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Why higher-order logic?

Higher-Order logic

> Expressive
» Mathematics
» Verification conditions

> The language of proof assistants
» lIsabelle, Coq, Lean

Automation
> Hard to automatize

> Few provers to reason on it
LEO-II, Leo-lll, Satalax

Towards HO unification in HOSMT

Challenge
> New techniques for SMT

> Avoid automatic translation
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Outline

> What we mean by higher-order logic

> A pragmatic extension of an SMT solver to higher-order

» Ground decision procedure
» Quantifiers and lambdas
» Evaluation

> Towards higher-order unification



Fragments of interest

Features Predicate calculus  A-free  A-calculus
function v v v
functional arguments X v v
quantification on objects v v v
quantification on functions X v v
partial applications X v v
anonymous functions X X v

> Henkin semantics
» Function interpretations restricted to expressible terms

> Extensionality
Ve f(z) = g(z) & =g
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A pragmatic extension into HOSMT




A CDCL(T) SMT solver

SMT solver Instantiation

K_b module ’\ Model
SMT formula (_ Instance
UNSAT
Ground

Rewriter

solver

> Rewriter simplifies terms

z+0— 2z a®a— L (str.replace = (str.++ z z) y) > =

> Ground solver enumerates assignments EU Q

» E is a set of ground literals {a<bb<atz, z~0, f(a) £ f(b)}
» Q is a set of quantified clauses {Vzyz. f(z) # f(2) V g(y) ~ h(z)}
> Instantiation module generates instances of Q f(a) 2 f(b) V g(a) ~ h(b)

Towards HO unification in HOSMT 3/15



Our pragmatic extension

> A-lifting at rewriter

Ax.t — Vx. fz ~t, where f is a fresh symbol

> Explicit applications introduced during solving

» Lazy encoding
» Lazy extensionality lemmas
» Polynomial model construction for partial functions

> Extending E-matching algorithm for instantiation
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Handling partial applications: applicative encoding

encoding

For all terms of the shape (((fr,—..—r,—0c @1)...) ay)) : o given a
family of symbols @ we have the translation App defined as following:

App(((f a1)...) an)) = @(Q(... Q(f,a1), ..., an))

fab~bA fa(fab)~gb Q(@(f,a),b) ~ bAQ(Q(f,a), @Q(f,a),b)) ~ @(g, b)

where f, g become constant symbols

app translation
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Lazy encoding

> Turn all partial applications into total
> Use first-order procedure on App(E)

> Add remaining equalites between regular terms
E" = App(E) U{App(f(at,...,an)) =~ f(a1,...;an), ...}

> Only for partial function applications!

> Check again E’

Example
fa~gnf(a,a)#g(a)Ag(a) = h(a) = {Q(f,a) =g, f(a,a) % g(a), gla) = h(a)} C E
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Handling extentionality

(VZ f(z) = g(2)) < f ~g

> The “«" direction is ensured by the functional congruence axiom:

f~g—(Vz f(T)~g(2))

> The “—" direction is ensured by f(k) £ g(k) for some Skolem k

> f(k) % g(k)V f ~ g is added for each pair of functions of finite type
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Avoiding exponential model construction

Functions are interpreted as if-then-else:

M(f) = Avite(x = t1,81,...ite(x = ty_1,80-1,80)---)

Partial applications can lead to exponentially many cases!

f1(0) = fi() A fr(1) = fo
J2(0) =~ fo(1) A fa(1) =~ f3
f3(0) = f3(1) A f3(1) =2

8 ite entries to model that fi(z,y,2) ~ 2, for z,y,z € {0,1}

Polynomial construction in the “depth” of functions chain

M(f1) = dzyz. ite(z ~ 0, M(f2)(y, 2), ite(x = 1, M(f2)(y, 2), -))
M(f2) = Azy. ite(x ~ 0, M(f3)(y),ite(z ~ 1, M(f3)(y),-))
M(fs) = Az, ite(r ~0,2,ite(z ~ 1,2,.))
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Instantiation strategies: trigger-based

Trigger-based instantiation (E-matching): search for relevant
instantiations according to a set of triggers and E-matching

> E={=P(a),~P(b),P(c),~R(b)} and Q = {Vz. P(z) V R(z)}
> Assume the set of triggers {(P(x))}.

> Since E = P(x){x — t} ~ P(t), for t = a, b, ¢, this strategy may
return {{x — a}, {x — b}, {x — c}}.

> Formally:

e(E, VZ.p): 1. Select a set of triggers {t1,...tn} for VZ. ¢.

2. Foreachi=1,...,n, select a set of substitutions S; s.t.
for each o € S;, E |Et;0 ~ §; for some tuple g; € T(E).

3. Return J_, S..
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A-free F-matching for HO trigger-based instantatiation

> Applicative encoding allows lifting of FO E-matching

> Dedicate indexing techniques to account for equality of functions
» In FO term indexing is done by head of applications

» In HO two applications can be equals with different head symbol

A(f.a) ~ g = (9(z) = f(a,b)){z > b}
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Evaluation

hosmt vs smt-lib smt-lib
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cvcd cvcd
hosmt smt-lib
#unsat  avg time (s) #unsat  avg time (s)
CVC4-HO 648 1.08 662 1.02
cvcsd 4 0.06 662 1.01

CcvC4 configurations on “Judgement day” benchmarks with 60s timeout.
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Towards higher-Order unification




Current limitations

v =q(k(0,1)) A =p(k(0,0)) AVfyz. p(f(y,2)) V —q(f(1,9))

> UNSAT requires e.g. instantiation {f — Awjws. k(0,w1), y — 0, z +— 0}

> Huet's algorithm for HO unification can find such instantiations

> HO unification is undecidable!
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A first extension

> Use first-order matches to generate higher-order matches

> Enumerate permutations of arguments
(f(y,2), k(0,0)) = {f =k, y =0, z— 0}

f — )\’wle. k(wl, w2>
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A first extension

> Use first-order matches to generate higher-order matches

> Enumerate permutations of arguments

(f(y,
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Lifting CCFV framework to HO unification

> Congruence Closure with Free Variables is a framework for
E-unification in SMT [Barbosa et al. TACAS'17]

> Basis for conflict-based instantiation [Reynolds et al. FMCAD'14]

> We will incorporate into the framework the rules for HO matching and
HO unification

> Future implementation in cvc4 and VERIT
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Conclusions

> Presented a pragmatic extension of an SMT solver to HOSMT

> On par with encoding-based approach
» even without further optimizations!

> Towards effective and refutationally complete calculus
» Extend CCFV framework

m Pattern unification
m (Bounded) higher-order unification

» Combination with function synthesis approaches

> Other challenges: inductive reasoning, ...
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