CVC4Sy: Smart and Fast Term Enumeration for Syntax-Guided Synthesis

https://github.com/CVC4/CVC4

Andrew Reynolds Haniel Barbosa Cesare Tinelli

The University
! of Iowa

Andres Nötzli Clark Barrett

CAV 2019 2019–07–17, New York, USA

- \triangleright Specification is given by T-formula: $\exists f.\forall \bar{x}.\varphi[f,\bar{x}]$
- \triangleright Syntactic restrictions given by context-free grammar R

- \triangleright Specification is given by T-formula: $\exists f \forall \bar{x}$. $\varphi[f, \bar{x}]$
- \triangleright Syntactic restrictions given by context-free grammar R
- \triangleright Commonly solved via enumerative CEGIS [Solar-Lezama et al. ASPLOS'06]

$$
I ::= 0 | 1 | x | y | I + I | I - I
$$
\n

Solution	Solution	Solution	Solution
ComperExample	Solution	UATE-Fexample	3f. $\forall \bar{x}$. $f(x, y) > x + 1$
W=0; y = 1	W=0; y = 0	1	

CVC4Sy: SyGuS extension of the CVC4 SMT solver

 \triangleright CVC4 is an efficient SMT solver supporting a wide range of theories \triangleright Strings, bit-vector, (non-)linear arithmetic, algebraic datatypes, ...

SyGuS solver is based on a combination of methods

- **Enumerative CEGIS**
- \blacktriangleright Advanced techniques
	- **Counterexample-guided quantifier instantiation** [Reynolds et al. CAV'15]
	- Divide-and-conquer enumeration via decision tree learning \Box

[Alur et al. TACAS'17, Barbosa et al. FMCAD'19]

CVC4Sy: SyGuS extension of the CVC4 SMT solver

 \triangleright CVC4 is an efficient SMT solver supporting a wide range of theories \triangleright Strings, bit-vector, (non-)linear arithmetic, algebraic datatypes, ...

SyGuS solver is based on a combination of methods

- **F**numerative CEGIS
- \blacktriangleright Advanced techniques
	- Counterexample-guided quantifier instantiation [Reynolds et al. CAV'15]
	- Divide-and-conquer enumeration via decision tree learning

[Alur et al. TACAS'17, Barbosa et al. FMCAD'19]

 \triangleright Bounded enumeration, according to term ordering (e.g. term size)

 \triangleright If there is a solution up to enumeration threshold, guaranteed to find it

 \triangleright Bounded enumeration, according to term ordering (e.g. term size)

 \triangleright If there is a solution up to enumeration threshold, guaranteed to find it

- \triangleright Bounded enumeration, according to term ordering (e.g. term size)
- \triangleright If there is a solution up to enumeration threshold, guaranteed to find it

- \triangleright Bounded enumeration, according to term ordering (e.g. term size)
- \triangleright If there is a solution up to enumeration threshold, guaranteed to find it

From Grammars to Datatypes to Theory Terms

 \triangleright Syntax restrictions encoded as algebraic datatypes

Grammar $I \ ::= \ 0 \ | \ 1 \ | \ x \ | \ y \ | \ I + I \ | \ I - I \ | \ \text{ite}(B, I, I)$ $B \nightharpoonup B > B \mid I \simeq I \mid \neg B \mid B \wedge B$

Datatypes

$$
\begin{array}{lcl}\n\mathcal{I} & = & 0 \mid 1 \mid \times \mid y \mid \mathsf{plus}(\mathcal{I}, \mathcal{I}) \mid \mathsf{minus}(\mathcal{I}, \mathcal{I}) \mid \mathsf{ite}(\mathcal{B}, \mathcal{I}, \mathcal{I}) \\
\mathcal{B} & = & \mathsf{geq}(\mathcal{I}, \mathcal{I}) \mid \mathsf{eq}(\mathcal{I}, \mathcal{I}) \mid \mathsf{not}(\mathcal{B}) \mid \mathsf{and}(\mathcal{B}, \mathcal{B})\n\end{array}
$$

 \triangleright Datatype values are translated to corresponding theory terms $plus(x, 1) \rightarrow x + 1$

Smart Strategy

- \triangleright Uses datatype solver to generate new terms
- \triangleright Redundant candidates are blocked via learned constraints
- \triangleright Admits several optimizations via different classes of constraints

Example

```
Blocking the candidate x + 1:
```

$$
\neg \mathsf{is}_{\mathsf{plus}}(d) \vee \neg \mathsf{is}_{\mathsf{x}}(\mathsf{sel}^{\mathcal{I}}_1(d)) \vee \neg \mathsf{is}_1(\mathsf{sel}^{\mathcal{I}}_2(d))
$$

where d is the datatype constant representing the solution.

