-1.0.2, modified for better Alethe support, provided by the cvc5 team.
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from lia generic steps in proofs for the QF UFLIA and QF LIA logics. This
excluded only 15 proofs, each containing exactly one lia generic step. We ran
Carcara on proof-elaboration mode with a 30 minute timeout for each proof.
For each lia generic step, cvc5 was invoked with a 30s timeout and the result-
ing Alethe proof, if any, replaced the original lia generic step, as described in
Section 3.2.

Of the 261 proofs, Carcara timed out on only 13 of them. Of the remaining
248 proofs, 82 still contained lia generic steps after elaboration, either because
cvc5 timed out when solving the generated problem, or because the cvc5 proofs
contained lia generic steps of their own. Note however that they are still im-
provements over the original lia generic steps, since generally less inequalities
are involved and the steps are potentially simpler to solve, were the process to
be repeated. Similarly, although all elaborated proofs contained holes from cvc5
rewriting steps, these are much simpler than the original lia generic ones.

As with the elaboration of implicit equality reordering, this elaboration method
would be particularly impactful in scenarios such as Alethe reconstruction in Is-
abelle/HOL. Steps such as lia generic are reconstructed via limited internal
automation for arithmetic reasoning, which is known to fail [36, Sec. 4.3].

5 Conclusion and future work

Our evaluation shows that Carcara has good performance and can identify
shortcomings in the proof-production of established SMT solvers. Carcara can
also elaborate proofs into demonstrably easier-to-check ones, which can have a
significant impact, for example, if it is used as a bridge between solvers and proof
assistants. Extending Carcara to convert Alethe proofs into other formats
would also allow the elaboration techniques to benefit other toolchains.

As future work, we will add support for parallel proof checking, since steps
in the same context can be checked completely independently. We will also add
new elaboration methods for resolution and ac simp, which occasionally are
bottlenecks, and will provide elaboration for rewrite rules, which can change
significantly between different solvers, complicating proof-production if solvers
have to phrase their rewrites with a fixed set of rules. An automatic conversion
into a defined set of rewrite rules, as described in [32], would address this issue.

Finally, we expect Carcara to facilitate improving how we use Alethe
proofs. For example, our large-scale evaluation shows the significant time spent
on contextual substitutions, which is mainly due to the Alethe requirement of
only applying substitutions simultaneously. Extending the proof format to allow
other substitution application strategies may be beneficial for different scenar-
ios, as proof production in some solvers has indicated [7, Sec 5.1]. In general,
extensions to the format (for example, to other logical theories) can be done in
a more informed way with the help of an independent checker.
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Természettudományi Érteśıtö, 12:457–472, 1894. reference from Schrijver’s Com-
binatorial Optimization textbook (Hungarian).

19. Mathias Fleury. Optimizing a verified SAT solver. In Julia M. Badger and
Kristin Yvonne Rozier, editors, NASA Formal Methods - 11th International Sym-
posium, NFM 2019, Houston, TX, USA, May 7-9, 2019, Proceedings, volume 11460
of Lecture Notes in Computer Science, pages 148–165. Springer, 2019.

20. Mathias Fleury, Jasmin Christian Blanchette, and Peter Lammich. A verified SAT
solver with watched literals using imperative HOL. In June Andronick and Amy P.
Felty, editors, Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9,
2018, pages 158–171. ACM, 2018.

21. Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In Inter-
national Symposium on Artificial Intelligence and Mathematics (ISAIM), 2008.

22. Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining
logics. J. ACM, 40(1):143–184, 1993.

23. Marijn J. H. Heule. The DRAT format and drat-trim checker. CoRR,
abs/1610.06229, 2016.

24. Jochen Hoenicke and Tanja Schindler. A simple proof format for SMT. In David
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editors, Conference on Automated Deduction (CADE), volume 12699 of Lecture
Notes in Computer Science, pages 450–467. Springer, 2021.

37. Aaron Stump, Duckki Oe, Andrew Reynolds, Liana Hadarean, and Cesare Tinelli.
SMT proof checking using a logical framework. Formal Methods in System Design,
42(1):91–118, 2013.

38. Dominik Winterer, Chengyu Zhang, and Zhendong Su. Validating SMT solvers via
semantic fusion. In Alastair F. Donaldson and Emina Torlak, editors, Conference
on Programming Language Design and Implementation (PLDI), pages 718–730.
ACM, 2020.


	Carcara: An efficient proof checker and elaborator for SMT proofs in the Alethe format

