#### Datatypes with Shared Selectors

#### And rew Reynolds<sup>1</sup>, Arjun Viswanathan<sup>1</sup>, <u>Haniel Barbosa</u><sup>1</sup>, Cesare Tinelli<sup>1</sup> and Clark Barrett<sup>2</sup>

<sup>1</sup>University of Iowa, Iowa City, U.S.A.

<sup>2</sup>Department of Computer Science, Stanford University

IJCAR 2018 2018–07–15, Oxford, UK

#### Introductory example

 $\mathbf{Tree} = N_1(\mathbf{Int}, \mathbf{Tree}, \mathbf{Tree}) \mid N_2(\mathbf{Int}, \mathbf{Int}, \mathbf{Tree}, \mathbf{Tree}) \mid L(\mathbf{Bool}, \mathbf{Int})$ 

▷ Subfields are accessed with *selectors*, which are associated with *each* constructor, e.g.

 $\begin{array}{l} S^{N_{1},1}: \mathbf{Tree} \rightarrow \mathbf{Int} \\ S^{N_{1},2}: \mathbf{Tree} \rightarrow \mathbf{Tree} \\ S^{N_{1},3}: \mathbf{Tree} \rightarrow \mathbf{Tree} \end{array}$ 

 $\rhd$  Each constructor is associated with a tester predicate, i.e.  $isN_1,\ isN_2,\ isL$ 

 $\succ \text{ Given a term } t \text{ of type Tree the following clause set states} \\ \left\{ \neg i s N_1(t) \lor S^{N_1,1}(t) \ge 0, \ \neg i s L(t) \lor S^{L,2}(t) \ge 0 \right\}$ 

• when t has top symbol  $N_1$ , its first subfield is non-negative

 $\blacktriangleright$  when t has top symbol L, its second subfield is non-negative

## Why share selectors?

 $\mathbf{Tree} = N_1(\mathbf{Int}, \mathbf{Tree}, \mathbf{Tree}) \mid N_2(\mathbf{Int}, \mathbf{Int}, \mathbf{Tree}, \mathbf{Tree}) \mid L(\mathbf{Bool}, \mathbf{Int})$ 

 $\vartriangleright$  Consider a different kind of selector symbol  $S^{{\bf Int},1}:{\bf Tree}\to{\bf Int}$  which maps each value of type  ${\bf Tree}$  to its *first* subfield of type  ${\bf Int}$ 

▷ Mapping is *independent* of the term's top constructor

### Why share selectors?

 $\mathbf{Tree} = N_1(\mathbf{Int}, \mathbf{Tree}, \mathbf{Tree}) \mid N_2(\mathbf{Int}, \mathbf{Int}, \mathbf{Tree}, \mathbf{Tree}) \mid L(\mathbf{Bool}, \mathbf{Int})$ 

 $\triangleright$  Consider a different kind of selector symbol S<sup>Int,1</sup> : Tree  $\rightarrow$  Int which maps each value of type Tree to its *first* subfield of type Int

▷ Mapping is *independent* of the term's top constructor

 $\succ \text{ The previous clause set can be written using a single$ *shared*selector ${ <math>\neg isN_1(t) \lor S^{Int,1}(t) \ge 0, \ \neg isL(t) \lor S^{Int,1}(t) \ge 0$  }

- $\triangleright$  Note that the arithmetic literal is now the same in both clauses
- ▷ The **Tree** datatype requires only *five* shared selectors instead of *nine* standard selectors

 $\triangleright$  Theory of Datatypes with Shared Selectors

> Application: Syntax-Guided Synthesis (SyGuS)

- Overview of the SyGuS problem
- ► Using Shared Selectors for Syntax-Guided Synthesis

- $\triangleright$  Evaluation
  - ► SyGuS
  - ► SMT-LIB

## Theory of Datatypes with Shared Selectors

# Theory of Datatypes

#### $\triangleright$ Specification

datatype 
$$\delta = C_1([S^{C_1,1}_{\delta}] : \tau_1, \ldots, [S^{C_1,n_1}_{\delta}] : \tau_{n_1}) \mid \ldots \mid C_m(\ldots)$$
  
s.t.  $S^{C,k}_{\delta} : \delta \to \tau_k$ 

 Besides basic properties of *Distinctness*, *Injectivity*, *Exhaustiveness*, and *Acyclicity*, datatypes also respect

$$\forall x_1, \dots, x_n. S^{\mathcal{C},k}_{\delta}(\mathcal{C}(x_1, \dots, x_n)) \approx x_k \quad (Standard \ selection)$$

