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Introduction



Automated Reasoning for Formal Methods

Two successful examples:

SAT: propositional formalization, Boolean reasoning

+ high degree of efficiency
− expressive (all NP-complete problems) but involved encodings

SMT: first-order formalization, Boolean + domain-specific reasoning

+ improves expressivity and scalability
− some (but acceptable) loss of efficiency
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The Basic SMT Problem

Determining the satisfiability of a logical formula wrt some combination T of background theories

Example
n > 3 ∗ m + 1 ∧ ( f (n) ≤ head (l1) ∨ l2 = f (n) :: l1 )

Linear Arithm.
(LIA)

Equality
(EUF)

Lists
(ADT)

SMT formulas are formulas in
many-sorted FOL with built-in symbols
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SMT solvers

Are highly efficient tools for the SMT problem based on specialized logic engines

Are changing the way people solve problems in Computer Science and beyond:
▷ instead of building a special-purpose tool

▷ translate problem into a logical formula

▷ use an SMT solver as backend reasoner

Not only easier, often
better
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Some Applications of SMT

Model Checking

(in)finite-state systems
hybrid systems
abstraction refinement
state invariant

generation
interpolation

Type Checking

dependent types
semantic subtyping
type error localization

Program Analysis

symbolic execution

program verification
verification in separation logic
(non-)termination
loop invariant generation
procedure summaries
race analysis
concurrency errors detection

Software Synthesis

syntax-guided function synthesis
automated program repair
synthesis of reactive systems
synthesis of self-stabilizing systems
network schedule synthesis

SMT solving for fun and profit 6 / 34



More Applications of SMT

Security

automated exploit
generation

protocol debugging
protocol verification
analysis of access control policies
run-time monitoring

Compilers

compilation validation
optimization of arithmetic

computations

Planning

motion planning
nonlinear PDDL planning

Software Engineering

system model consistency
design analysis
test case generation
verification of ATL

transformations
semantic search for code reuse
interactive (software)

requirements prioritization
generating instances of meta-models
behavioral conformance of

web services

Machine Learning

verification of deep NNs

Business

verification of business rules
spreadsheet debugging
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Heavily used at AWS

Billions SMT queries a day via
Zelkovaa

aBackes et al. 2018; Rungta 2022



SMT solver functionality



SMT Solver Basic Functionality

Background theory T

SMT
Solver

φ1, . . . , φn

sat

unknown

sat/unsat: there is a/no model M of T such that

M |= φ1 ∧ · · · ∧ φn

unknown: inconclusive — because of resource limits or incompleteness

Uninterpreted Funs x = y ⇒ f(x) = f(y)

Integer/Real Arithmetic 2x+ y = 0 ∧ 2x− y = 4 → x = 1

Floating Point Arithmetic x+ 1 ̸= NaN ∧ x <∞ ⇒ x+ 1 > x

Bit-vectors 4 · (x≫ 2) = x&∼3

Strings and RegExs x = y · z ∧ z ∈ ab∗ ⇒ |x| > |y|
Arrays i = j ⇒ store(a, i, x)[j] = x
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SMT Solver Output: Satisfying Assignments

Background theory T

SMT
Solver

φ[x⃗] α
sat

α is a satisfying assignment for x⃗ = (x1, . . . , xn):

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v⃗ = (v1, . . . , vn)

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

Note.

x⃗ may consist of first- and second-order variables
(aka, uninterpreted constants and function symbols)
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SMT Solver Output: Unsat Cores

Background theory T

SMT
Solver

φ1, . . . , φn ψ1, . . . , ψm
unsat

ψ1, . . . , ψm is a unsat core of {φ1, . . . , φn}:

1. {ψ1, . . . , ψm} ⊆ {φ1, . . . , φn}
2. {ψ1, . . . , ψm} is unsat in T

3. {ψ1, . . . , ψm} is minimal (or smallish)

SMT solving for fun and profit 10 / 34



SMT Solver Output: Unsat Cores

Background theory T

SMT
Solver

φ1, . . . , φn ψ1, . . . , ψm
unsat

ψ1, . . . , ψm is a unsat core of {φ1, . . . , φn}:
1. {ψ1, . . . , ψm} ⊆ {φ1, . . . , φn}
2. {ψ1, . . . , ψm} is unsat in T

