
SMT solving for fun and profit

Haniel Barbosa

BIRS Workshop 26w5626
Theory and Practice of SAT and Combinatorial Solving

Jan 13, 2026

Acknowledgments

Many thanks to Abdalrhman M Mohamed, Cesare Tinelli, Andres Nötzli, Andrew Reynolds, Clark Barrett, Alberto
Griggio, Liana Hadarean, Dejan Jovanovic, and Albert Oliveras for contributing, directly or transitively, some of the
material used in these slides.

Disclaimer: The literature on SMT and its applications is vast. The bibliographic references provided here are just a small and highly incomplete
sample. Apologies to all authors whose work is not cited.

SMT solving for fun and profit 1 / 34

Agenda

1 Introduction

2 SMT solver functionality

3 Background theories

4 Application example: Software Verification

5 What’s next? What’s hot?

SMT solving for fun and profit 2 / 34

Introduction

Automated Reasoning for Formal Methods

Two successful examples:

SAT: propositional formalization, Boolean reasoning

+ high degree of efficiency
− expressive (all NP-complete problems) but involved encodings

SMT: first-order formalization, Boolean + domain-specific reasoning

+ improves expressivity and scalability
− some (but acceptable) loss of efficiency

SMT solving for fun and profit 3 / 34

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols

SMT solving for fun and profit 4 / 34

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols

SMT solving for fun and profit 4 / 34

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols

SMT solving for fun and profit 4 / 34

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols

SMT solving for fun and profit 4 / 34

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols

SMT solving for fun and profit 4 / 34

The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ (f (n) ≤ head (l1) ∨ l2 = f (n) :: l1)

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols

SMT solving for fun and profit 4 / 34

SMT solvers

Are highly efficient tools for the SMT problem based on specialized logic engines

Are changing the way people solve problems in Computer Science and beyond:
▷ instead of building a special-purpose tool

▷ translate problem into a logical formula

▷ use an SMT solver as backend reasoner

Not only easier, often
better

SMT solving for fun and profit 5 / 34

SMT solvers

Are highly efficient tools for the SMT problem based on specialized logic engines

Are changing the way people solve problems in Computer Science and beyond:
▷ instead of building a special-purpose tool

▷ translate problem into a logical formula

▷ use an SMT solver as backend reasoner

Not only easier, often
better

SMT solving for fun and profit 5 / 34

SMT solvers

Are highly efficient tools for the SMT problem based on specialized logic engines

Are changing the way people solve problems in Computer Science and beyond:
▷ instead of building a special-purpose tool

▷ translate problem into a logical formula

▷ use an SMT solver as backend reasoner

Not only easier, often
better

SMT solving for fun and profit 5 / 34

Some Applications of SMT

Model Checking

(in)finite-state systems
hybrid systems
abstraction refinement
state invariant

generation
interpolation

Type Checking

dependent types
semantic subtyping
type error localization

Program Analysis

symbolic execution

program verification
verification in separation logic
(non-)termination
loop invariant generation
procedure summaries
race analysis
concurrency errors detection

Software Synthesis

syntax-guided function synthesis
automated program repair
synthesis of reactive systems
synthesis of self-stabilizing systems
network schedule synthesis

SMT solving for fun and profit 6 / 34

More Applications of SMT

Security

automated exploit
generation

protocol debugging
protocol verification
analysis of access control policies
run-time monitoring

Compilers

compilation validation
optimization of arithmetic

computations

Planning

motion planning
nonlinear PDDL planning

Software Engineering

system model consistency
design analysis
test case generation
verification of ATL

transformations
semantic search for code reuse
interactive (software)

requirements prioritization
generating instances of meta-models
behavioral conformance of

web services

Machine Learning

verification of deep NNs

Business

verification of business rules
spreadsheet debugging

SMT solving for fun and profit 7 / 34

More Applications of SMT

Security

automated exploit
generation

protocol debugging
protocol verification
analysis of access control policies
run-time monitoring

Compilers

compilation validation
optimization of arithmetic

computations

Planning

motion planning
nonlinear PDDL planning

Software Engineering

system model consistency
design analysis
test case generation
verification of ATL

transformations
semantic search for code reuse
interactive (software)

requirements prioritization
generating instances of meta-models
behavioral conformance of

web services

Machine Learning

verification of deep NNs

Business

verification of business rules
spreadsheet debugging

SMT solving for fun and profit 7 / 34

Heavily used at AWS

Billions SMT queries a day via
Zelkovaa

aBackes et al. 2018; Rungta 2022

SMT solver functionality

SMT Solver Basic Functionality

Background theory T

SMT
Solver

φ1, . . . , φn

sat

unknown

sat/unsat: there is a/no model M of T such that

M |= φ1 ∧ · · · ∧ φn

unknown: inconclusive — because of resource limits or incompleteness

Uninterpreted Funs x = y ⇒ f(x) = f(y)

Integer/Real Arithmetic 2x+ y = 0 ∧ 2x− y = 4 → x = 1

Floating Point Arithmetic x+ 1 ̸= NaN ∧ x <∞ ⇒ x+ 1 > x

Bit-vectors 4 · (x≫ 2) = x&∼3

Strings and RegExs x = y · z ∧ z ∈ ab∗ ⇒ |x| > |y|
Arrays i = j ⇒ store(a, i, x)[j] = x

SMT solving for fun and profit 8 / 34

SMT Solver Basic Functionality

Background theory T

SMT
Solver

φ1, . . . , φn

sat

unknown

sat/unsat: there is a/no model M of T such that

M |= φ1 ∧ · · · ∧ φn

unknown: inconclusive — because of resource limits or incompleteness

SMT solving for fun and profit 8 / 34

SMT Solver Basic Functionality

Background theory T

SMT
Solver

φ1, . . . , φn

sat

unknown

unsat

sat/unsat: there is a/no model M of T such that

M |= φ1 ∧ · · · ∧ φn

unknown: inconclusive — because of resource limits or incompleteness

SMT solving for fun and profit 8 / 34

SMT Solver Basic Functionality

Background theory T

SMT
Solver

φ1, . . . , φn

sat

unknown

unsat

sat/unsat: there is a/no model M of T such that

M |= φ1 ∧ · · · ∧ φn

unknown: inconclusive — because of resource limits or incompleteness

SMT solving for fun and profit 8 / 34

SMT Solver Basic Functionality

Background theory T

SMT
Solver

φ1, . . . , φn

sat

unknown

unsat

sat/unsat: there is a/no model M of T such that

M |= φ1 ∧ · · · ∧ φn

unknown: inconclusive — because of resource limits or incompleteness

SMT solving for fun and profit 8 / 34

SMT Solver Output: Satisfying Assignments

Background theory T

SMT
Solver

φ[x⃗] α
sat

α is a satisfying assignment for x⃗ = (x1, . . . , xn):

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v⃗ = (v1, . . . , vn)

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

Note.

x⃗ may consist of first- and second-order variables
(aka, uninterpreted constants and function symbols)

SMT solving for fun and profit 9 / 34

SMT Solver Output: Satisfying Assignments

Background theory T

SMT
Solver

φ[x⃗] α
sat

α is a satisfying assignment for x⃗ = (x1, . . . , xn):

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v⃗ = (v1, . . . , vn)

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

Note.

