
Towards higher-order unification in HOSMT

Haniel Barbosa
Andrew Reynolds

Cesare Tinelli

Daniel El Ouraoui
Pascal Fontaine

ICMS 2018

2018-07-27, Notre Dame, IN, USA



Why higher-order logic?

Higher-Order logic

B Expressive

I Mathematics
I Verification conditions

B The language of proof assistants

I Isabelle, Coq, Lean

Automation

B Hard to automatize

B Few provers to reason on it
LEO-II, Leo-III, Satalax

Challenge

B New techniques for SMT

B Avoid automatic translation

Towards HO unification in HOSMT 1 / 15



Outline

B What we mean by higher-order logic

B A pragmatic extension of an SMT solver to higher-order

I Ground decision procedure
I Quantifiers and lambdas
I Evaluation

B Towards higher-order unification



Fragments of interest

Features Predicate calculus λ-free λ-calculus

function X X X
functional arguments 7 X X
quantification on objects X X X
quantification on functions 7 X X
partial applications 7 X X
anonymous functions 7 7 X

B Henkin semantics

I Function interpretations restricted to expressible terms

B Extensionality
∀x̄. f(x̄) ' g(x̄)↔ f ' g

Towards HO unification in HOSMT 2 / 15



A pragmatic extension into HOSMT



A CDCL(T) SMT solver

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
solver

Rewriter

B Rewriter simplifies terms
x+ 0→ x a 6' a→ ⊥ (str.replace x (str.++ x x) y)→ x

B Ground solver enumerates assignments E ∪ Q
I E is a set of ground literals {a ≤ b, b ≤ a+ x, x ' 0, f(a) 6' f(b)}
I Q is a set of quantified clauses {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}

B Instantiation module generates instances of Q f(a) 6' f(b) ∨ g(a) ' h(b)

Towards HO unification in HOSMT 3 / 15



Our pragmatic extension

B λ-lifting at rewriter

λx. t→ ∀x. f x ' t, where f is a fresh symbol

B Explicit applications introduced during solving

I Lazy encoding
I Lazy extensionality lemmas
I Polynomial model construction for partial functions

B Extending E-matching algorithm for instantiation

Towards HO unification in HOSMT 4 / 15



Handling partial applications: applicative encoding

encoding

For all terms of the shape (((fτ1→...→τn→σ a1) . . .) an)) : σ given a
family of symbols @ we have the translation App defined as following:

App(((f a1) . . .) an)) = @(@(. . .@(f, a1), . . . , an))

f a b ' b ∧ f a (f a b) ' g b @(@(f, a), b) ' b ∧@(@(f, a), @(@(f, a), b)) ' @(g, b)

where f , g become constant symbols

app translation

Towards HO unification in HOSMT 5 / 15



Lazy encoding

B Turn all partial applications into total

B Use first-order procedure on App(E)

B Add remaining equalites between regular terms
E′ = App(E) ∪ {App(f(a1, ..., an)) ' f(a1, ..., an), ...}

B Only for partial function applications!

B Check again E′

Example

f a ' g ∧ f(a, a) 6' g(a)∧ g(a) ' h(a) ⇒ {@(f, a) ' g, f(a, a) 6' g(a), g(a) ' h(a)} ⊆ E

Towards HO unification in HOSMT 6 / 15



Lazy encoding

B Turn all partial applications into total

B Use first-order procedure on App(E)

B Add remaining equalites between regular terms
E′ = App(E) ∪ {App(f(a1, ..., an)) ' f(a1, ..., an), ...}

B Only for partial function applications!

B Check again E′

Example

f a ' g ∧ f(a, a) 6' g(a)∧ g(a) ' h(a) ⇒ {@(f, a) ' g, f(a, a) 6' g(a), g(a) ' h(a)} ⊆ E

E ∪ {@(@(f, a), a) ' f(a, a), @(g, a) ' g(a)} ⇒ @(@(f, a), a) ' @(g, a)

Towards HO unification in HOSMT 6 / 15



Lazy encoding

B Turn all partial applications into total

B Use first-order procedure on App(E)

B Add remaining equalites between regular terms
E′ = App(E) ∪ {App(f(a1, ..., an)) ' f(a1, ..., an), ...}

B Only for partial function applications!

