
Scalable fine-grained proofs for formula processing

Haniel
Barbosa1

Jasmin
Blanchette1,2

Pascal
Fontaine1

1University of Lorraine, CNRS, Inria, LORIA, Nancy, France
2Vrije Universiteit Amsterdam, The Netherlands

CADE-26

2017–08–09, Gothenburg, Sweden

Scalable fine-grained proofs for formula processing 1 / 14



Why proofs?

B to check the result for unsatisfiable/valid formulas

B for solver/prover cooperation

B as a debugging facility

B for evaluation purposes (how good is the algorithm?)

B as a part of the reasoning framework (e.g. conflict clauses)

B to extract cores

B to compute interpolants

Scalable fine-grained proofs for formula processing 2 / 14



Challenges for proofs in FOL

B Collecting and storing proof information efficiently

no convergence, but quite active

[KBT+16; HBR+15; KV13; Sch13; BODF09; WDF+09; Mos08; MB08; SZS04]

B Producing proofs for sophisticated processing techniques

scalable fine-grained proofs

B Producing proofs for modules that use external tools

depends on tool

arbitrarily complex to reconstruct information

B Standardizing a proof format

open

Scalable fine-grained proofs for formula processing 3 / 14



Challenges for proofs in FOL

B Collecting and storing proof information efficiently
no convergence, but quite active

[KBT+16; HBR+15; KV13; Sch13; BODF09; WDF+09; Mos08; MB08; SZS04]

B Producing proofs for sophisticated processing techniques
proofs with holes or too coarse

scalable fine-grained proofs

B Producing proofs for modules that use external tools
depends on tool

arbitrarily complex to reconstruct information

B Standardizing a proof format
open

Scalable fine-grained proofs for formula processing 3 / 14



Challenges for proofs in FOL

B Collecting and storing proof information efficiently
no convergence, but quite active

[KBT+16; HBR+15; KV13; Sch13; BODF09; WDF+09; Mos08; MB08; SZS04]

B Producing proofs for sophisticated processing techniques
proofs with holes or too coarse scalable fine-grained proofs

B Producing proofs for modules that use external tools
depends on tool

arbitrarily complex to reconstruct information

B Standardizing a proof format
open

Scalable fine-grained proofs for formula processing 3 / 14



Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier
reasoning

B SAT solver: resolution

A ∨ ` B ∨ `
A ∨B

Antecedents: A ∨ `, B ∨ `
Pivot: ` or `
Resolvent: A ∨B = (A ∨ `) � (B ∨ `)

B theory solvers: theory lemmas

¬(a ' c) ∨ ¬(c ' b) ∨ a ' b ¬(a ' b) ∨ f(a) ' f(b)

¬(y > 1) ∨ ¬(x < 1) ∨ y > x

B instantiation module: instantiation lemmas

¬(∀x. ψ[x]) ∨ ψ[t]

Scalable fine-grained proofs for formula processing 4 / 14



Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier
reasoning

B SAT solver: resolution

A ∨ ` B ∨ `
A ∨B

Antecedents: A ∨ `, B ∨ `
Pivot: ` or `
Resolvent: A ∨B = (A ∨ `) � (B ∨ `)

B theory solvers: theory lemmas

¬(a ' c) ∨ ¬(c ' b) ∨ a ' b ¬(a ' b) ∨ f(a) ' f(b)

¬(y > 1) ∨ ¬(x < 1) ∨ y > x

B instantiation module: instantiation lemmas

¬(∀x. ψ[x]) ∨ ψ[t]

Scalable fine-grained proofs for formula processing 4 / 14



Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier
reasoning

B SAT solver: resolution

A ∨ ` B ∨ `
A ∨B

Antecedents: A ∨ `, B ∨ `
Pivot: ` or `
Resolvent: A ∨B = (A ∨ `) � (B ∨ `)

B theory solvers: theory lemmas

¬(a ' c) ∨ ¬(c ' b) ∨ a ' b ¬(a ' b) ∨ f(a) ' f(b)