# Theory of Datatypes with Shared Selectors $(\mathcal{D})$

- $\triangleright$  Extend the signature with *shared selectors*  $S^{\tau,k}_{\delta}$  for each datatype  $\delta$  and type  $\tau$  in D and each natural number k
- $\triangleright$  S<sup> $\tau,k$ </sup> when applied to a  $\delta$ -term C( $t_1, \ldots, t_n$ ) returns the k-th argument of C that has type  $\tau$ , if one exists
- $\triangleright$  Formally represented with a partial function  $\mathrm{stoa}$ , e.g. for

 $Tree = N_1(Int, Tree, Tree) | N_2(Int, Int, Tree, Tree) | L(Bool, Int)$ 

 $\triangleright$  Datatypes in  $\mathcal{D}$  also respect the property

$$\forall x_1, \ldots, x_n. S^{\boldsymbol{\tau}, k}_{\boldsymbol{\delta}}(C(x_1, \ldots, x_n)) \approx x_i, \text{ where } i = \operatorname{stoa}(k, \, \boldsymbol{\tau}, \, C)$$

## From standard selectors to shared selectors

- We reduce arbitrary constraints to constraints with only shared selectors
- $\,\vartriangleright\,$  Thus our calculus only needs to account for shared selectors
- We prove that the resulting reduction is equisatisfiable to the original constraints
- $\rhd\,$  Reduction can be applied as a preprocessing step in an implementation of  $\mathcal D$

# Calculus for Theory of Datatypes with Shared Selectors $\ensuremath{\mathcal{D}}$

- Similar to previous calculi from [Barrett et al. 2007, Reynolds and Blanchette 2015]
- $\rhd$  Tableau-like calculus to decide the  $\mathcal D$ -satisfiability of a set of quantifier-free constraints E
- ▷ Our main modification is in the SPLIT rule, which unrolls terms by branching on different constructors
- $\vartriangleright$  Instead of introducing standard selectors, the  $\operatorname{SPLIT}$  rule introduces shared selectors

#### Calculus for Theory of Datatypes with Shared Selectors ${\cal D}$

The SPLIT rule:

$$\begin{split} \mathbf{S}^{\tau,n}_{\boldsymbol{\delta}}(t) \in \mathbf{T}(E) \quad \text{or } \boldsymbol{\delta} \text{ is finite} \\ E & := \quad E, \, t \approx \mathbf{C}_1(\mathbf{S}^{\tau_{1,1},\operatorname{atos}(\boldsymbol{\tau_{1,1}},\,\mathbf{C}_1,\,1)}_{\boldsymbol{\delta}}(t), \, \dots, \, \mathbf{S}^{\tau_{1,n_1},\operatorname{atos}(\boldsymbol{\tau_{1,n_1}},\,\mathbf{C}_1,\,n_1)}_{\boldsymbol{\delta}}(t)) \\ \vdots \\ E & := \quad E, \, t \approx \mathbf{C}_m(\mathbf{S}^{\tau_{m,1}1,\operatorname{atos}(\boldsymbol{\tau_{m,1}},\,\mathbf{C}_m,\,1)}_{\boldsymbol{\delta}}(t), \, \dots, \, \mathbf{S}^{\tau_{m,n_m},\operatorname{atos}(\boldsymbol{\tau_{m,n_m}},\,\mathbf{C}_m,\,n_m)}_{\boldsymbol{\delta}}(t)) \end{split}$$

 $\succ \text{ Consider again the datatype} \\ \mathbf{Tree} = N_1(\mathbf{Int}, \, \mathbf{Tree}, \, \mathbf{Tree}) \mid N_2(\mathbf{Int}, \, \mathbf{Int}, \, \mathbf{Tree}, \, \mathbf{Tree}) \mid L(\mathbf{Bool}, \, \mathbf{Int}) \\$ 

 $\succ \text{ For a term } S^{\text{Tree},1}(t), \text{ the split would introduce a branch with} \\ E := E, \quad t \approx N_1(S^{\text{Int}, \operatorname{atos}(\text{Int}, N_1, 1)}(t), S^{\text{Tree}, \operatorname{atos}(\text{Tree}, N_1, 2)}(t), S^{\text{Tree}, \operatorname{atos}(\text{Tree}, N_1, 3)}(t)) \\ \approx N_1(S^{\text{Int}, 1}(t), S^{\text{Tree}, 1}(t), S^{\text{Tree}, 2}(t))$ 

