Towards higher-order unification in HOSMT

Haniel Barbosa Andrew Reynolds Cesare Tinelli

THE UNIVERSITY

Daniel El Ouraoui Pascal Fontaine

ICMS 2018 2018-07-27, Notre Dame, IN, USA

Higher-Order logic

- \triangleright Expressive
 - Mathematics
 - Verification conditions
- The language of proof assistants
 - Isabelle, Coq, Lean

Automation

- ▷ Hard to automatize
- Few provers to reason on it LEO-II, Leo-III, Satalax

Challenge

- \triangleright New techniques for SMT
- ▷ Avoid automatic translation

 \triangleright What we mean by higher-order logic

 \triangleright A pragmatic extension of an SMT solver to higher-order

- Ground decision procedure
- Quantifiers and lambdas
- Evaluation

▷ Towards higher-order unification

Fragments of interest

Features	Predicate calculus	$\lambda ext{-free}$	λ -calculus
function	\checkmark	\checkmark	\checkmark
functional arguments	×	\checkmark	\checkmark
quantification on objects	\checkmark	\checkmark	\checkmark
quantification on functions	×	\checkmark	\checkmark
partial applications	×	\checkmark	\checkmark
anonymous functions	×	×	\checkmark

▷ Henkin semantics

Function interpretations restricted to expressible terms

▷ Extensionality

$$\forall \bar{x}.\ f(\bar{x}) \simeq g(\bar{x}) \leftrightarrow f \simeq g$$

A pragmatic extension into HOSMT

A CDCL(T) SMT solver

▷ Rewriter simplifies terms

 $x + 0 \to x \qquad a \not\simeq a \to \bot \qquad (\text{str.replace } x \text{ (str.}{+}{+} x x) y) \to x$

- \triangleright Ground solver enumerates assignments $\mathsf{E} \cup \mathsf{Q}$
 - ► E is a set of ground literals $\{a \le b, b \le a + x, x \simeq 0, f(a) \not\simeq f(b)\}$
 - Q is a set of quantified clauses

 $\{a \leq b, b \leq a + x, x \simeq 0, f(a) \not\simeq f(b)\}$ $\{\forall xyz. f(x) \not\simeq f(z) \lor g(y) \simeq h(z)\}$

▷ Instantiation module generates instances of Q $f(a) \simeq f(b) \lor g(a) \simeq h(b)$

$\triangleright \ \lambda$ -lifting at rewriter

 $\lambda x. t \rightarrow \forall x. f x \simeq t$, where f is a fresh symbol

▷ Explicit applications introduced during solving

- Lazy encoding
- Lazy extensionality lemmas
- Polynomial model construction for partial functions

 \triangleright Extending *E*-matching algorithm for instantiation

Handling partial applications: applicative encoding

encoding

For all terms of the shape $(((f_{\tau_1 \to \dots \to \tau_n \to \sigma} a_1) \dots) a_n)) : \sigma$ given a family of symbols @ we have the translation App defined as following:

$$\mathsf{App}(((f \ a_1) \dots) \ a_n)) = @(@(\dots @(f, a_1), \dots, a_n))$$

 $f a b \simeq b \land f a (f a b) \simeq g b$

 $@(@(f,a),b)\simeq b\wedge @(@(f,a),\, @(@(f,a),b))\simeq @(g,b)$

where f, g become constant symbols

app translation

Lazy encoding

- ▷ Turn all partial applications into total
- \triangleright Use first-order procedure on App(*E*)
- $\label{eq:add} \begin{array}{l} \triangleright \ \ \mathsf{Add} \ \ \mathsf{remaining} \ \ \mathsf{equalites} \ \ \mathsf{between} \ \ \mathsf{regular} \ \ \mathsf{terms} \\ E' = \mathsf{App}(E) \cup \{\mathsf{App}(f(a_1,...,a_n)) \simeq f(a_1,...,a_n), \, ...\} \end{array}$

▷ Only for partial function applications!