x⃗ may consist of first- and second-order variables
(aka, uninterpreted constants and function symbols)

SMT solving for fun and profit 9 / 34

SMT Solver Output: Satisfying Assignments

Background theory T

SMT
Solver

φ[x⃗] α
sat

α is a satisfying assignment for x⃗ = (x1, . . . , xn):

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v⃗ = (v1, . . . , vn)

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

Note.

x⃗ may consist of first- and second-order variables
(aka, uninterpreted constants and function symbols)

SMT solving for fun and profit 9 / 34

SMT Solver Output: Unsat Cores

Background theory T

SMT
Solver

φ1, . . . , φn ψ1, . . . , ψm
unsat

ψ1, . . . , ψm is a unsat core of {φ1, . . . , φn}:

1. {ψ1, . . . , ψm} ⊆ {φ1, . . . , φn}
2. {ψ1, . . . , ψm} is unsat in T

3. {ψ1, . . . , ψm} is minimal (or smallish)

SMT solving for fun and profit 10 / 34

SMT Solver Output: Unsat Cores

Background theory T

SMT
Solver

φ1, . . . , φn ψ1, . . . , ψm
unsat

ψ1, . . . , ψm is a unsat core of {φ1, . . . , φn}:
1. {ψ1, . . . , ψm} ⊆ {φ1, . . . , φn}
2. {ψ1, . . . , ψm} is unsat in T

3. {ψ1, . . . , ψm} is minimal (or smallish)

SMT solving for fun and profit 10 / 34

SMT Solver Output: Proofs

Background theory T

SMT
Solver

φ1, . . . , φn π
unsat

π is a checkable proof object for {φ1, . . . , φn}:

1. π is a proof term in some formal proof system

2. π expresses a refutation of {φ1, . . . , φn}
3. π can be efficiently checked by an external proof checker

▶ The “efficiently” there is actually a highly debatable point...

SMT solving for fun and profit 11 / 34

SMT Solver Output: Proofs

Background theory T

SMT
Solver

φ1, . . . , φn π
unsat

π is a checkable proof object for {φ1, . . . , φn}:
1. π is a proof term in some formal proof system

2. π expresses a refutation of {φ1, . . . , φn}
3. π can be efficiently checked by an external proof checker

▶ The “efficiently” there is actually a highly debatable point...

SMT solving for fun and profit 11 / 34

SMT Solver Output: Proofs

Background theory T

SMT
Solver

φ1, . . . , φn π
unsat

π is a checkable proof object for {φ1, . . . , φn}:
1. π is a proof term in some formal proof system

2. π expresses a refutation of {φ1, . . . , φn}
3. π can be efficiently checked by an external proof checker

▶ The “efficiently” there is actually a highly debatable point...

SMT solving for fun and profit 11 / 34

Extended Functionality: Interpolation

Background theory T

SMT
Solver

φ1[x⃗1],
φ2[x⃗2]

ψ[x⃗]
unsat

ψ is a logical interpolant of φ1 and φ2:

1. φ1 |=T ψ and ψ |=T ¬φ2

2. x⃗ = x⃗1 ∩ x⃗2

SMT solving for fun and profit 12 / 34

Extended Functionality: Interpolation

Background theory T

SMT
Solver

φ1[x⃗1],
φ2[x⃗2]

ψ[x⃗]
unsat

ψ is a logical interpolant of φ1 and φ2:

1. φ1 |=T ψ and ψ |=T ¬φ2

2. x⃗ = x⃗1 ∩ x⃗2

SMT solving for fun and profit 12 / 34

Extended Functionality: Abduction

Background theory T

SMT
Solver

Γ,¬φ ψ
sat

ψ is an abduction hypothesis for φ wrt Γ:

1 Γ, ψ is satisfiable in T

2 Γ, ψ |=T φ

3 ψ is maximal, e.g., with respect to |=T

(if ψ′ satisfies 1 and 2 and ψ |=T ψ′ then ψ′ |=T ψ)

SMT solving for fun and profit 13 / 34

Extended Functionality: Abduction

Background theory T

SMT
Solver

Γ,¬φ ψ
sat

ψ is an abduction hypothesis for φ wrt Γ:

1 Γ, ψ is satisfiable in T

2 Γ, ψ |=T φ

3 ψ is maximal, e.g., with respect to |=T

(if ψ′ satisfies 1 and 2 and ψ |=T ψ′ then ψ′ |=T ψ)

SMT solving for fun and profit 13 / 34

Extended Functionality: Quantifier Elimination

Background theory T

SMT
Solver

Γ[x⃗], φ[x⃗, y⃗] ψ[x⃗]

ψ is a projection of φ over y⃗ with respect to Γ:

1 Γ |=T ψ ⇔ ∃y⃗ φ

SMT solving for fun and profit 14 / 34

Extended Functionality: Quantifier Elimination

Background theory T

SMT
Solver

Γ[x⃗], φ[x⃗, y⃗] ψ[x⃗]

ψ is a projection of φ over y⃗ with respect to Γ:

1 Γ |=T ψ ⇔ ∃y⃗ φ

SMT solving for fun and profit 14 / 34

Extended Functionality: Quantifier Elimination

Background theory T

SMT
Solver

Γ[x⃗], φ[x⃗, y⃗] ψ[x⃗]

ψ is a projection of φ over y⃗ with respect to Γ:

1 Γ |=T ψ ⇔ ∃y⃗ φ

SMT solving for fun and profit 14 / 34

Extended Functionality: Optimization

Background theory T

SMT
Solver

φ[x⃗],
o = t[x⃗]

α
sat

α is a an optimal assignment for φ:

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v1, . . . , vn

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

3 α minimizes/maximizes objective o

SMT solving for fun and profit 15 / 34

Extended Functionality: Optimization

Background theory T

SMT
Solver

φ[x⃗],
o = t[x⃗]

α
sat

α is a an optimal assignment for φ:

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v1, . . . , vn

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

3 α minimizes/maximizes objective o

SMT solving for fun and profit 15 / 34

Background theories

Background Theories

Uninterpreted Funs x = y ⇒ f(x) = f(y)

Integer/Real Arithmetic 2x+ y = 0 ∧ 2x− y = 4 → x = 1

Floating Point Arithmetic x+ 1 ̸= NaN ∧ x <∞ ⇒ x+ 1 > x

Bit-vectors 4 · (x≫ 2) = x&∼3

Strings and RegExs x = y · z ∧ z ∈ ab∗ ⇒ |x| > |y|
Arrays i = j ⇒ store(a, i, x)[j] = x

Algebraic Data Types x ̸= Leaf ⇒ ∃ l, r : Tree(α). ∃ a : α.
x = Node(l, a, r)

Finite Sets e1 ∈ x ∧ e2 ∈ x \ e1 ⇒ ∃y, z : Set(α).
|y| = |z| ∧ x = y ∪ z ∧ y ̸= ∅

Finite Relations (x, y) ∈ r ∧ (y, z) ∈ r ⇒ (x, z) ∈ r ▷◁ s

SMT solving for fun and profit 16 / 34

Equality and Uninterpreted Functions (EUF)(Nelson and Oppen 1980; Nieuwenhuis and Oliveras 2007)

Simplest first-order theory with equality, applications of uninterpreted functions, and variables of
uninterpreted sorts

For all sorts σ, σ′ and function symbols f : σ → σ′

Reflexivity: ∀x : σ. x = x
Symmetry: ∀x : σ. x = y ⇒ y = x
Transitivity: ∀x, y : σ. x = y ∧ y = z ⇒ x = z
Congruence: ∀x⃗, y⃗ : σ⃗. x⃗ = y⃗ ⇒ f(x⃗) = f(y⃗)

Congruence closure decision procedure can efficiently handle conjunctions of equality literals.