Blocking via Theory Rewriting with Generalization

- \triangleright Pervasive goal: enumerate fewer terms!
- \triangleright Terms equivalent up to rewriting are redundant
	- \triangleright Blocking constraints added to discard redundancies

Blocking via Theory Rewriting with Generalization

- Pervasive goal: enumerate fewer terms!
- \triangleright Terms equivalent up to rewriting are redundant
	- \triangleright Blocking constraints added to discard redundancies
- Sometimes the redundancy is maintained even with different subterms
- Blocking minimal term skeleton that determines rewritten form
	- \blacktriangleright Replace each subterm in given term by fresh variable
	- **Rewrite**
	- \blacktriangleright Check if rewritten form stays the same

Example

$$
ite(x \simeq 0 \land y \ge 0, 0, x) \downarrow = x \downarrow
$$

Blocking via Theory Rewriting with Generalization

- \triangleright Pervasive goal: enumerate fewer terms!
- \triangleright Terms equivalent up to rewriting are redundant
	- \triangleright Blocking constraints added to discard redundancies
- Sometimes the redundancy is maintained even with different subterms
- \triangleright Blocking minimal term skeleton that determines rewritten form
	- \blacktriangleright Replace each subterm in given term by fresh variable
	- \blacktriangleright Rewrite
	- \blacktriangleright Check if rewritten form stays the same

Example

ite($x \approx 0 \land y \ge 0$, $0, x$) $\downarrow = x \downarrow$ but the subterm $y \ge 0$ is irrelevant: ite $(x \simeq 0 \wedge w, 0, x) \downarrow = x \downarrow$.

\triangleright Blocking via CEGIS with Generalization

 \blacktriangleright Generalize failed candidate solutions Ex.: If ite($x \ge 0$, x , $y + 1$) fails on point $(3,3)$ and $f(x,y) \le x - 1$ then we can block all ite $(x \geq 0, x, z)$

\triangleright Blocking via Evaluation Unfolding

- Encode relationships between datatype and theory terms
- Partially evaluates candidates on counterexamples during enumeration

Fast Strategy

- \triangleright Smart strategy generates a large number of blocking constraints and effectiveness of optimizations depends on grammar
- \triangleright Alternative: brute-force enumeration rather than constraint solving
	- \triangleright Incompatible with generalizations and evaluation unfolding

Algorithm

Given an upper bound on term size k , for all

$$
k_1 + \ldots + k_n + \text{ite}(n > 0, 1, 0) = k.
$$

- \triangleright Enumerate terms of size k_i of type τ_i , store in $S^{k_i}_{\tau_i}$
- \vartriangleright Add $\mathsf{C}(t_1,\ldots,t_n)$ to $S^k_{\tau_i}$ with $t_i\in S^{k_i}_{\tau_i}$ for all constructors

 \triangleright Cache terms globally, only add terms unique up to rewriting

Evaluation

Benchmark sets:

- ▶ SyGuS-COMP 2018: all five tracks
- \blacktriangleright Lustre: invariant synthesis problems for the verification of Lustre models
- \blacktriangleright IC-BV: invertibility conditions for bit-vector operators
- CegisT: bit-vector synthesis problems

 \triangleright Comparison against EUSolver

 \triangleright Evaluated the impact of different enumeration strategies and each of the optimizations

Comparisons

 \triangleright Sometimes better to be smart \triangleright s: smart, f: fast, h: hybrid

Lustre set (invariant synthesis) 1800s timeout, 485 benchmarks CrCi set (cryptography circuits) 1800s timeout, 214 benchmarks

Comparisons

PBE-Bitvectors and PBE-Strings sets 1800s timeout, 862 benchmarks

Comparisons

1800s timeout, 1704 problems from SyGuS-COMP'18

- a: auto mode picks best enumeration strategy depending on problem
- \triangleright si: single-invocation solver used when quantifier-elimination can be applied to an input (only 16% of benchmarks)

Conclusions

- \triangleright CVC4SY is a state-of-the-art SyGuS solver
- \triangleright SyGuS-COMP'15-18: won CLIA track
- SyGuS-COMP'18-19: won General and PBE tracks

\triangleright SyGuS-COMP'19: won Invariant track for the first time

- ▶ New Unif+PI enumeration [Barbosa, Reynolds et al. FMCAD'19]
- \triangleright Recent improvements include
	- Extensions to the theory of datatypes [Reynolds et al. IJCAR'18]
	- \triangleright Better rewrites in the underlying SMT solver
		- SyGuS for rewrite rule enumeration [Nötzli, Reynolds, Barbosa et al. SAT'19]
		- Better string rewrites **and in the string rewrites** [Reynolds, Nötzli et al. CAV'19]

CVC4Sy: Smart and Fast Term Enumeration for Syntax-Guided Synthesis

https://github.com/CVC4/CVC4

Andrew Reynolds Haniel Barbosa Cesare Tinelli

The University
! of Iowa

Andres Nötzli Clark Barrett

CAV 2019 2019–07–17, New York, USA