 \triangleright Check again E'

Example

$$f\,a\simeq g\wedge f(a,a)\not\simeq g(a)\wedge g(a)\simeq h(a)\Rightarrow \ \{@(f,a)\simeq g,\ f(a,a)\not\simeq g(a),\ g(a)\simeq h(a)\}\subseteq E$$

Lazy encoding

- ▷ Turn all partial applications into total
- \triangleright Use first-order procedure on App(*E*)
- $\label{eq:add} \begin{array}{l} \triangleright \ \ \mathsf{Add} \ \ \mathsf{remaining} \ \ \mathsf{equalites} \ \ \mathsf{between} \ \ \mathsf{regular} \ \ \mathsf{terms} \\ E' = \mathsf{App}(E) \cup \{\mathsf{App}(f(a_1,...,a_n)) \simeq f(a_1,...,a_n), \, ...\} \end{array}$
- ▷ Only for partial function applications!
- \triangleright Check again E'

Example

$$f\,a\simeq g\wedge f(a,a)\not\simeq g(a)\wedge g(a)\simeq h(a)\Rightarrow \ \{@(f,a)\simeq g,\ f(a,a)\not\simeq g(a),\ g(a)\simeq h(a)\}\subseteq E$$

$$E \cup \{@(@(f,a),a) \simeq f(a,a), @(g,a) \simeq g(a)\} \Rightarrow @(@(f,a),a) \simeq @(g,a)$$

Lazy encoding

- ▷ Turn all partial applications into total
- \triangleright Use first-order procedure on App(*E*)
- $\label{eq:add} \begin{array}{l} \triangleright \ \ \mathsf{Add} \ \ \mathsf{remaining} \ \ \mathsf{equalites} \ \ \mathsf{between} \ \ \mathsf{regular} \ \ \mathsf{terms} \\ E' = \mathsf{App}(E) \cup \{\mathsf{App}(f(a_1,...,a_n)) \simeq f(a_1,...,a_n), \, ...\} \end{array}$
- > Only for partial function applications!
- \triangleright Check again E'

Example

$$f\,a\simeq g\wedge f(a,a)\not\simeq g(a)\wedge g(a)\simeq h(a)\Rightarrow \ \{@(f,a)\simeq g,\ f(a,a)\not\simeq g(a),\ g(a)\simeq h(a)\}\subseteq E$$

 $E \cup \{ @(@(f,a),a) \simeq f(a,a), @(g,a) \simeq g(a) \} \Rightarrow @(@(f,a),a) \simeq @(g,a)$

Handling extentionality

$$(\forall \bar{x} \; f(\bar{x}) \simeq g(\bar{x})) \leftrightarrow f \simeq g$$

 \vartriangleright The " \leftarrow " direction is ensured by the functional congruence axiom: $f\simeq g\to (\forall \bar{x}\;f(\bar{x})\simeq g(\bar{x}))$

 \triangleright The " \rightarrow " direction is ensured by $f(\bar{k}) \not\simeq g(\bar{k})$ for some Skolem \bar{k}

 $Dash \ f(ar{k})
eq g(ar{k}) \lor f \simeq g$ is added for each pair of functions of finite type

Avoiding exponential model construction

Functions are interpreted as if-then-else:

$$M(f) = \lambda x \operatorname{ite}(x \simeq t_1, s_1, \dots \operatorname{ite}(x \simeq t_{n-1}, s_{n-1}, s_n) \dots)$$

Partial applications can lead to exponentially many cases!

$$\begin{aligned} f_1(0) &\simeq f_1(1) \wedge f_1(1) \simeq f_2 \\ f_2(0) &\simeq f_2(1) \wedge f_2(1) \simeq f_3 \\ f_3(0) &\simeq f_3(1) \wedge f_3(1) \simeq 2 \end{aligned}$$

8 ite entries to model that $f_1(x,y,z)\simeq 2$, for $x,y,z\in\{0,1\}$

 $\begin{array}{l} \mbox{Polynomial construction in the "depth" of functions chain} \\ M(f_1) = \lambda xyz. \mbox{ ite}(x\simeq 0, M(f_2)(y,z), \mbox{ ite}(x\simeq 1, M(f_2)(y,z), \mbox{ .})) \\ M(f_2) = \lambda xy. \mbox{ ite}(x\simeq 0, M(f_3)(y), \mbox{ ite}(x\simeq 1, M(f_3)(y), \mbox{ .})) \\ M(f_3) = \lambda x. \mbox{ ite}(x\simeq 0, 2, \mbox{ ite}(x\simeq 1, 2, \mbox{ .})) \end{array}$

Instantiation strategies: trigger-based

Trigger-based instantiation (E-matching): search for relevant instantiations according to a set of triggers and E-matching