Example

f(f(f(a))) = b g(f(a), b) = a f(a) = a

SMT solving for fun and profit 17 / 34

Arrays (Bofill et al. 2008; McCarthy 1993; Moura and Bjørner 2009; Stump et al. 2001)

Operates over sorts Array(σi, σe), σi, σe and function symbols

[] : Array(σi, σe)× σi → σe

store : Array(σi, σe)× σi × σ → Array(σi, σe)

For any index sort σi and element sort σe

Read-Over-Write-1: ∀a, i, e. store(a, i, e)[i] = e
Read-Over-Write-2: ∀a, i, j, e. i ̸= j ⇒ store(a, i, e)[j] = a[j]

Extensionality: ∀a, b, i. a ̸= b⇒ ∃i. a[i] ̸= b[i]

Efficient decision procedure based on congruence closure to handle equality reasoning and strong filters for
restricting the application of inferences capturing the above axioms.

Example

store(store(a, i, a[j]), j, a[i]) = store(store(a, j, a[i]), i, a[j])

SMT solving for fun and profit 18 / 34

Arithmetic

Restricted fragments, over the reals or the integers, support efficient methods:

▷ Bounds: x ▷◁ k with ▷◁ ∈ {<, >, ≤, ≥, =} (Bozzano et al. 2005)

▷ Difference constraints: x− y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =} (Cotton and Maler 2006; Nieuwenhuis and Oliveras

2005; Wang et al. 2005)

▷ UTVPI: ±x± y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =} (Lahiri and Musuvathi 2005)

▷ Linear arithmetic, e.g: 2x− 3y + 4z ≤ 5 (Bjørner and Nachmanson 2024; Dutertre and Moura 2006)

▷ Non-linear arithmetic, e.g: 2xy + 4xz2 − 5y ≤ 10 (Ábrahám et al. 2021; Borralleras et al. 2009; Jovanović and

Moura 2012; Zankl and Middeldorp 2010)

Example

Are there real solutions for x2y + yz + 2xyz + 4xy + 8xz + 16 = 0?

SMT solving for fun and profit 19 / 34

Machine Arithmetic — Bit-vectors (Brummayer and Biere 2009; Niemetz and Preiner 2023)

Combines arithmetic operations, bit-wise operations, shift, extraction, concatenation.

Most effective decision procedures rely primarily on bit-blasting, i.e., converting the bit-vector problem to an
equisatisfiable Boolean representation and leveraging state-of-the-art SAT solvers.

Example

Consider the following implementations of the absolute value opeartor for 32-bit integers:

0. abs0(x) := x < 0 ? −x : x
1. abs1(x) := (x⊕ (x>>a 31))− (x>>a 31)
2. abs2(x) := (x+ (x>>a 31))⊕ (x>>a 31)
3. abs3(x) := x− ((x<< 1) & (x>>a 31))

How do we prove that all four are equivalent to one another?

SMT solving for fun and profit 20 / 34

Machine Arithmetic – Floating-Points (Brain et al. 2019, 2014; Conchon et al. 2017)

FP in SMT

▷ Follows IEEE 754-2019

▷ FP number = triple of bit-vectors

▷ Wide range of operators

▶ take a rounding mode as input

▷ E.g., addition, multiplication, fused-multiplication-addition

▷ As with bit-vectors, most effective procedures rely on bit-blasting.

Example

Is addition associative in floating-point arithmetic, i.e., is a+ (b+ c) ̸= (a+ b) + c valid?

SMT solving for fun and profit 21 / 34

(Co-)Algebraic Data Types (Barrett et al. 2007; Reynolds and Blanchette 2017)

Family of user-definable theories

Example

Tree := nil | node(data : Int, left : Tree, right : Tree)

Distinctiveness: ∀h, t. nil ̸= h :: t
Exhaustiveness: ∀l. l = nil ∨ ∃h, t. h :: t

Injectivity: ∀h1, h2, t1, t2.
h1 :: t1 = h2 :: t2 ⇒ h1 = h2 ∧ t1 = t2

Selectors: ∀h, t. head(h :: t) = h ∧ tail(h :: t) = t
(Non-circularity: ∀l, x1, . . . , xn. l ̸= x1 :: · · · :: xn :: l)

SMT solving for fun and profit 22 / 34

Strings and regular expressions (Abdulla et al. 2015; Kiezun et al. 2009; Liang et al. 2014)

SMT Strings

▷ Represent common programming languages Unicode strings

▷ Supports a wide range of operators

▶ concatenation, length, substring, etc

▷ Regular expressions crucial for some applications, such as analysis of access control policies

Example

Can we have a string with at most three characters that also contains the string “BIRS”?

SMT solving for fun and profit 23 / 34

Other Interesting Theories

▷ Finite sets with cardinality (Bansal et al. 2016)

▷ Finite relations (Meng et al. 2017)

▷ Transcendental Functions (Cimatti et al. 2017b; Gao et al. 2013)

▷ Ordinary differential equations (Gao et al. 2013)

▷ Finite Fields (Hader et al. 2023; Ozdemir et al. 2023)

▷ . . .

SMT solving for fun and profit 24 / 34

Some SMT solvers also allow you to axiomatize your own theory

▷ The effective procedures discussed so far generally assume quantifier-free logical fragments

▷ However new applications may not fit directly into existing theories, which necessitates reasoning about
user-defined axioms

▷ Some solvers (notably, cvc5, veriT, and Z3) support them, but this support has caveats

▶ Undecidable in general

▶ Explosive heuristics

▶ Users want it to work as well as on quantifier-free problems

Example

What if we did not have a theory of arrays but wanted to reason about them?

SMT solving for fun and profit 25 / 34

The SMT Cycle

App. needs theory

Axiomatization
(Works well. . .
Until it doesn’t)

New Theory
Implementation

Theory
becomes standard

SMT solving for fun and profit 26 / 34

Application example: Software Verification

Software Verification

Example

vo id swap (i n t ∗ a , i n t ∗ b) {
∗a = ∗a + ∗b ;
∗b = ∗a − ∗b ;
∗a = ∗a − ∗b ;

}

Check if the swap is correct:

▷ Heap: Array(BV32) 7→ BV32

▷ Update heap line by line

▷ Check that
a* = old(b*) and b* = old(a*)

▷ Incorrect: aliasing

h1 = store(h0, a, h0[a] +32 h0[b])
h2 = store(h1, b, h1[a]−32 h1[b])
h3 = store(h2, a, h2[a]−32 h2[b])
¬(h3[a] = h0[b] ∧ h3[b] = h0[a])

SMT solving for fun and profit 27 / 34

Software Verification

Example

vo id swap (i n t ∗ a , i n t ∗ b) {
∗a = ∗a + ∗b ;
∗b = ∗a − ∗b ;
∗a = ∗a − ∗b ;