¬(y > 1) ∨ ¬(x < 1) ∨ y > x

B instantiation module: instantiation lemmas

¬(∀x. ψ[x]) ∨ ψ[t]

Scalable fine-grained proofs for formula processing 4 / 14



Proofs in veriT

Resolution chains, input formulas, tautologies for theory and quantifier
reasoning

B SAT solver: resolution

A ∨ ` B ∨ `
A ∨B

Antecedents: A ∨ `, B ∨ `
Pivot: ` or `
Resolvent: A ∨B = (A ∨ `) � (B ∨ `)

B theory solvers: theory lemmas

¬(a ' c) ∨ ¬(c ' b) ∨ a ' b ¬(a ' b) ∨ f(a) ' f(b)

¬(y > 1) ∨ ¬(x < 1) ∨ y > x

B instantiation module: instantiation lemmas

¬(∀x. ψ[x]) ∨ ψ[t]

Scalable fine-grained proofs for formula processing 4 / 14



What is hard about proofs for formula processing?

Resolution does not capture all transformations

Some transformations do not preserve logical equivalence

Code is lengthy and deals with many cases

Scalable fine-grained proofs for formula processing 5 / 14



What is hard about proofs for formula processing?

Resolution does not capture all transformations

Some transformations do not preserve logical equivalence

Code is lengthy and deals with many cases

Scalable fine-grained proofs for formula processing 5 / 14



What is hard about proofs for formula processing?

Resolution does not capture all transformations

Some transformations do not preserve logical equivalence

Code is lengthy and deals with many cases

Scalable fine-grained proofs for formula processing 5 / 14



Proving formula processing

Extensible framework to represent proofs for processing techniques
involving locally replacing equals by equals in the presence of binders

Some instances:

Skolemization: (¬∀x. p(x)) ' ¬ p(εx. ¬ p(x))

let elimination: (let x ' a in p(x, x)) ' p(a, a)

theory simplifications: (k + 1×0 < k) ' (k < k)

B Challenge is to manipulate bound variables and substitutions soundly
and efficiently

Scalable fine-grained proofs for formula processing 6 / 14



Proving formula processing

Extensible framework to represent proofs for processing techniques
involving locally replacing equals by equals in the presence of binders

Some instances:

Skolemization: (¬∀x. p(x)) ' ¬ p(εx. ¬ p(x))

let elimination: (let x ' a in p(x, x)) ' p(a, a)

theory simplifications: (k + 1×0 < k) ' (k < k)

B Challenge is to manipulate bound variables and substitutions soundly
and efficiently

Scalable fine-grained proofs for formula processing 6 / 14



Proving formula processing

Extensible framework to represent proofs for processing techniques
involving locally replacing equals by equals in the presence of binders

Some instances:

Skolemization: (¬∀x. p(x)) ' ¬ p(εx. ¬ p(x))

let elimination: (let x ' a in p(x, x)) ' p(a, a)

theory simplifications: (k + 1×0 < k) ' (k < k)

B Challenge is to manipulate bound variables and substitutions soundly
and efficiently

Scalable fine-grained proofs for formula processing 6 / 14



Inference system

A context Γ fixes a set of variables and specifies a substitution

substitution

bound variable

Rules have the form

transformation assumptions

derivations of premises

B Semantically, the judgment expresses the equality of the terms Γ(t)
and u for all variables fixed by Γ

Scalable fine-grained proofs for formula processing 7 / 14



Inference system

A context Γ fixes a set of variables and specifies a substitution

substitution

bound variable

Rules have the form

transformation assumptions

derivations of premises

B Semantically, the judgment expresses the equality of the terms Γ(t)
and u for all variables fixed by Γ

Scalable fine-grained proofs for formula processing 7 / 14



Example of ‘let’ expansion

Cong
B a ' a

Refl
x 7→ a B x ' a

Refl
x 7→ a B x ' a

Cong
x 7→ a B p(x, x) ' p(a, a)

Let
B (let x ' a in p(x, x)) ' p(a, a)