B Check again E′

Example

f a ' g ∧ f(a, a) 6' g(a)∧ g(a) ' h(a) ⇒ {@(f, a) ' g, f(a, a) 6' g(a), g(a) ' h(a)} ⊆ E

E ∪ {@(@(f, a), a) ' f(a, a), @(g, a) ' g(a)} ⇒ @(@(f, a), a) ' @(g, a)

Towards HO unification in HOSMT 6 / 15



Handling extentionality

(∀x̄ f(x̄) ' g(x̄))↔ f ' g

B The “←” direction is ensured by the functional congruence axiom:

f ' g → (∀x̄ f(x̄) ' g(x̄))

B The “→” direction is ensured by f(k̄) 6' g(k̄) for some Skolem k̄

B f(k̄) 6' g(k̄) ∨ f ' g is added for each pair of functions of finite type

Towards HO unification in HOSMT 7 / 15



Avoiding exponential model construction

Functions are interpreted as if-then-else:

M(f) = λx ite(x ' t1, s1, . . . ite(x ' tn−1, sn−1, sn) . . .)

Partial applications can lead to exponentially many cases!

f1(0) ' f1(1) ∧ f1(1) ' f2
f2(0) ' f2(1) ∧ f2(1) ' f3
f3(0) ' f3(1) ∧ f3(1) ' 2

8 ite entries to model that f1(x, y, z) ' 2, for x, y, z ∈ {0, 1}

Polynomial construction in the “depth” of functions chain

M(f1) = λxyz. ite(x ' 0,M(f2)(y, z), ite(x ' 1,M(f2)(y, z), ))
M(f2) = λxy. ite(x ' 0,M(f3)(y), ite(x ' 1,M(f3)(y), ))
M(f3) = λx. ite(x ' 0, 2, ite(x ' 1, 2, ))

Towards HO unification in HOSMT 8 / 15



Instantiation strategies: trigger-based

Trigger-based instantiation (E-matching): search for relevant
instantiations according to a set of triggers and E-matching

B E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}
B Assume the set of triggers {(P (x))}.
B Since E |= P (x){x 7→ t} ' P (t), for t = a, b, c, this strategy may

return {{x 7→ a}, {x 7→ b}, {x 7→ c}}.
B Formally:

e(E, ∀x̄. ϕ): 1. Select a set of triggers {t̄1, . . . t̄n} for ∀x̄. ϕ.

2. For each i = 1, . . . , n, select a set of substitutions Si s.t.
for each σ ∈ Si, E |= t̄iσ ' ḡi for some tuple ḡi ∈ T(E).

3. Return
⋃n

i=1 Si.

Towards HO unification in HOSMT 9 / 15



λ-free E-matching for HO trigger-based instantatiation

B Applicative encoding allows lifting of FO E-matching

B Dedicate indexing techniques to account for equality of functions

I In FO term indexing is done by head of applications

I In HO two applications can be equals with different head symbol

@(f, a) ' g |= (g(x) ' f(a, b)){x 7→ b}

Towards HO unification in HOSMT 10 / 15



Evaluation

10−2 10−1 100 101

cvc4
10−2

10−1

100

101

cv
ch

o
hosmt vs smt-lib

10−2 10−1 100 101

cvc4
10−2

10−1

100

101

cv
ch

o

smt-lib

hosmt smt-lib

#unsat avg time (s) #unsat avg time (s)

cvc4-ho 648 1.08 662 1.02
cvc4 4 0.06 662 1.01

cvc4 configurations on “Judgement day” benchmarks with 60s timeout.

Towards HO unification in HOSMT 11 / 15



Towards higher-Order unification



Current limitations

ϕ = q(k(0, 1)) ∧ ¬p(k(0, 0)) ∧ ∀fyz. p(f(y, z)) ∨ ¬q(f(1, y))

B UNSAT requires e.g. instantiation {f 7→ λw1w2. k(0, w1), y 7→ 0, z 7→ 0}

B Huet’s algorithm for HO unification can find such instantiations

B HO unification is undecidable!

Towards HO unification in HOSMT 12 / 15



A first extension

B Use first-order matches to generate higher-order matches

B Enumerate permutations of arguments

〈f(y, z), k(0, 0)〉 ⇒ {f 7→ k, y 7→ 0, z 7→ 0}

f 7→ λw1w2. k(w1, w2)

f 7→ λw1w2. k(w2, w1)
f 7→
f 7→ λw1w2. k(w1, 0)
f 7→ λw1w2. k(0, w2)
f 7→ λw1w2. k(w2, 0)
f 7→ λw1w2. k(0, 0)

Towards HO unification in HOSMT 13 / 15



A first extension

B Use first-order matches to generate higher-order matches

B Enumerate permutations of arguments

〈f(y, z), k(0, 0)〉 ⇒ {f 7→ k, y 7→ 0, z 7→ 0}

f 7→ λw1w2. k(w1, w2)
f 7→ λw1w2. k(w2, w1)

f 7→
f 7→ λw1w2. k(w1, 0)
f 7→ λw1w2. k(0, w2)
f 7→ λw1w2. k(w2, 0)
f 7→ λw1w2. k(0, 0)