}

Check if the swap is correct:

▷ Heap: Array(BV32) 7→ BV32

▷ Update heap line by line

▷ Check that
a* = old(b*) and b* = old(a*)

▷ Incorrect: aliasing

h1 = store(h0, a, h0[a] +32 h0[b])
h2 = store(h1, b, h1[a]−32 h1[b])
h3 = store(h2, a, h2[a]−32 h2[b])
¬(h3[a] = h0[b] ∧ h3[b] = h0[a])

SMT solving for fun and profit 27 / 34

Software Verification

Example

vo id swap (i n t ∗ a , i n t ∗ b) {
∗a = ∗a + ∗b ;
∗b = ∗a − ∗b ;
∗a = ∗a − ∗b ;

}

Check if the swap is correct:

▷ Heap: Array(BV32) 7→ BV32

▷ Update heap line by line

▷ Check that
a* = old(b*) and b* = old(a*)

▷ Incorrect: aliasing

h1 = store(h0, a, h0[a] +32 h0[b])
h2 = store(h1, b, h1[a]−32 h1[b])
h3 = store(h2, a, h2[a]−32 h2[b])
¬(h3[a] = h0[b] ∧ h3[b] = h0[a])

SMT solving for fun and profit 27 / 34

SMT solver solution
a 7→ 0, b 7→ 0
h0[0] 7→ 1, h1[0] 7→ 2
h2[0] 7→ 0, h3[0] 7→ 0

Contract-based Software Verification

Example (Binary Search)

//@assume 0 <= n <= | a | &&
// f o r e a c h i i n [0 . . n−2] . a [i] <= a [i +1]
// @ensure (0 <= r e s ==> a [r e s] = k) &&
// (r e s < 0 ==> f o r e a c h i i n [0 . . n−1] . a [i] != k)
i n t Bina r ySea r ch (i n t [] a , i n t n , i n t k) {

i n t l = 0 ; i n t h = n ;
whi le (l < h) { // Find midd le v a l u e

// @ i n v a r i a n t 0 <= low < h igh <= l e n <= | a | &&
// f o r e a c h i i n [0 . . low −1] . a [i]<k &&
// f o r e a c h i i n [h i gh . . l en −1] . a [i] > k
i n t m = l + (h − l) / 2 ; i n t v = a [m] ;
i f (k < v) { l = m + 1 ; } e l s e i f (v < k) { h = m; }
e l s e { re tu rn m; }

}
re tu rn −1;

}

Example adapted from Moura and Bjørner 2010

SMT solving for fun and profit 28 / 34

Contract-based Software Verification

Example (Binary Search)

//@assume 0 <= n <= | a | &&
// f o r e a c h i i n [0 . . n−2] . a [i] <= a [i +1]
// @ensure (0 <= r e s ==> a [r e s] = k) &&
// (r e s < 0 ==> f o r e a c h i i n [0 . . n−1] . a [i] != k)
i n t Bina r ySea r ch (i n t [] a , i n t n , i n t k) {

i n t l = 0 ; i n t h = n ;
whi le (l < h) { // Find midd le v a l u e

// @ i n v a r i a n t 0 <= low < h igh <= l e n <= | a | &&
// f o r e a c h i i n [0 . . low −1] . a [i]<k &&
// f o r e a c h i i n [h i gh . . l en −1] . a [i] > k
i n t m = l + (h − l) / 2 ; i n t v = a [m] ;
i f (k < v) { l = m + 1 ; } e l s e i f (v < k) { h = m; }
e l s e { re tu rn m; }

}
re tu rn −1;

}

Example adapted from Moura and Bjørner 2010

SMT solving for fun and profit 28 / 34

Main approach
1 Compile source and annotations to a series of pre-conditions,

commands over the state, and post-conditions.

2 Generate verification conditions on SMT

Contract-based Software Verification

pre = 0 ≤ n ≤ |a| ∧ ∀i : Int 0 ≤ i ∧ i ≤ n− 2 ⇒ a[i] ≤ a[i+ 1]

post = (0 ≤ res ⇒ a[res] = k) ∧
(res < 0 ⇒ ∀i : Int 0 ≤ i ∧ i ≤ n− 1 ⇒ a[i] ̸= k)

inv = 0 ≤ l ∧ l ≤ h ∧ h ≤ n ∧ n ≤ |a| ∧
∀i : Int 0 ≤ i ∧ i ≤ l − 1 ⇒ a[i] < k ∧
∀i : Int h ≤ i ∧ i ≤ n− 1 ⇒ a[i] > k

pre ∧ ¬let l = 0, h = n in inv ∧ ∀l, h : Int inv ⇒
(¬(l < h) ⇒ post{res 7→ −1}) ∧
(l < h ⇒ let m = l + (h− l)/2, v = a[m] in

(k < v ⇒ inv{l 7→ m+ 1}) ∧
(¬(k < v) ∧ v < k ⇒ inv{n 7→ m}) ∧
(¬(k < v) ∧ ¬(v < k) ⇒ post{res 7→ m}))

SMT solving for fun and profit 29 / 34

Contract-based Software Verification

pre = 0 ≤ n ≤ |a| ∧ ∀i : Int 0 ≤ i ∧ i ≤ n− 2 ⇒ a[i] ≤ a[i+ 1]

post = (0 ≤ res ⇒ a[res] = k) ∧
(res < 0 ⇒ ∀i : Int 0 ≤ i ∧ i ≤ n− 1 ⇒ a[i] ̸= k)

inv = 0 ≤ l ∧ l ≤ h ∧ h ≤ n ∧ n ≤ |a| ∧
∀i : Int 0 ≤ i ∧ i ≤ l − 1 ⇒ a[i] < k ∧
∀i : Int h ≤ i ∧ i ≤ n− 1 ⇒ a[i] > k

pre ∧ ¬let l = 0, h = n in inv ∧ ∀l, h : Int inv ⇒
(¬(l < h) ⇒ post{res 7→ −1}) ∧
(l < h ⇒ let m = l + (h− l)/2, v = a[m] in

(k < v ⇒ inv{l 7→ m+ 1}) ∧
(¬(k < v) ∧ v < k ⇒ inv{n 7→ m}) ∧
(¬(k < v) ∧ ¬(v < k) ⇒ post{res 7→ m}))

SMT solving for fun and profit 29 / 34

Contract-based Software Verification

pre = 0 ≤ n ≤ |a| ∧ ∀i : Int 0 ≤ i ∧ i ≤ n− 2 ⇒ a[i] ≤ a[i+ 1]

post = (0 ≤ res ⇒ a[res] = k) ∧
(res < 0 ⇒ ∀i : Int 0 ≤ i ∧ i ≤ n− 1 ⇒ a[i] ̸= k)

inv = 0 ≤ l ∧ l ≤ h ∧ h ≤ n ∧ n ≤ |a| ∧
∀i : Int 0 ≤ i ∧ i ≤ l − 1 ⇒ a[i] < k ∧
∀i : Int h ≤ i ∧ i ≤ n− 1 ⇒ a[i] > k

pre ∧ ¬let l = 0, h = n in inv ∧ ∀l, h : Int inv ⇒
(¬(l < h) ⇒ post{res 7→ −1}) ∧
(l < h ⇒ let m = l + (h− l)/2, v = a[m] in

(k < v ⇒ inv{l 7→ m+ 1}) ∧
(¬(k < v) ∧ v < k ⇒ inv{n 7→ m}) ∧
(¬(k < v) ∧ ¬(v < k) ⇒ post{res 7→ m}))

SMT solving for fun and profit 29 / 34

SMT solver answer
Unsatisfiable

What’s next? What’s hot?