3. {ψ1, . . . , ψm} is minimal (or smallish)

SMT solving for fun and profit 10 / 34



SMT Solver Output: Proofs

Background theory T

SMT
Solver

φ1, . . . , φn π
unsat

π is a checkable proof object for {φ1, . . . , φn}:

1. π is a proof term in some formal proof system

2. π expresses a refutation of {φ1, . . . , φn}
3. π can be efficiently checked by an external proof checker

▶ The “efficiently” there is actually a highly debatable point...
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Extended Functionality: Interpolation

Background theory T

SMT
Solver

φ1[x⃗1],
φ2[x⃗2]

ψ[x⃗]
unsat

ψ is a logical interpolant of φ1 and φ2:

1. φ1 |=T ψ and ψ |=T ¬φ2

2. x⃗ = x⃗1 ∩ x⃗2
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Extended Functionality: Abduction

Background theory T

SMT
Solver

Γ,¬φ ψ
sat

ψ is an abduction hypothesis for φ wrt Γ:

1 Γ, ψ is satisfiable in T

2 Γ, ψ |=T φ

3 ψ is maximal, e.g., with respect to |=T

(if ψ′ satisfies 1 and 2 and ψ |=T ψ′ then ψ′ |=T ψ)
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Extended Functionality: Quantifier Elimination

Background theory T

SMT
Solver

Γ[x⃗], φ[x⃗, y⃗] ψ[x⃗]

ψ is a projection of φ over y⃗ with respect to Γ:

1 Γ |=T ψ ⇔ ∃y⃗ φ
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Extended Functionality: Optimization

Background theory T

SMT
Solver

φ[x⃗],
o = t[x⃗]

α
sat

α is a an optimal assignment for φ:

1 α = {x1 7→ v1, . . . , xn 7→ vn} for some values v1, . . . , vn

2 M |= φ[x⃗ 7→ v⃗] for some model M of T

3 α minimizes/maximizes objective o
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Background theories



Background Theories

Uninterpreted Funs x = y ⇒ f(x) = f(y)

Integer/Real Arithmetic 2x+ y = 0 ∧ 2x− y = 4 → x = 1

Floating Point Arithmetic x+ 1 ̸= NaN ∧ x <∞ ⇒ x+ 1 > x

Bit-vectors 4 · (x≫ 2) = x&∼3

Strings and RegExs x = y · z ∧ z ∈ ab∗ ⇒ |x| > |y|
Arrays i = j ⇒ store(a, i, x)[j] = x

Algebraic Data Types x ̸= Leaf ⇒ ∃ l, r : Tree(α). ∃ a : α.
x = Node(l, a, r)

Finite Sets e1 ∈ x ∧ e2 ∈ x \ e1 ⇒ ∃y, z : Set(α).
|y| = |z| ∧ x = y ∪ z ∧ y ̸= ∅

Finite Relations (x, y) ∈ r ∧ (y, z) ∈ r ⇒ (x, z) ∈ r ▷◁ s
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Equality and Uninterpreted Functions (EUF)(Nelson and Oppen 1980; Nieuwenhuis and Oliveras 2007)

Simplest first-order theory with equality, applications of uninterpreted functions, and variables of
uninterpreted sorts

For all sorts σ, σ′ and function symbols f : σ → σ′

Reflexivity: ∀x : σ. x = x
Symmetry: ∀x : σ. x = y ⇒ y = x
Transitivity: ∀x, y : σ. x = y ∧ y = z ⇒ x = z
Congruence: ∀x⃗, y⃗ : σ⃗. x⃗ = y⃗ ⇒ f(x⃗) = f(y⃗)

Congruence closure decision procedure can efficiently handle conjunctions of equality literals.