 $\vartriangleright \ \mathsf{E} = \{\neg P(a), \neg P(b), P(c), \neg R(b)\} \text{ and } \mathsf{Q} = \{\forall x. \ P(x) \lor R(x)\}$

- \triangleright Assume the set of triggers $\{(P(x))\}$.
- $$\label{eq:since E} \begin{split} & \rhd \; \mathsf{Since} \; \mathsf{E} \models P(x)\{x \mapsto t\} \simeq P(t) \text{, for } t = a, b, c \text{, this strategy may} \\ & \mathsf{return} \; \{\{x \mapsto a\}, \; \{x \mapsto b\}, \; \{x \mapsto c\}\}. \end{split}$$
- ▷ Formally:
 - $\mathbf{e}(\mathsf{E}, \, \forall \bar{x}. \, \varphi)$: 1. Select a set of triggers $\{\bar{t}_1, \dots \bar{t}_n\}$ for $\forall \bar{x}. \, \varphi$.
 - 2. For each i = 1, ..., n, select a set of substitutions S_i s.t. for each $\sigma \in S_i$, $\mathsf{E} \models \overline{t}_i \sigma \simeq \overline{g}_i$ for some tuple $\overline{g}_i \in \mathbf{T}(\mathsf{E})$.
 - 3. Return $\bigcup_{i=1}^{n} S_i$.

$\lambda\text{-}\mathsf{free}\ E\text{-}\mathsf{matching}\ \mathsf{for}\ \mathsf{HO}\ \mathsf{trigger}\text{-}\mathsf{based}\ \mathsf{instantatiation}$

 $\,\triangleright\,$ Applicative encoding allows lifting of FO E-matching

Dedicate indexing techniques to account for equality of functions
 In FO term indexing is done by head of applications

▶ In HO two applications can be equals with different head symbol

$$@(f,a) \simeq g \models (g(x) \simeq f(a,b))\{x \mapsto b\}$$

Evaluation

hosmt vs smt-lib				smt-lib		
cvcho	10^{1} 10^{0} 10^{-1} 10^{-2} 10^{-2} 10^{-2} 10^{-1}	10° cvc4	101	$\begin{array}{c} 10^{1} \\ 0 \\ 0 \\ 10^{-1} \\ 10^{-2} \\ 10 \end{array}$	-2 10-1	10 ⁰ 10 ¹ cvc4
hosmt			smt-lib			
		#unsat	avg time (s)	:	#unsat	avg time (s)
C	vc 4- но	648	1.08		662	1.02
C	vc4	4	0.06		662	1.01

 ${\rm CVC4}$ configurations on "Judgement day" benchmarks with 60s timeout.

Towards higher-Order unification

Current limitations

 $\varphi = q(k(0,1)) \land \neg p(k(0,0)) \land \forall fyz. \ p(f(y,z)) \lor \neg q(f(1,y))$

 \triangleright UNSAT requires e.g. instantiation $\{f \mapsto \lambda w_1 w_2. k(0, w_1), y \mapsto 0, z \mapsto 0\}$

> Huet's algorithm for HO unification can find such instantiations

▷ HO unification is undecidable!

 \triangleright Use first-order matches to generate higher-order matches

$$\langle f(y,z), k(0,0) \rangle \Rightarrow \{ f \mapsto k, y \mapsto 0, z \mapsto 0 \}$$

 $f \mapsto \lambda w_1 w_2. k(w_1, w_2)$

 \triangleright Use first-order matches to generate higher-order matches

$$\begin{aligned} \left. \left. \begin{array}{l} \left. f(y,z), \, k(0,0) \right\rangle & \Rightarrow \left\{ f \mapsto k, \, y \mapsto 0, \, z \mapsto 0 \right\} \\ \\ f & \mapsto \lambda w_1 w_2. \, k(w_1,w_2) \\ f & \mapsto \lambda w_1 w_2. \, k(w_2,w_1) \end{aligned} \end{aligned} \end{aligned}$$