Stability

▷ Seemingly irrelevant changes (e.g. variable renaming, assertion order) can have unpredictable performance
impact.

▷ For the longest time SMT developers could get away with “these are NP-complete or undecidable
problems, we must use heuristics, so this is to be expected.”

▷ Users have been pushing back more and more so we had to accept we need to deal with this.

▷ Initial explorations:

▶ Normalization of input (Amrollahi et al. 2025)

▶ Identifying missing instances across mutated input (Zhou et al. 2025)

▶ Better engineering (Cebeci et al. 2025)

SMT solving for fun and profit 30 / 34

Improving hard theories

▷ Bitvectors (BV) and floating-point arithmetic (FP)

▶ Leveraging numerical methods in FP (Zhang et al. 2026)

▶ Algebraic methods for BV (Kaufmann and Biere 2021; Rath et al. 2024)

▶ CEGAR-based approaches for mitigating bit-blasting bottlenecks (Niemetz et al. 2024)

▷ Strings

▶ Automata-based approaches in Z3Noodler (Chocholatý et al. 2025) and OSTRICH (Hague et al. 2025)

▶ Symbolic derivatives in Z3 (Varatalu et al. 2025)

▷ Non-linear arithmetic

▶ Cylindrical algebraic decomposition (CAD) based methods in SMT-RAT (Ábrahám et al. 2021; Promies et al.

2025)

▶ MCSat-based methods in Yices (Lipparini et al. 2025)

▶ CAD and incremental linearization methods in cvc5 (Cimatti et al. 2017a; Kremer et al. 2022)

SMT solving for fun and profit 31 / 34

Proofs

▷ Numerous applications (correctness, integration with other systems, interpretability)

▶ Improving automation in Lean (Mohamed et al. 2025) and Isabelle (Lachnitt et al. 2025)

▶ Huge investment from AWS aiming to automate compliance via cvc5 proofs (Barbosa et al. 2023)

▶ cvc5 proofs may be going into the Linux kernel (Sun and Su 2025)

▷ Numerous challenges

▶ Enormous effort to instrument solvers to produce detailed proofs (Barbosa et al. 2022)

▶ No standard format or proof calculus, leading to lots of duplicated work (Hoenicke and Schindler 2022; Moura and

Bjørner 2008; Schurr et al. 2021)

▶ Proofs for complex theory solvers (e.g. CAD-based, automata-based) and rewriters (e.g. strings) are not as
mature

▶ Huge proofs that are costly to produce and costly to check

Lazy proof generation can help (Hitarth et al. 2024)

Shorter proofs via different proof calculi (Liew et al. 2020) or algorithms (Andreotti and Barbosa 2026)

SMT solving for fun and profit 32 / 34

Others

▷ Parallel solving

▶ Initial attempts of lifting cube-and-conquer to SMT (Hyvärinen et al. 2021; Wilson et al. 2023)

▶ Clause-sharing in portfolio solving (Barrett et al. 2024)

▷ Using a SAT solver with chronological backtracking

▶ . . .

SMT solving for fun and profit 33 / 34

Thanks!

SMT solving for fun and profit 34 / 34

SMT solving for fun and profit

Haniel Barbosa

BIRS Workshop 26w5626
Theory and Practice of SAT and Combinatorial Solving

Jan 13, 2026

Resulting proofs

▷ Preprocessing

▷ Clausification

▷ Propositional reasoning

▷ Theory reasoning
(UF, LIRA, Strings, . . .)

and
quantifier instantiation

▷ Theory combination

▷ Rewriting

SMT solving for fun and profit 35 / 34

Automated Compliance (Barbosa et al. 2023)

A
gr
ee
m
en
t Trusted Core

System

Model

Compliance
Controls

Compliance
Requirements

Compliance
Checker

Solver

Proof Store

Proof Rules

Proof
Checker

Query

Proof Certificate

1○ Formalization 3○ Validation2○ Checking

SMT solving for fun and profit 36 / 34

Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T

SMT solving for fun and profit 37 / 34

Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T

SMT solving for fun and profit 37 / 34

Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T

SMT solving for fun and profit 37 / 34

Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T

SMT solving for fun and profit 37 / 34

Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T

SMT solving for fun and profit 37 / 34

Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T

SMT solving for fun and profit 37 / 34

Bounded Model Checking

We can for example check if safety property P holds for 10 iterations.

▷ Unroll the loop 10 times or until property P is violated

▷ Check for each iteration if property P holds

C Code
int main () {

bool turn; // input
uint32_t a = 0, b = 0; // states
for (;;) {
turn = read_bool ();
assert (a != 3 || b != 3); // property P
if (turn) a = a + 1; // next(a)
else b = b + 1; // next(b)

}
}

Unroll
a0 = 0 ∧ b0 = 0
...check if P holds for a0, b0
a1 = next(a0) ∧ b1 = next(b0)
...check if P holds for a1, b1
a2 = next(a1) ∧ b2 = next(b1)
...check if P holds for a2, b2
· · ·

SMT solving for fun and profit 38 / 34

Symbolic Model Checking

To check the invariance of a state property S
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula P [x⃗]

5 Prove that P [x⃗] holds in all reachable states of (I[x⃗], R[x⃗, x⃗′])

SMT solving for fun and profit 39 / 34

Symbolic Model Checking

To check the invariance of a state property S
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula P [x⃗]

5 Prove that P [x⃗] holds in all reachable states of (I[x⃗], R[x⃗, x⃗′])

SMT solving for fun and profit 39 / 34

Symbolic Model Checking

Example: Parametric Resettable Counter

System

Vars

input pos int, n0
input bool r
int c, n

Initialization

c := 1
n := n0

Transitions

n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c ≤ n + 1

SMT solving for fun and profit 40 / 34

Symbolic Model Checking

Example: Parametric Resettable Counter

System

Vars

input pos int, n0
input bool r
int c, n

Initialization

c := 1
n := n0

Transitions

n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c ≤ n + 1

The transition relation contains infinitely many instances of the schema
above, one for each n0 > 0

SMT solving for fun and profit 40 / 34

Symbolic Model Checking

Example: Parametric Resettable Counter

System

Vars

input pos int, n0
input bool r
int c, n

Initialization

c := 1
n := n0

Transitions

n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c ≤ n + 1

Encoding in T = LIA

x⃗ := (c, n, r, n0)

I[x⃗] := c = 1
∧ n = n0

R[x⃗, x⃗′] := n′ = n
∧ (¬r′ ∧ c ̸= n ∨ c′ = 1)
∧ (r′ ∨ c = n ∨ c′ = c + 1)

P [x⃗] := c ≤ n + 1

SMT solving for fun and profit 40 / 34

Inductive Reasoning

M = (I[x⃗], R[x⃗, x⃗′])

To prove P [x] invariant for M it suffices
to show that it is inductive for M ,
i.e.,

(1) I[x⃗] |=T P [x⃗] (base case)
and

(2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′] (inductive step)