Example

f(f(f(a))) = b g(f(a), b) = a f(a) = a
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Arrays (Bofill et al. 2008; McCarthy 1993; Moura and Bjørner 2009; Stump et al. 2001)

Operates over sorts Array(σi, σe), σi, σe and function symbols

[ ] : Array(σi, σe)× σi → σe

store : Array(σi, σe)× σi × σ → Array(σi, σe)

For any index sort σi and element sort σe

Read-Over-Write-1: ∀a, i, e. store(a, i, e)[i] = e
Read-Over-Write-2: ∀a, i, j, e. i ̸= j ⇒ store(a, i, e)[j] = a[j]

Extensionality: ∀a, b, i. a ̸= b⇒ ∃i. a[i] ̸= b[i]

Efficient decision procedure based on congruence closure to handle equality reasoning and strong filters for
restricting the application of inferences capturing the above axioms.

Example

store(store(a, i, a[j]), j, a[i]) = store(store(a, j, a[i]), i, a[j])
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Arithmetic

Restricted fragments, over the reals or the integers, support efficient methods:

▷ Bounds: x ▷◁ k with ▷◁ ∈ {<, >, ≤, ≥, =} (Bozzano et al. 2005)

▷ Difference constraints: x− y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =} (Cotton and Maler 2006; Nieuwenhuis and Oliveras

2005; Wang et al. 2005)

▷ UTVPI: ±x± y ▷◁ k, with ▷◁ ∈ {<, >, ≤, ≥, =} (Lahiri and Musuvathi 2005)

▷ Linear arithmetic, e.g: 2x− 3y + 4z ≤ 5 (Bjørner and Nachmanson 2024; Dutertre and Moura 2006)

▷ Non-linear arithmetic, e.g: 2xy + 4xz2 − 5y ≤ 10 (Ábrahám et al. 2021; Borralleras et al. 2009; Jovanović and

Moura 2012; Zankl and Middeldorp 2010)

Example

Are there real solutions for x2y + yz + 2xyz + 4xy + 8xz + 16 = 0?
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Machine Arithmetic — Bit-vectors (Brummayer and Biere 2009; Niemetz and Preiner 2023)

Combines arithmetic operations, bit-wise operations, shift, extraction, concatenation.

Most effective decision procedures rely primarily on bit-blasting, i.e., converting the bit-vector problem to an
equisatisfiable Boolean representation and leveraging state-of-the-art SAT solvers.

Example

Consider the following implementations of the absolute value opeartor for 32-bit integers:

0. abs0(x) := x < 0 ? −x : x
1. abs1(x) := (x⊕ (x>>a 31))− (x>>a 31)
2. abs2(x) := (x+ (x>>a 31))⊕ (x>>a 31)
3. abs3(x) := x− ((x<< 1) & (x>>a 31))

How do we prove that all four are equivalent to one another?

SMT solving for fun and profit 20 / 34



Machine Arithmetic – Floating-Points (Brain et al. 2019, 2014; Conchon et al. 2017)

FP in SMT

▷ Follows IEEE 754-2019

▷ FP number = triple of bit-vectors

▷ Wide range of operators

▶ take a rounding mode as input

▷ E.g., addition, multiplication, fused-multiplication-addition

▷ As with bit-vectors, most effective procedures rely on bit-blasting.

Example

Is addition associative in floating-point arithmetic, i.e., is a+ (b+ c) ̸= (a+ b) + c valid?
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(Co-)Algebraic Data Types (Barrett et al. 2007; Reynolds and Blanchette 2017)

Family of user-definable theories

Example

Tree := nil | node(data : Int, left : Tree, right : Tree)

Distinctiveness: ∀h, t. nil ̸= h :: t
Exhaustiveness: ∀l. l = nil ∨ ∃h, t. h :: t

Injectivity: ∀h1, h2, t1, t2.
h1 :: t1 = h2 :: t2 ⇒ h1 = h2 ∧ t1 = t2

Selectors: ∀h, t. head(h :: t) = h ∧ tail(h :: t) = t
(Non-circularity: ∀l, x1, . . . , xn. l ̸= x1 :: · · · :: xn :: l)
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Strings and regular expressions (Abdulla et al. 2015; Kiezun et al. 2009; Liang et al. 2014)

SMT Strings

▷ Represent common programming languages Unicode strings

▷ Supports a wide range of operators

▶ concatenation, length, substring, etc

▷ Regular expressions crucial for some applications, such as analysis of access control policies