# Calculus is a decision procedure for $\ensuremath{\mathcal{D}}$

Calculus is

- $\triangleright$  Terminating
  - ► All derivation trees are finite
- $\triangleright$  Refutation sound
  - $\blacktriangleright$  If a closed derivation tree exists, then indeed E is  $\mathcal D\text{-unsatisfiable}$
- $\triangleright$  Solution sound
  - $\blacktriangleright$  If a saturated node exists, then indeed E is  $\mathcal D\text{-satisfiable}$
  - Proof is constructive

Thus the calculus is a decision procedure for  $\ensuremath{\mathcal{D}}$ 

# Application: Syntax-Guided Synthesis (SyGuS)

## Problem statement

- Synthesizing a function that satisfies a given specification, while considering explicit syntactic restrictions on the solution space
  - ► specification is given by a (second-order) *T*-formula of the form  $\exists f. \forall \bar{x}. \varphi[f, \bar{x}]$
  - $\blacktriangleright$  syntactic restrictions on the solutions for f given by a grammar R
- $\triangleright$  A solution for f is a lambda term  $\lambda \bar{y}. e$  of the same type as f s.t.  $\forall \bar{x}. \varphi[\lambda \bar{y}. e, \bar{x}]$  is valid in T and e is in the language generated by R

#### Problem statement

- Synthesizing a function that satisfies a given specification, while considering explicit syntactic restrictions on the solution space
  - ► specification is given by a (second-order) *T*-formula of the form  $\exists f. \forall \bar{x}. \varphi[f, \bar{x}]$
  - $\blacktriangleright$  syntactic restrictions on the solutions for f given by a grammar R
- $\triangleright$  A solution for f is a lambda term  $\lambda \bar{y}. e$  of the same type as f s.t.  $\forall \bar{x}. \varphi[\lambda \bar{y}. e, \bar{x}]$  is valid in T and e is in the language generated by R

To synthesize e.g. a commutative binary function f over integers, i.e. solve

$$\exists f \,\forall xy. \, f(x,y) \approx f(y,x)$$

such that the solution space of f is defined by the grammar

$$A \to x \mid y \mid 0 \mid 1 \mid A + A \mid A - A \mid \text{ite}(B, A, A) \qquad \qquad B \to A \ge A \mid A \approx A \mid \neg B$$

#### Problem statement

- Synthesizing a function that satisfies a given specification, while considering explicit syntactic restrictions on the solution space
  - ► specification is given by a (second-order) *T*-formula of the form  $\exists f. \forall \bar{x}. \varphi[f, \bar{x}]$
  - $\blacktriangleright$  syntactic restrictions on the solutions for f given by a grammar R
- $\triangleright$  A solution for f is a lambda term  $\lambda \bar{y}. e$  of the same type as f s.t.  $\forall \bar{x}. \varphi[\lambda \bar{y}. e, \bar{x}]$  is valid in T and e is in the language generated by R

To synthesize e.g. a commutative binary function f over integers, i.e. solve

$$\exists f \,\forall xy. \, f(x,y) \approx f(y,x)$$

such that the solution space of f is defined by the grammar

$$A \rightarrow x \mid y \mid 0 \mid 1 \mid A + A \mid A - A \mid \mathrm{ite}(B, A, A) \qquad \qquad B \rightarrow A \geq A \mid A \approx A \mid \neg B$$

A solution is e.g. 
$$f = \lambda xy. 0$$
 or  $f = \lambda xy. x + y$ 

▷ Encode problem using a deep embedding into datatypes

$$\begin{split} \mathbf{a} &= X \mid Y \mid Zero \mid One \mid Plus(\mathbf{a}, \mathbf{a}) \mid Minus(\mathbf{a}, \mathbf{a}) \mid Ite(\mathbf{b}, \mathbf{a}, \mathbf{a}) \\ \mathbf{b} &= Geq(\mathbf{a}, \mathbf{a}) \mid Eq(\mathbf{a}, \mathbf{a}) \mid Neg(\mathbf{b}) \end{split}$$

represent the grammar  ${\boldsymbol R}$  and the specification becomes

 $\forall xy. \operatorname{eval}_{\mathbf{a}}(d, x, y) \approx \operatorname{eval}_{\mathbf{a}}(d, y, x)$ 

where d is a fresh constant of type **a**.