SMT solving for fun and profit 41 / 34

Inductive Reasoning

M = (I[x⃗], R[x⃗, x⃗′])

To prove P [x] invariant for M it suffices
to show that it is inductive for M ,
i.e.,

(1) I[x⃗] |=T P [x⃗] (base case)
and

(2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′] (inductive step)

SMT solving for fun and profit 41 / 34

Inductive Reasoning

M = (I[x⃗], R[x⃗, x⃗′])

To prove P [x] invariant for M it suffices
to show that it is inductive for M ,
i.e.,

(1) I[x⃗] |=T P [x⃗] (base case)
and

(2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′] (inductive step)

SMT solving for fun and profit 41 / 34

Problem: Not all invariants are inductive

For the parametric resettable counter,
P := c ≤ n+ 1 is invariant but (2) is falsifiable
e.g., by (c, n, r) = (4, 3, false) and (c, n, r)′ = (5, 3, false)

Strengthening Inductive Reasoning

(1) I[x⃗] |=T P [x⃗] (2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′]

Various approaches:

Strengthen P : find a property Q such that Q[x⃗] |=T P [x⃗] and prove Q inductive
(ex., interpolation-based MC, IC3, CHC)

Strengthen R: find an auxiliary invariant Q[x⃗] and use Q[x⃗] ∧R[x⃗, x⃗′] ∧Q[x⃗′] instead of R[x⃗, x⃗′]
(ex:, Houdini, invariant sifting)

Lengthen R: Consider increasingly longer R-paths R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧R[x⃗k, x⃗k+1]
(ex:, k-induction)

SMT solving for fun and profit 42 / 34

Strengthening Inductive Reasoning

(1) I[x⃗] |=T P [x⃗] (2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′]

Various approaches:

Strengthen P : find a property Q such that Q[x⃗] |=T P [x⃗] and prove Q inductive
(ex., interpolation-based MC, IC3, CHC)

Strengthen R: find an auxiliary invariant Q[x⃗] and use Q[x⃗] ∧R[x⃗, x⃗′] ∧Q[x⃗′] instead of R[x⃗, x⃗′]
(ex:, Houdini, invariant sifting)

Lengthen R: Consider increasingly longer R-paths R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧R[x⃗k, x⃗k+1]
(ex:, k-induction)

SMT solving for fun and profit 42 / 34

Strengthening Inductive Reasoning

(1) I[x⃗] |=T P [x⃗] (2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′]

Various approaches:

Strengthen P : find a property Q such that Q[x⃗] |=T P [x⃗] and prove Q inductive
(ex., interpolation-based MC, IC3, CHC)

Strengthen R: find an auxiliary invariant Q[x⃗] and use Q[x⃗] ∧R[x⃗, x⃗′] ∧Q[x⃗′] instead of R[x⃗, x⃗′]
(ex:, Houdini, invariant sifting)

Lengthen R: Consider increasingly longer R-paths R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧R[x⃗k, x⃗k+1]
(ex:, k-induction)

SMT solving for fun and profit 42 / 34

Strengthening Inductive Reasoning

(1) I[x⃗] |=T P [x⃗] (2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′]

Various approaches:

Strengthen P : find a property Q such that Q[x⃗] |=T P [x⃗] and prove Q inductive
(ex., interpolation-based MC, IC3, CHC)

Strengthen R: find an auxiliary invariant Q[x⃗] and use Q[x⃗] ∧R[x⃗, x⃗′] ∧Q[x⃗′] instead of R[x⃗, x⃗′]
(ex:, Houdini, invariant sifting)

Lengthen R: Consider increasingly longer R-paths R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧R[x⃗k, x⃗k+1]
(ex:, k-induction)

SMT solving for fun and profit 42 / 34

References

Abdulla, ParoshAziz et al. (2015). “Norn: An SMT Solver for String Constraints”. English. In: Computer Aided Verification. Ed. by

Daniel Kroening and Corina S. Păsăreanu. Vol. 9206. Lecture Notes in Computer Science. Springer International Publishing, pp. 462–469.

Ábrahám, Erika et al. (2021). “Deciding the consistency of non-linear real arithmetic constraints with a conflict driven search using

cylindrical algebraic coverings”. In: J. Log. Algebraic Methods Program. 119, p. 100633.

Amrollahi, Daneshvar et al. (2025). “Towards SMT Solver Stability via Input Normalization”. In:

Formal Methods In Computer-Aided Design (FMCAD). Ed. by Ahmed Irfan and Daniela Kaufmann. Vienna, Austria: TU Wien Academic
Press, pp. 84–93.

Andreotti, Bruno and Haniel Barbosa (2026). “Producing Shorter Congruence Closure Proofs in a State-of-the-Art SMT Solver”. In:

Verification, Model Checking, and Abstract Interpretation (VMCAI). Ed. by Yu-Fang Chen, Thomas Jensen, and Onďrej Lengál. Cham:
Springer Nature Switzerland, pp. 1–20.

Backes, John et al. (2018). “Semantic-based Automated Reasoning for AWS Access Policies using SMT”. In:

Formal Methods In Computer-Aided Design (FMCAD). Ed. by Nikolaj Bjørner and Arie Gurfinkel. IEEE, pp. 1–9.

Bansal, Kshitij et al. (June 2016). “A New Decision Procedure for Finite Sets and Cardinality Constraints in SMT”. In:

International Joint Conference on Automated Reasoning (IJCAR). Coimbra, Portugal, to appear.

Barbosa, Haniel et al. (2022). “Flexible Proof Production in an Industrial-Strength SMT Solver”. In:

International Joint Conference on Automated Reasoning (IJCAR). Ed. by Jasmin Blanchette, Laura Kovács, and Dirk Pattinson. Vol. 13385.
Lecture Notes in Computer Science. Springer, pp. 15–35.

Barbosa, Haniel et al. (2023). “Generating and Exploiting Automated Reasoning Proof Certificates”. In: Commun. ACM 66.10, pp. 86–95.

References

Barrett, Clark, Igor Shikanian, and Cesare Tinelli (2007). “An Abstract Decision Procedure for a Theory of Inductive Data Types”. In: JSAT

3.1-2, pp. 21–46.

Barrett, Clark W. et al. (2024). “SMT-D: New Strategies for Portfolio-Based SMT Solving”. In:

Formal Methods In Computer-Aided Design (FMCAD). Ed. by Nina Narodytska and Philipp Rümmer. IEEE, pp. 1–10.

Bjørner, Nikolaj S. and Lev Nachmanson (2024). “Arithmetic Solving in Z3”. In: Computer Aided Verification (CAV), Part I. Ed. by

Arie Gurfinkel and Vijay Ganesh. Vol. 14681. Lecture Notes in Computer Science. Springer, pp. 26–41.

Bofill, M. et al. (2008). “A Write-Based Solver for SAT Modulo the Theory of Arrays”. In:

Formal Methods in Computer-Aided Design, FMCAD, pp. 1–8.

Borralleras, C. et al. (2009). “Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic”. In:

22nd International Conference on Automated Deduction , CADE-22. Ed. by R. A. Schmidt. Vol. 5663. Lecture Notes in Computer Science.
Springer, pp. 294–305.