Example

Can we have a string with at most three characters that also contains the string “BIRS”?
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Other Interesting Theories

▷ Finite sets with cardinality (Bansal et al. 2016)

▷ Finite relations (Meng et al. 2017)

▷ Transcendental Functions (Cimatti et al. 2017b; Gao et al. 2013)

▷ Ordinary differential equations (Gao et al. 2013)

▷ Finite Fields (Hader et al. 2023; Ozdemir et al. 2023)

▷ . . .
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Some SMT solvers also allow you to axiomatize your own theory

▷ The effective procedures discussed so far generally assume quantifier-free logical fragments

▷ However new applications may not fit directly into existing theories, which necessitates reasoning about
user-defined axioms

▷ Some solvers (notably, cvc5, veriT, and Z3) support them, but this support has caveats

▶ Undecidable in general

▶ Explosive heuristics

▶ Users want it to work as well as on quantifier-free problems

Example

What if we did not have a theory of arrays but wanted to reason about them?
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The SMT Cycle

App. needs theory

Axiomatization
(Works well. . .
Until it doesn’t)

New Theory
Implementation

Theory
becomes standard
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Application example: Software Verification



Software Verification

Example

vo id swap ( i n t ∗ a , i n t ∗ b ) {
∗a = ∗a + ∗b ;
∗b = ∗a − ∗b ;
∗a = ∗a − ∗b ;

}

Check if the swap is correct:

▷ Heap: Array(BV32) 7→ BV32

▷ Update heap line by line

▷ Check that
a* = old(b*) and b* = old(a*)

▷ Incorrect: aliasing

h1 = store(h0, a, h0[a] +32 h0[b])
h2 = store(h1, b, h1[a]−32 h1[b])
h3 = store(h2, a, h2[a]−32 h2[b])
¬(h3[a] = h0[b] ∧ h3[b] = h0[a])
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SMT solver solution
a 7→ 0, b 7→ 0
h0[0] 7→ 1, h1[0] 7→ 2
h2[0] 7→ 0, h3[0] 7→ 0



Contract-based Software Verification

Example (Binary Search)

//@assume 0 <= n <= | a | &&
// f o r e a c h i i n [ 0 . . n−2] . a [ i ] <= a [ i +1]
// @ensure (0 <= r e s ==> a [ r e s ] = k ) &&
// ( r e s < 0 ==> f o r e a c h i i n [ 0 . . n−1] . a [ i ] != k )
i n t Bina r ySea r ch ( i n t [ ] a , i n t n , i n t k ) {

i n t l = 0 ; i n t h = n ;
whi le ( l < h ) { // Find midd le v a l u e

// @ i n v a r i a n t 0 <= low < h igh <= l e n <= | a | &&
// f o r e a c h i i n [ 0 . . low −1] . a [ i ]<k &&
// f o r e a c h i i n [ h i gh . . l en −1] . a [ i ] > k
i n t m = l + (h − l ) / 2 ; i n t v = a [m] ;
i f ( k < v ) { l = m + 1 ; } e l s e i f ( v < k ) { h = m; }
e l s e { re tu rn m; }

}
re tu rn −1;

}

Example adapted from Moura and Bjørner 2010
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Main approach
1 Compile source and annotations to a series of pre-conditions,

commands over the state, and post-conditions.

2 Generate verification conditions on SMT



Contract-based Software Verification

pre = 0 ≤ n ≤ |a| ∧ ∀i : Int 0 ≤ i ∧ i ≤ n− 2 ⇒ a[i] ≤ a[i+ 1]

post = (0 ≤ res ⇒ a[res] = k) ∧
(res < 0 ⇒ ∀i : Int 0 ≤ i ∧ i ≤ n− 1 ⇒ a[i] ̸= k)

inv = 0 ≤ l ∧ l ≤ h ∧ h ≤ n ∧ n ≤ |a| ∧
∀i : Int 0 ≤ i ∧ i ≤ l − 1 ⇒ a[i] < k ∧
∀i : Int h ≤ i ∧ i ≤ n− 1 ⇒ a[i] > k

pre ∧ ¬let l = 0, h = n in inv ∧ ∀l, h : Int inv ⇒
(¬(l < h) ⇒ post{res 7→ −1}) ∧
(l < h ⇒ let m = l + (h− l)/2, v = a[m] in

(k < v ⇒ inv{l 7→ m+ 1}) ∧
(¬(k < v) ∧ v < k ⇒ inv{n 7→ m}) ∧
(¬(k < v) ∧ ¬(v < k) ⇒ post{res 7→ m}))
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SMT solver answer
Unsatisfiable



What’s next? What’s hot?