- $\triangleright$  eval maps datatype terms to their corresponding theory terms
  - ▶  $eval_{\mathbf{a}}(Plus(\mathbf{X}, \mathbf{X}), 2, 3)$  is interpreted as  $(x + x)\{x \mapsto 2, y \mapsto 3\} = 4$

▷ Encode problem using a deep embedding into datatypes

$$\begin{split} \mathbf{a} &= X \mid Y \mid Zero \mid One \mid Plus(\mathbf{a}, \mathbf{a}) \mid Minus(\mathbf{a}, \mathbf{a}) \mid Ite(\mathbf{b}, \mathbf{a}, \mathbf{a}) \\ \mathbf{b} &= Geq(\mathbf{a}, \mathbf{a}) \mid Eq(\mathbf{a}, \mathbf{a}) \mid Neg(\mathbf{b}) \end{split}$$

represent the grammar  $\boldsymbol{R}$  and the specification becomes

 $\forall xy. \operatorname{eval}_{\mathbf{a}}(d, x, y) \approx \operatorname{eval}_{\mathbf{a}}(d, y, x)$ 

where d is a fresh constant of type **a**.

- $\triangleright$  eval maps datatype terms to their corresponding theory terms
  - ▶  $eval_{\mathbf{a}}(Plus(\mathbf{X}, \mathbf{X}), 2, 3)$  is interpreted as  $(x + x)\{x \mapsto 2, y \mapsto 3\} = 4$
- $\triangleright$  Solutions are models in which d is interpreted is interpreted e.g. as Zero or Plus(X, Y), corresponding to  $f = \lambda xy$ . 0 and  $f = \lambda xy$ . x + y

- $\,\vartriangleright\,$  Given the explosive nature of enumeration, reducing the number of candidate terms is key
- Only consider terms whose theory interpretation is unique up to theory-specific simplification!
  - Since x and x + 0 are equivalent, ignore one of them

- $\,\vartriangleright\,$  Given the explosive nature of enumeration, reducing the number of candidate terms is key
- Only consider terms whose theory interpretation is unique up to theory-specific simplification!
  - Since x and x + 0 are equivalent, ignore one of them
- ▷ Symmetry breaking clauses

$$\neg isPlus(z) \lor \neg isX(S^{Int,1}(z)) \lor \neg isZero(S^{Int,2}(z))$$

which can be read as "do not consider solutions s.t. z is x + 0"

By instantiating z with selector chains we can rule out *entire families* of redundant candidates, e.g.

 $\neg \mathrm{isPlus}(\mathbf{S}^{\mathrm{Int},1}(d)) \lor \neg \mathrm{isX}(\mathbf{S}^{\mathrm{Int},1}(\mathbf{S}^{\mathrm{Int},1}(d))) \lor \neg \mathrm{isZero}(\mathbf{S}^{\mathrm{Int},2}(\mathbf{S}^{\mathrm{Int},1}(d)))$ 

rules out terms that have x + 0 as their first child of type **a**, such as

$$(x+0) + y \equiv x + y$$
$$ite(x \ge y, x+0, y) \equiv ite(x \ge y, x, y)$$
$$(x+0) - 1 \equiv x - 1$$

By instantiating z with selector chains we can rule out *entire families* of redundant candidates, e.g.

 $\neg \mathrm{isPlus}(\mathbf{S}^{\mathrm{Int},1}(d)) \lor \neg \mathrm{isX}(\mathbf{S}^{\mathrm{Int},1}(\mathbf{S}^{\mathrm{Int},1}(d))) \lor \neg \mathrm{isZero}(\mathbf{S}^{\mathrm{Int},2}(\mathbf{S}^{\mathrm{Int},1}(d)))$ 

rules out terms that have x + 0 as their first child of type  $\mathbf{a}$ , such as

$$(x+0) + y \equiv x + y$$
$$ite(x \ge y, x+0, y) \equiv ite(x \ge y, x, y)$$
$$(x+0) - 1 \equiv x - 1$$

- Sharing selectors allows the same blocking clause to be reused for the different constructors
- $\triangleright$  standard selectors would require three different clauses in this case