Bozzano, Marco et al. (2005). “An Incremental and Layered Procedure for the Satisfiability of Linear Arithmetic Logic”. English. In:

Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Nicolas Halbwachs and LenoreD. Zuck. Vol. 3440. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, pp. 317–333.

Brain, Martin, Florian Schanda, and Youcheng Sun (2019). “Building Better Bit-Blasting for Floating-Point Problems”. In:

Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part I. Ed. by Tomás Vojnar and Lijun Zhang. Vol. 11427. Lecture
Notes in Computer Science. Springer, pp. 79–98.

Brain, Martin et al. (2014). “Deciding floating-point logic with abstract conflict driven clause learning”. In: Formal Methods Syst. Des. 45.2,

pp. 213–245.

References

Brummayer, Robert and Armin Biere (2009). “Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays”. In:

Tools and Algorithms for the Construction and Analysis of Systems: 15th International Conference, TACAS 2009, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings.
Ed. by Stefan Kowalewski and Anna Philippou. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 174–177.

Cebeci, Can et al. (Aug. 2025). “A Conjecture Regarding SMT Instability”. In:

International Workshop on Satisfiability Modulo Theories (SMT). Vol. 4008. CEUR Workshop Proceedings. Edited by Jochen Hoenicke,
Sophie Tourret. Glasgow, UK: CEUR-WS.org, pp. 136–147.

Chocholatý, David et al. (2025). “Z3-Noodler 1.3: Shepherding Decision Procedures for Strings with Model Generation”. In:

Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part II. Ed. by Arie Gurfinkel and Marijn Heule. Vol. 15697.
Lecture Notes in Computer Science. Springer, pp. 23–44.

Cimatti, Alessandro et al. (2017a). “Invariant Checking of NRA Transition Systems via Incremental Reduction to LRA with EUF”. In:

Tools and Algorithms for Construction and Analysis of Systems (TACAS). Ed. by Axel Legay and Tiziana Margaria. Vol. 10205. Lecture
Notes in Computer Science, pp. 58–75.

— (2017b). “Satisfiability Modulo Transcendental Functions via Incremental Linearization”. In:

Proc. Conference on Automated Deduction (CADE). Ed. by Leonardo de Moura. Vol. 10395. Lecture Notes in Computer Science. Springer,
pp. 95–113.

Conchon, Sylvain et al. (2017). “A Three-Tier Strategy for Reasoning About Floating-Point Numbers in SMT”. In:

Computer Aided Verification (CAV), Part II. Ed. by Rupak Majumdar and Viktor Kuncak. Vol. 10427. Lecture Notes in Computer Science.
Springer, pp. 419–435.

Cotton, S. and O. Maler (2006). “Fast and Flexible Difference Constraint Propagation for DPLL(T)”. In:

9th International Conference on Theory and Applications of Satisfiability Testing, SAT’06. Ed. by A. Biere and C. P. Gomes. Vol. 4121.
Lecture Notes in Computer Science. Springer, pp. 170–183.

References

Dutertre, Bruno and Leonardo de Moura (2006). “A Fast Linear-Arithmetic Solver for DPLL(T)”. English. In:

Computer Aided Verification (CAV). Ed. by Thomas Ball and Robert B. Jones. Vol. 4144. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pp. 81–94.

Gao, Sicun, Soonho Kong, and Edmund M Clarke (2013). “Satisfiability modulo ODEs”. In:

Formal Methods in Computer-Aided Design (FMCAD), 2013. IEEE, pp. 105–112.

Hader, Thomas, Daniela Kaufmann, and Laura Kovács (2023). “SMT Solving over Finite Field Arithmetic”. In:

Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by Ruzica Piskac and Andrei Voronkov. Vol. 94. EPiC Series in
Computing. EasyChair, pp. 238–256.

Hague, Matthew et al. (2025). “OSTRICH2: Solver for Complex String Constraints”. In:

Formal Methods In Computer-Aided Design (FMCAD). Ed. by Ahmed Irfan and Daniela Kaufmann. Vienna, Austria: TU Wien Academic
Press, pp. 145–158.

Hitarth, S. et al. (2024). “Extending DRAT to SMT”. In: Formal Methods In Computer-Aided Design (FMCAD). Ed. by Nina Narodytska

and Philipp Rümmer. IEEE, pp. 1–11.

Hoenicke, Jochen and Tanja Schindler (2022). “A Simple Proof Format for SMT”. In:

International Workshop on Satisfiability Modulo Theories (SMT). Ed. by David Déharbe and Antti E. J. Hyvärinen. Vol. 3185. CEUR
Workshop Proceedings. CEUR-WS.org, pp. 54–70.

Hyvärinen, Antti E. J., Matteo Marescotti, and Natasha Sharygina (2021). “Lookahead in Partitioning SMT”. In:

Formal Methods In Computer-Aided Design (FMCAD). IEEE, pp. 271–279.

References

Jovanović, Dejan and Leonardo de Moura (2012). “Solving Non-linear Arithmetic”. English. In:

International Joint Conference on Automated Reasoning (IJCAR). Ed. by Bernhard Gramlich, Dale Miller, and Uli Sattler. Vol. 7364. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, pp. 339–354.

Kaufmann, Daniela and Armin Biere (2021). “AMulet 2.0 for Verifying Multiplier Circuits”. In:

Tools and Algorithms for Construction and Analysis of Systems (TACAS), Part II. Ed. by Jan Friso Groote and Kim Guldstrand Larsen.
Vol. 12652. Lecture Notes in Computer Science. Springer, pp. 357–364.

Kiezun, Adam et al. (2009). “HAMPI: a solver for string constraints”. In:

Proceedings of the eighteenth international symposium on Software testing and analysis. ACM, pp. 105–116.

Kremer, Gereon et al. (2022). “Cooperating Techniques for Solving Nonlinear Real Arithmetic in the cvc5 SMT Solver (System

Description)”. In: International Joint Conference on Automated Reasoning (IJCAR). Ed. by Jasmin Blanchette, Laura Kovács, and
Dirk Pattinson. Vol. 13385. Lecture Notes in Computer Science. Springer, pp. 95–105.

Lachnitt, Hanna et al. (2025). “Improving the SMT Proof Reconstruction Pipeline in Isabelle/HOL”. In: Interactive Theorem Proving (ITP).

Ed. by Yannick Forster and Chantal Keller. Vol. 352. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 26:1–26:22.

Lahiri, Shuvendu K. and Madanlal Musuvathi (2005). “An Efficient Decision Procedure for UTVPI Constraints”. In:

5th International Workshop on Frontiers of Combining Systems, FroCos’05. Ed. by B. Gramlich. Vol. 3717. Lecture Notes in Computer
Science. Springer, pp. 168–183.

Liang, Tianyi et al. (2014). “A DPLL(T) Theory Solver for a Theory of Strings and Regular Expressions”. In:

Computer Aided Verification (CAV). Ed. by Armin Biere and Roderick Bloem. Vol. 8559. Lecture Notes in Computer Science. Springer,
pp. 646–662.

References

Liew, Vincent et al. (2020). “Verifying Properties of Bit-vector Multiplication Using Cutting Planes Reasoning”. In:

Formal Methods In Computer-Aided Design (FMCAD). IEEE, pp. 194–204.