Stability

▷ Seemingly irrelevant changes (e.g. variable renaming, assertion order) can have unpredictable performance
impact.

▷ For the longest time SMT developers could get away with “these are NP-complete or undecidable
problems, we must use heuristics, so this is to be expected.”

▷ Users have been pushing back more and more so we had to accept we need to deal with this.

▷ Initial explorations:

▶ Normalization of input (Amrollahi et al. 2025)

▶ Identifying missing instances across mutated input (Zhou et al. 2025)

▶ Better engineering (Cebeci et al. 2025)
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Improving hard theories

▷ Bitvectors (BV) and floating-point arithmetic (FP)

▶ Leveraging numerical methods in FP (Zhang et al. 2026)

▶ Algebraic methods for BV (Kaufmann and Biere 2021; Rath et al. 2024)

▶ CEGAR-based approaches for mitigating bit-blasting bottlenecks (Niemetz et al. 2024)

▷ Strings

▶ Automata-based approaches in Z3Noodler (Chocholatý et al. 2025) and OSTRICH (Hague et al. 2025)

▶ Symbolic derivatives in Z3 (Varatalu et al. 2025)

▷ Non-linear arithmetic

▶ Cylindrical algebraic decomposition (CAD) based methods in SMT-RAT (Ábrahám et al. 2021; Promies et al.

2025)

▶ MCSat-based methods in Yices (Lipparini et al. 2025)

▶ CAD and incremental linearization methods in cvc5 (Cimatti et al. 2017a; Kremer et al. 2022)
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Proofs

▷ Numerous applications (correctness, integration with other systems, interpretability)

▶ Improving automation in Lean (Mohamed et al. 2025) and Isabelle (Lachnitt et al. 2025)

▶ Huge investment from AWS aiming to automate compliance via cvc5 proofs (Barbosa et al. 2023)

▶ cvc5 proofs may be going into the Linux kernel (Sun and Su 2025)

▷ Numerous challenges

▶ Enormous effort to instrument solvers to produce detailed proofs (Barbosa et al. 2022)

▶ No standard format or proof calculus, leading to lots of duplicated work (Hoenicke and Schindler 2022; Moura and

Bjørner 2008; Schurr et al. 2021)

▶ Proofs for complex theory solvers (e.g. CAD-based, automata-based) and rewriters (e.g. strings) are not as
mature

▶ Huge proofs that are costly to produce and costly to check

Lazy proof generation can help (Hitarth et al. 2024)

Shorter proofs via different proof calculi (Liew et al. 2020) or algorithms (Andreotti and Barbosa 2026)
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Others

▷ Parallel solving

▶ Initial attempts of lifting cube-and-conquer to SMT (Hyvärinen et al. 2021; Wilson et al. 2023)

▶ Clause-sharing in portfolio solving (Barrett et al. 2024)

▷ Using a SAT solver with chronological backtracking

▶ . . .
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Thanks!
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Resulting proofs

▷ Preprocessing

▷ Clausification

▷ Propositional reasoning

▷ Theory reasoning
(UF, LIRA, Strings, . . . )

and
quantifier instantiation

▷ Theory combination

▷ Rewriting
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Automated Compliance (Barbosa et al. 2023)

A
gr
ee
m
en
t Trusted Core

System

Model

Compliance
Controls

Compliance
Requirements

Compliance
Checker

Solver

Proof Store

Proof Rules

Proof
Checker

Query

Proof Certificate

1○ Formalization 3○ Validation2○ Checking
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Bounded Model Checking

To check the reachability of a class S of bad states
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula B[x⃗]

5 Find a k such that I[x⃗0] ∧R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧B[x⃗k] is satisfiable in T
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Bounded Model Checking

We can for example check if safety property P holds for 10 iterations.