Scalable fine-grained proofs for formula processing 8 / 14



Example of theory simplification

Cong
B k ' k

Taut×
B 1×0 ' 0

Cong
B k+ 1×0 ' k+ 0

Taut+
B k+ 0 ' k

Trans
B k+ 1×0 ' k

Cong
B k ' k

Cong
B (k+ 1×0 < k) ' (k < k)

Scalable fine-grained proofs for formula processing 9 / 14



Output skolemization

The skolemization proof of the formula ¬∀x. p(x):

Refl
x 7→ εx. ¬ p(x) B x ' εx. ¬ p(x)

Cong
x 7→ εx. ¬ p(x) B p(x) ' p(εx. ¬ p(x))

Sko ∀
B (∀x. p(x)) ' p(εx. ¬ p(x))

Cong
B (¬∀x. p(x)) ' ¬ p(εx. ¬ p(x))

veriT syntax:

(.c0 (Sko All :conclusion ((∀x. p(x)) ' p(εx. ¬ p(x)))
:args (x 7→ (εx. ¬ p(x)))
:subproof ((.c1 (Refl :conclusion (x ' (εx. ¬ p(x)))))

(.c2 (Cong :clauses (.c1)
:conclusion (p(x) ' p(εx. ¬ p(x))))))))

(.c3 (Cong :clauses (.c0) :conclusion ((¬∀x. p(x)) ' ¬ p(εx. ¬ p(x)))))

Scalable fine-grained proofs for formula processing 10 / 14



Output skolemization

The skolemization proof of the formula ¬∀x. p(x):

Refl
x 7→ εx. ¬ p(x) B x ' εx. ¬ p(x)

Cong
x 7→ εx. ¬ p(x) B p(x) ' p(εx. ¬ p(x))

Sko ∀
B (∀x. p(x)) ' p(εx. ¬ p(x))

Cong
B (¬∀x. p(x)) ' ¬ p(εx. ¬ p(x))

veriT syntax:

(.c0 (Sko All :conclusion ((∀x. p(x)) ' p(εx. ¬ p(x)))
:args (x 7→ (εx. ¬ p(x)))
:subproof ((.c1 (Refl :conclusion (x ' (εx. ¬ p(x)))))

(.c2 (Cong :clauses (.c1)
:conclusion (p(x) ' p(εx. ¬ p(x))))))))

(.c3 (Cong :clauses (.c0) :conclusion ((¬∀x. p(x)) ' ¬ p(εx. ¬ p(x)))))

Scalable fine-grained proofs for formula processing 10 / 14



Proof-producing contextual recursion

function process(∆, t)
match t

case x:
return build var(∆, x)

case f(t̄n):
∆̄′

n ← (ctx app(∆, f, t̄n, i))
n
i=1

return build app
(
∆, ∆̄′

n, f, t̄n, (process(∆′
i, ti))

n
i=1

)
case Qx. ϕ:

∆′ ← ctx quant(∆, Q, x, ϕ)
return build quant(∆, ∆′, Q, x, ϕ, process(∆′, ϕ))

case let x̄n ' r̄n in t′:
∆′ ← ctx let(∆, x̄n, r̄n, t

′)
return build let(∆, ∆′, x̄n, r̄n, t

′, process(∆′, t′))

B Parameterized by a notion of context and plugin functions

Scalable fine-grained proofs for formula processing 11 / 14



Theoretical properties

Soundness of inference rules proven through an encoding into simply typed
λ-calculus

Correctness of proof-producing contextual recursion algorithm

Cost of proof production is linear and of proof checking is (almost) linear∗
∗ assuming suitable data structures