Lipparini, Enrico et al. (2025). “Boosting MCSat Modulo Nonlinear Integer Arithmetic via Local Search”. In:

Proc. Conference on Automated Deduction (CADE). Ed. by Clark W. Barrett and Uwe Waldmann. Vol. 15943. Lecture Notes in Computer
Science. Springer, pp. 95–115.

McCarthy, John (1993). “Towards a mathematical science of computation”. In: Program Verification. Springer, pp. 35–56.

Meng, Baoluo et al. (2017). “Relational Constraint Solving in SMT”. In:

Proceedings of the 26th International Conference on Automated Deduction. Ed. by Leonardo de Moura. Vol. 10395. Lecture Notes in
Computer Science. Springer, pp. 148–165.

Mohamed, Abdalrhman et al. (2025). “lean-smt: An SMT Tactic for Discharging Proof Goals in Lean”. In: ed. by Ruzica Piskac and

Zvonimir Rakamaric. Vol. 15933. Lecture Notes in Computer Science. Springer, pp. 197–212.

Moura, Leonardo Mendonça de and Nikolaj Bjørner (2008). “Proofs and Refutations, and Z3”. In:

Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) Workshops. Ed. by Piotr Rudnicki et al. Vol. 418. CEUR Workshop
Proceedings. CEUR-WS.org.

— (2009). “Generalized, efficient array decision procedures”. In: Formal Methods In Computer-Aided Design (FMCAD). IEEE, pp. 45–52.

Moura, Leonardo Mendonça de and Nikolaj S. Bjørner (2010). “Bugs, Moles and Skeletons: Symbolic Reasoning for Software Development”.

In: International Joint Conference on Automated Reasoning (IJCAR). Ed. by Jürgen Giesl and Reiner Hähnle. Vol. 6173. Lecture Notes in
Computer Science. Springer, pp. 400–411.

Nelson, Greg and Derek C. Oppen (1980). “Fast Decision Procedures Based on Congruence Closure”. In: J. ACM 27.2, pp. 356–364.

References

Niemetz, Aina and Mathias Preiner (2023). “Bitwuzla”. In: Computer Aided Verification (CAV), Part II. Ed. by Constantin Enea and

Akash Lal. Vol. 13965. Lecture Notes in Computer Science. Springer, pp. 3–17.

Niemetz, Aina, Mathias Preiner, and Yoni Zohar (2024). “Scalable Bit-Blasting with Abstractions”. In:

Computer Aided Verification (CAV), Part I. Ed. by Arie Gurfinkel and Vijay Ganesh. Vol. 14681. Lecture Notes in Computer Science.
Springer, pp. 178–200.

Nieuwenhuis, Robert and Albert Oliveras (July 2005). “DPLL(T) with Exhaustive Theory Propagation and its Application to Difference

Logic”. In: Proceedings of the 17th International Conference on Computer Aided Verification, CAV’05 (Edimburgh, Scotland). Ed. by
Kousha Etessami and Sriram K. Rajamani. Vol. 3576. Lecture Notes in Computer Science. Springer, pp. 321–334.

— (2007). “Fast congruence closure and extensions”. In: Information and Computation 205.4. Special Issue: 16th International Conference

on Rewriting Techniques and Applications, pp. 557 –580.

Ozdemir, Alex et al. (2023). “Satisfiability Modulo Finite Fields”. In: Computer Aided Verification (CAV), Part II. Ed. by Constantin Enea

and Akash Lal. Vol. 13965. Lecture Notes in Computer Science. Springer, pp. 163–186.

Promies, Valentin et al. (2025). “More is Less: Adding Polynomials for Faster Explanations in NLSAT”. In:

Proc. Conference on Automated Deduction (CADE). Ed. by Clark W. Barrett and Uwe Waldmann. Vol. 15943. Lecture Notes in Computer
Science. Springer, pp. 116–135.

Rath, Jakob et al. (2024). “PolySAT: Word-level Bit-vector Reasoning in Z3”. In:

Verified Software. Theories, Tools and Experiments - 16th International Conference, VSTTE 2024, Prague, Czech Republic, October 14-15, 2024, Revised Selected Papers.
Ed. by Jonathan Protzenko and Azalea Raad. Vol. 15525. Lecture Notes in Computer Science. Springer, pp. 47–69.

Reynolds, Andrew and Jasmin Christian Blanchette (2017). “A Decision Procedure for (Co)datatypes in SMT Solvers”. In:

J. Autom. Reasoning 58.3, pp. 341–362.

References

Rungta, Neha (2022). “A Billion SMT Queries a Day (Invited Paper)”. In: Computer Aided Verification (CAV), Part I. Ed. by

Sharon Shoham and Yakir Vizel. Vol. 13371. Lecture Notes in Computer Science. Springer, pp. 3–18.

Schurr, Hans-Jörg et al. (2021). “Alethe: Towards a Generic SMT Proof Format (extended abstract)”. In: CoRR abs/2107.02354. arXiv:
2107.02354.

Stump, Aaron et al. (2001). “A Decision Procedure for an Extensional Theory of Arrays”. In: Logic In Computer Science (LICS). IEEE

Computer Society, pp. 29–37.

Sun, Hao and Zhendong Su (2025). “Prove It to the Kernel: Precise Extension Analysis via Proof-Guided Abstraction Refinement”. In:

Proceedings of the ACM SIGOPS 31st Symposium on Operating Systems Principles. SOSP ’25. Lotte Hotel World, Seoul, Republic of Korea:
Association for Computing Machinery, 736–751.

Varatalu, Ian Erik et al. (2025). “Regex Decision Procedures in Extended RE#”. In: ed. by Ruzica Piskac and Zvonimir Rakamaric.

Vol. 15933. Lecture Notes in Computer Science. Springer, pp. 106–129.

Wang, C. et al. (2005). “Deciding Separation Logic Formulae by SAT and Incremental Negative Cycle Elimination”. In:

12h International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR’05. Ed. by G. Sutcliffe and A. Voronkov.
Vol. 3835. Lecture Notes in Computer Science. Springer, pp. 322–336.

Wilson, Amalee et al. (2023). “Partitioning Strategies for Distributed SMT Solving”. In:

Formal Methods In Computer-Aided Design (FMCAD). Ed. by Alexander Nadel and Kristin Yvonne Rozier. IEEE, pp. 199–208.

Zankl, Harald and Aart Middeldorp (2010). “Satisfiability of Non-linear (Ir)rational Arithmetic”. In:

16th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR’10. Ed. by Edmund M. Clarke and
Andrei Voronkov. Vol. 6355. Lecture Notes in Computer Science. Springer, pp. 481–500.

https://arxiv.org/abs/2107.02354

References

Zhang, Yuanzhuo, Zhoulai Fu, and Binoy Ravindran (2026). Scalable Floating-Point Satisfiability via Staged Optimization. arXiv:

2601.04492 [cs.PL].

Zhou, Yi et al. (2025). “Cazamariposas: Automated Instability Debugging in SMT-Based Program Verification”. In:

Proc. Conference on Automated Deduction (CADE). Ed. by Clark W. Barrett and Uwe Waldmann. Vol. 15943. Lecture Notes in Computer
Science. Springer, pp. 75–94.

https://arxiv.org/abs/2601.04492

	Introduction
	SMT solver functionality
	Background theories
	Application example: Software Verification
	What's next? What's hot?
	References