▷ Unroll the loop 10 times or until property P is violated

▷ Check for each iteration if property P holds

C Code
int main () {

bool turn; // input
uint32_t a = 0, b = 0; // states
for (;;) {
turn = read_bool ();
assert (a != 3 || b != 3); // property P
if (turn) a = a + 1; // next(a)
else b = b + 1; // next(b)

}
}

Unroll
a0 = 0 ∧ b0 = 0
...check if P holds for a0, b0
a1 = next(a0) ∧ b1 = next(b0)
...check if P holds for a1, b1
a2 = next(a1) ∧ b2 = next(b1)
...check if P holds for a2, b2
· · ·
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Symbolic Model Checking

To check the invariance of a state property S
for a system model M :

1 Choose a theory T decided by an SMT solver
(e.g., quantifier-free linear arithmetic and EUF)

2 Represent system states as values for a tuple x⃗ of state vars

3 Encode system M as T -formulas (I[x⃗], R[x⃗, x⃗′])
where

▶ I encodes M ’s initial state condition and
▶ R encodes M ’s transition relation

4 Encode S as a T -formula P [x⃗]

5 Prove that P [x⃗] holds in all reachable states of (I[x⃗], R[x⃗, x⃗′])
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Symbolic Model Checking

Example: Parametric Resettable Counter

System

Vars

input pos int, n0
input bool r
int c, n

Initialization

c := 1
n := n0

Transitions

n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c ≤ n + 1

SMT solving for fun and profit 40 / 34



Symbolic Model Checking

Example: Parametric Resettable Counter

System

Vars

input pos int, n0
input bool r
int c, n

Initialization

c := 1
n := n0

Transitions

n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c ≤ n + 1

The transition relation contains infinitely many instances of the schema
above, one for each n0 > 0
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Symbolic Model Checking

Example: Parametric Resettable Counter

System

Vars

input pos int, n0
input bool r
int c, n

Initialization

c := 1
n := n0

Transitions

n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Property

c ≤ n + 1

Encoding in T = LIA

x⃗ := (c, n, r, n0)

I[x⃗] := c = 1
∧ n = n0

R[x⃗, x⃗′] := n′ = n
∧ (¬r′ ∧ c ̸= n ∨ c′ = 1)
∧ (r′ ∨ c = n ∨ c′ = c + 1)

P [x⃗] := c ≤ n + 1
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Inductive Reasoning

M = (I[x⃗], R[x⃗, x⃗′])

To prove P [x] invariant for M it suffices
to show that it is inductive for M ,
i.e.,

(1) I[x⃗] |=T P [x⃗] (base case)
and

(2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′] (inductive step)
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Problem: Not all invariants are inductive

For the parametric resettable counter,
P := c ≤ n+ 1 is invariant but (2) is falsifiable
e.g., by (c, n, r) = (4, 3, false) and (c, n, r)′ = (5, 3, false)



Strengthening Inductive Reasoning

(1) I[x⃗] |=T P [x⃗] (2) P [x⃗] ∧R[x⃗, x⃗′] |=T P [x⃗′]

Various approaches:

Strengthen P : find a property Q such that Q[x⃗] |=T P [x⃗] and prove Q inductive
(ex., interpolation-based MC, IC3, CHC)

Strengthen R: find an auxiliary invariant Q[x⃗] and use Q[x⃗] ∧R[x⃗, x⃗′] ∧Q[x⃗′] instead of R[x⃗, x⃗′]
(ex:, Houdini, invariant sifting)

Lengthen R: Consider increasingly longer R-paths R[x⃗0, x⃗1] ∧ · · · ∧R[x⃗k−1, x⃗k] ∧R[x⃗k, x⃗k+1]
(ex:, k-induction)
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Workshop Proceedings. CEUR-WS.org, pp. 54–70.

Hyvärinen, Antti E. J., Matteo Marescotti, and Natasha Sharygina (2021). “Lookahead in Partitioning SMT”. In:

Formal Methods In Computer-Aided Design (FMCAD). IEEE, pp. 271–279.



References
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