$$\begin{split} &\neg \mathrm{isPlus}(\mathbf{S}^{\mathrm{Plus},1}(d)) \lor \neg \mathrm{isX}(\mathbf{S}^{\mathrm{Plus},1}(\mathbf{S}^{\mathrm{Plus},1}(d))) \lor \neg \mathrm{isZero}(\mathbf{S}^{\mathrm{Plus},1}(\mathbf{S}^{\mathrm{Plus},2}(d))) \\ &\neg \mathrm{isPlus}(\mathbf{S}^{\mathrm{Ite},2}(d)) \lor \neg \mathrm{isX}(\mathbf{S}^{\mathrm{Ite},2}(\mathbf{S}^{\mathrm{Plus},1}(d))) \lor \neg \mathrm{isZero}(\mathbf{S}^{\mathrm{Ite},2}(\mathbf{S}^{\mathrm{Plus},2}(d))) \\ &\neg \mathrm{isPlus}(\mathbf{S}^{\mathrm{Minus},1}(d)) \lor \neg \mathrm{isX}(\mathbf{S}^{\mathrm{Minus},1}(\mathbf{S}^{\mathrm{Plus},1}(d))) \lor \neg \mathrm{isZero}(\mathbf{S}^{\mathrm{Minus},1}(\mathbf{S}^{\mathrm{Plus},2}(d))) \end{split}$$

# Evaluation

#### Impact on SyGuS-COMP 2017 benchmarks



| Family                                 | #                      | Sol<br>sh std                                      | <b>ved</b><br>(both)           | <b>Terms</b><br>sh std                      | <b>Sels</b><br>sh std                        |  |
|----------------------------------------|------------------------|----------------------------------------------------|--------------------------------|---------------------------------------------|----------------------------------------------|--|
| General<br>CLIA<br>Invariant<br>PBE_BV | 535<br>73<br>67<br>750 | <b>319 235</b><br>18 17<br>46 46<br><b>665 253</b> | (232)<br>(17)<br>(46)<br>(253) | 189k 284k<br>25k 60k<br>37k 61k<br>14k 202k | 5.8 16.8<br>9.6 22.2<br>5.7 13.1<br>3.0 16.0 |  |
| PBE_Strings                            | 108                    | 93 64                                              | (64)                           | 14k 41k                                     | 8.6 18.7                                     |  |

- ▷ Over 80% reduction in average number of selectors for PBE\_BV
- PBE\_Strings, General also show significant improvements

# Comparison with other SygGuS solvers

| Family      | #   | EUSOLVER | CVC <b>4-si-sh</b> | CVC4-si-std |
|-------------|-----|----------|--------------------|-------------|
| General     | 535 | 404      | 391                | 334         |
| CLIA        | 73  | 71       | 73                 | 73          |
| Invariant   | 67  | 42       | 46                 | 46          |
| $PBE_BV$    | 750 | 739      | 665                | 253         |
| PBE_Strings | 108 | 68       | 93                 | 64          |

- Comparison also includes CVC4's single-invocation approach (impacts General and CLIA)
- $\rhd$  CVC4 is only competitive on General,  $\rm PBE\_Strinsg$  and, specially, in  $\rm PBE\_BV$  due to shared selectors
- ▷ Further improvements with other techniques in the past months now have CVC4 leading EUSOLVER in all families in SyGuS-COMP 2018

# Evaluation on SMT-LIB benchmarks

|              |     |     | Solved |        | Ti   | me   | Decs |      | Terms |      | Sels  |       |
|--------------|-----|-----|--------|--------|------|------|------|------|-------|------|-------|-------|
| Family       | #   | sh  | std    | (both) | sh   | std  | sh   | std  | sh    | std  | sh    | std   |
| Leon         | 410 | 179 | 175    | (175)  | 0.96 | 0.75 | 9.9k | 9.9k | 718   | 929  | 8.67  | 23.10 |
| Sledgehammer | 321 | 113 | 112    | (112)  | 0.47 | 0.47 | 6.9k | 6.9k | 185   | 185  | 10.50 | 12.76 |
| Nunchaku     | 158 | 67  | 67     | (67)   | 0.49 | 0.44 | 7.1k | 6.6k | 1373  | 1297 | 6.22  | 7.22  |

 $\triangleright$  Leon benchmarks show the most impact of sharing selectors

- $\blacktriangleright\,$  Reduction of over 60% in the average number of selectors
- ► 4 more problems solved

▷ Overall SMT-LIB benchmarks are not significantly impacted

# Conclusions

- $\vartriangleright$  We have presented an extension to theory of algebraic datatypes that adds shared selectors
- $\,\vartriangleright\,$  Introduced a correct decision procedure for the new theory
- $\,\vartriangleright\,$  Shared selectors can lead to significant gains in SyGuS solving
  - A main reason for CVC4 becoming the best known solver is certain classes of SyGuS problems
- ▷ Possible future work is to generalize our approach for selector *chains* 
  - ► Compressing chain of applications to a single one
  - ▶ Requires more sophisticated criteria for transformation
  - We expect that such an extension can lead to performance improvements as well