Towards HO unification in HOSMT 13 / 15



A first extension

B Use first-order matches to generate higher-order matches

B Enumerate permutations of arguments

〈f(y, z), k(0, 0)〉 ⇒ {f 7→ k, y 7→ 0, z 7→ 0}

f 7→ λw1w2. k(w1, w2)
f 7→ λw1w2. k(w2, w1)
f 7→ λw1w2. k(0, w1)

f 7→ λw1w2. k(w1, 0)
f 7→ λw1w2. k(0, w2)
f 7→ λw1w2. k(w2, 0)
f 7→ λw1w2. k(0, 0)

Towards HO unification in HOSMT 13 / 15



A first extension

B Use first-order matches to generate higher-order matches

B Enumerate permutations of arguments

〈f(y, z), k(0, 0)〉 ⇒ {f 7→ k, y 7→ 0, z 7→ 0}

f 7→ λw1w2. k(w1, w2)
f 7→ λw1w2. k(w2, w1)
f 7→ λw1w2. k(0, w1)

f 7→ λw1w2. k(w1, 0)
f 7→ λw1w2. k(0, w2)
f 7→ λw1w2. k(w2, 0)
f 7→ λw1w2. k(0, 0)

Towards HO unification in HOSMT 13 / 15



A first extension

B Use first-order matches to generate higher-order matches

B Enumerate permutations of arguments

〈f(y, z), k(0, 0)〉 ⇒ {f 7→ k, y 7→ 0, z 7→ 0}

f 7→ λw1w2. k(w1, w2)
f 7→ λw1w2. k(w2, w1)
f 7→ λw1w2. k(0, w1)
f 7→ λw1w2. k(w1, 0)

f 7→ λw1w2. k(0, w2)
f 7→ λw1w2. k(w2, 0)
f 7→ λw1w2. k(0, 0)

Towards HO unification in HOSMT 13 / 15



A first extension

B Use first-order matches to generate higher-order matches

B Enumerate permutations of arguments

〈f(y, z), k(0, 0)〉 ⇒ {f 7→ k, y 7→ 0, z 7→ 0}

f 7→ λw1w2. k(w1, w2)
f 7→ λw1w2. k(w2, w1)
f 7→ λw1w2. k(0, w1)
f 7→ λw1w2. k(w1, 0)
f 7→ λw1w2. k(0, w2)

f 7→ λw1w2. k(w2, 0)
f 7→ λw1w2. k(0, 0)

Towards HO unification in HOSMT 13 / 15



A first extension

B Use first-order matches to generate higher-order matches

B Enumerate permutations of arguments

〈f(y, z), k(0, 0)〉 ⇒ {f 7→ k, y 7→ 0, z 7→ 0}

f 7→ λw1w2. k(w1, w2)
f 7→ λw1w2. k(w2, w1)
f 7→ λw1w2. k(0, w1)
f 7→ λw1w2. k(w1, 0)
f 7→ λw1w2. k(0, w2)
f 7→ λw1w2. k(w2, 0)

f 7→ λw1w2. k(0, 0)

Towards HO unification in HOSMT 13 / 15



A first extension

B Use first-order matches to generate higher-order matches

B Enumerate permutations of arguments

〈f(y, z), k(0, 0)〉 ⇒ {f 7→ k, y 7→ 0, z 7→ 0}

f 7→ λw1w2. k(w1, w2)
f 7→ λw1w2. k(w2, w1)
f 7→ λw1w2. k(0, w1)
f 7→ λw1w2. k(w1, 0)
f 7→ λw1w2. k(0, w2)
f 7→ λw1w2. k(w2, 0)
f 7→ λw1w2. k(0, 0)

Towards HO unification in HOSMT 13 / 15



Lifting CCFV framework to HO unification

B Congruence Closure with Free Variables is a framework for
E-unification in SMT [Barbosa et al. TACAS’17]

B Basis for conflict-based instantiation [Reynolds et al. FMCAD’14]

B We will incorporate into the framework the rules for HO matching and
HO unification

B Future implementation in cvc4 and veriT

Towards HO unification in HOSMT 14 / 15



Conclusions

B Presented a pragmatic extension of an SMT solver to HOSMT

B On par with encoding-based approach

I even without further optimizations!

B Towards effective and refutationally complete calculus
I Extend CCFV framework

Pattern unification
(Bounded) higher-order unification

I Combination with function synthesis approaches

B Other challenges: inductive reasoning, ...

Towards HO unification in HOSMT 15 / 15


	A pragmatic extension into HOSMT
	Towards higher-Order unification