 \triangleright Use first-order matches to generate higher-order matches

$$f(y,z), k(0,0)\rangle \Rightarrow \{f \mapsto k, y \mapsto 0, z \mapsto 0\}$$

$$f \mapsto \lambda w_1 w_2. k(w_1, w_2)$$

$$f \mapsto \lambda w_1 w_2. k(w_2, w_1)$$

$$f \mapsto \lambda w_1 w_2. k(0, w_1)$$

 \triangleright Use first-order matches to generate higher-order matches

$$\begin{aligned} f(y,z), \, k(0,0) \rangle &\Rightarrow \{ f \mapsto k, \, y \mapsto 0, \, z \mapsto 0 \} \\ f &\mapsto \lambda w_1 w_2. \, k(w_1, w_2) \\ f &\mapsto \lambda w_1 w_2. \, k(w_2, w_1) \\ f &\mapsto \lambda w_1 w_2. \, k(0, w_1) \end{aligned}$$

 \triangleright Use first-order matches to generate higher-order matches

$$\begin{aligned} f(y,z), \, k(0,0) \rangle &\Rightarrow \{ f \mapsto k, \, y \mapsto 0, \, z \mapsto 0 \} \\ f &\mapsto \lambda w_1 w_2. \, k(w_1, w_2) \\ f &\mapsto \lambda w_1 w_2. \, k(w_2, w_1) \\ f &\mapsto \lambda w_1 w_2. \, k(0, w_1) \\ f &\mapsto \lambda w_1 w_2. \, k(w_1, 0) \end{aligned}$$

 \triangleright Use first-order matches to generate higher-order matches

$$\langle f(y,z), k(0,0) \rangle \Rightarrow \{ f \mapsto k, y \mapsto 0, z \mapsto 0 \}$$

$$\begin{array}{ll} f & \mapsto \lambda w_1 w_2. \ k(w_1, w_2) \\ f & \mapsto \lambda w_1 w_2. \ k(w_2, w_1) \\ f & \mapsto \lambda w_1 w_2. \ k(0, w_1) \\ f & \mapsto \lambda w_1 w_2. \ k(w_1, 0) \\ f & \mapsto \lambda w_1 w_2. \ k(0, w_2) \end{array}$$

 \triangleright Use first-order matches to generate higher-order matches

$$\langle f(y,z),\,k(0,0)\rangle \Rightarrow \{f\mapsto k,\,y\mapsto 0,\,z\mapsto 0\}$$

$$f \mapsto \lambda w_1 w_2. \ k(w_1, w_2)$$

$$f \mapsto \lambda w_1 w_2. \ k(w_2, w_1)$$

$$f \mapsto \lambda w_1 w_2. \ k(0, w_1)$$

$$f \mapsto \lambda w_1 w_2. \ k(0, w_2)$$

$$f \mapsto \lambda w_1 w_2. \ k(0, w_2)$$

$$f \mapsto \lambda w_1 w_2. \ k(w_2, 0)$$

 \triangleright Use first-order matches to generate higher-order matches

$$\langle f(y,z),\,k(0,0)\rangle \Rightarrow \{f\mapsto k,\,y\mapsto 0,\,z\mapsto 0\}$$

$$\begin{array}{ll} f & \mapsto \lambda w_1 w_2. \ k(w_1, w_2) \\ f & \mapsto \lambda w_1 w_2. \ k(w_2, w_1) \\ f & \mapsto \lambda w_1 w_2. \ k(0, w_1) \\ f & \mapsto \lambda w_1 w_2. \ k(0, w_1) \\ f & \mapsto \lambda w_1 w_2. \ k(0, w_2) \\ f & \mapsto \lambda w_1 w_2. \ k(w_2, 0) \\ f & \mapsto \lambda w_1 w_2. \ k(0, 0) \end{array}$$

Lifting CCFV framework to HO unification

- Congruence Closure with Free Variables is a framework for *E*-unification in SMT [Barbosa et al. TACAS'17]
- ▷ Basis for conflict-based instantiation

[Reynolds et al. FMCAD'14]

- ▷ We will incorporate into the framework the rules for HO matching and HO unification
- $\,\triangleright\,$ Future implementation in ${\rm CVC4}$ and ${\rm VERIT}$

Conclusions

 \triangleright Presented a pragmatic extension of an SMT solver to HOSMT

- ▷ On par with encoding-based approach
 - even without further optimizations!
- > Towards effective and refutationally complete calculus
 - Extend CCFV framework
 - Pattern unification
 - (Bounded) higher-order unification
 - ▶ Combination with function synthesis approaches
- ▷ Other challenges: inductive reasoning, ...