Scalable fine-grained proofs for formula processing 12 / 14



Implementation

Proof output for veriT

Framework implemented with a proof-producing contextual recursion
algorithm

⊕ fine-grained proofs for most processing transformations

⊕ No negative impact on performance

⊕ More transformations in proof producing mode

⊕ Dramatic simplification of the code base

Prototype checker in Isabelle/HOL

Maps proofs into Isabelle theorems

⊕ Judgements encoded in λ-calculus

Scalable fine-grained proofs for formula processing 13 / 14



Implementation

Proof output for veriT

Framework implemented with a proof-producing contextual recursion
algorithm

⊕ fine-grained proofs for most processing transformations

⊕ No negative impact on performance

⊕ More transformations in proof producing mode

⊕ Dramatic simplification of the code base

Prototype checker in Isabelle/HOL

Maps proofs into Isabelle theorems

⊕ Judgements encoded in λ-calculus

Scalable fine-grained proofs for formula processing 13 / 14



Conclusions

B Centralizes manipulation of bound variables and substitutions

B Accommodates many transformations (e.g. Skolemization)

B Proof checking is (almost) linear

B Implementation and integration within veriT

Future work

B Support global rewritings within the framework

B Support richer logics (e.g. HOL)

B Implement proof reconstruction in Isabelle/HOL

Scalable fine-grained proofs for formula processing 14 / 14



Conclusions

B Centralizes manipulation of bound variables and substitutions

B Accommodates many transformations (e.g. Skolemization)

B Proof checking is (almost) linear

B Implementation and integration within veriT

Future work

B Support global rewritings within the framework

B Support richer logics (e.g. HOL)

B Implement proof reconstruction in Isabelle/HOL

Scalable fine-grained proofs for formula processing 14 / 14



References

Guy Katz, Clark W. Barrett, Cesare Tinelli, Andrew Reynolds, and
Liana Hadarean. “Lazy proofs for DPLL(T)-based SMT solvers”. In:
Formal Methods In Computer-Aided Design (FMCAD). Ed. by Ruzica Piskac and
Muralidhar Talupur. IEEE, 2016, pp. 93–100.

Liana Hadarean, Clark W. Barrett, Andrew Reynolds, Cesare Tinelli, and
Morgan Deters. “Fine Grained SMT Proofs for the Theory of Fixed-Width
Bit-Vectors”. In:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by
Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov.
Vol. 9450. Lecture Notes in Computer Science. Springer, 2015, pp. 340–355.

Laura Kovács and Andrei Voronkov. “First-Order Theorem Proving and Vampire”.
English. In: Computer Aided Verification (CAV). Ed. by Natasha Sharygina and

Helmut Veith. Vol. 8044. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 1–35.

Stephan Schulz. “System Description: E 1.8”. English. In:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by
Ken McMillan, Aart Middeldorp, and Andrei Voronkov. Vol. 8312. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2013, pp. 735–743.



References

Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and
Pascal Fontaine. “veriT: An Open, Trustable and Efficient SMT-Solver”. In:
Proc. Conference on Automated Deduction (CADE). Ed. by Renate A. Schmidt.
Vol. 5663. Lecture Notes in Computer Science. Springer, 2009, pp. 151–156.

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,
Martin Suda, and Patrick Wischnewski. “SPASS Version 3.5”. English. In:
Proc. Conference on Automated Deduction (CADE). Ed. by RenateA. Schmidt.
Vol. 5663. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009,
pp. 140–145.

Micha l Moskal. “Rocket-Fast Proof Checking for SMT Solvers”. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS). Ed. by
C. R. Ramakrishnan and Jakob Rehof. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 486–500.

Leonardo Mendonça de Moura and Nikolaj Bjørner. “Proofs and Refutations, and
Z3”. In:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) Workshops.
Ed. by Piotr Rudnicki, Geoff Sutcliffe, Boris Konev, Renate A. Schmidt, and
Stephan Schulz. Vol. 418. CEUR Workshop Proceedings. CEUR-WS.org, 2008.



References

Geoff Sutcliffe, Jürgen Zimmer, and Stephan Schulz. “TSTP Data-Exchange
Formats for Automated Theorem Proving Tools”. In:
Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems.
Ed. by Weixiong Zhang and Volker Sorge. Vol. 112. Frontiers in Artificial
Intelligence and Applications. IOS Press, 2004, pp. 201–215.


