Datatypes with Shared Selectors

Andrew Reynolds 1 , Arjun Viswanathan 1 , <u>Haniel Barbosa</u> 1 , Cesare Tinelli¹ and Clark Barrett²

¹University of Iowa, Iowa City, U.S.A.

²Department of Computer Science, Stanford University

IJCAR 2018 2018–07–15, Oxford, UK

Introductory example

 $Tree = N_1(int, Tree, Tree) | N_2(int, Int, Tree, Tree) | L(Bool, Int)$

 \triangleright Subfields are accessed with selectors, which are associated with each constructor, e.g.

> $\mathrm{S^{N_1,1}:Tree \rightarrow Int}$ $\mathrm{S^{N_1,2}:Tree} \rightarrow \mathbf{Tree}$ $\mathrm{S}^{\mathrm{N}_1,3}: \mathbf{Tree}\to \mathbf{Tree}$

Each constructor is associated with a *tester* predicate, i.e. $isN₁$, isN₂, isL

 \triangleright Given a term t of type Tree the following clause set states $\{\neg \text{isN}_1(t) \lor S^{N_1,1}(t) \ge 0, \neg \text{isL}(t) \lor S^{L,2}(t) \ge 0\}$

 \blacktriangleright when t has top symbol N_1 , its first subfield is non-negative

 \triangleright when t has top symbol L, its second subfield is non-negative

Why share selectors?

 $Tree = N_1(int, Tree, Tree) | N_2(int, Int, Tree, Tree) | L(Bool, Int)$

 \triangleright Consider a different kind of selector symbol $\mathrm{S}^{\mathbf{Int},1} : \mathbf{Tree} \to \mathbf{Int}$ which maps each value of type Tree to its first subfield of type Int

 \triangleright Mapping is *independent* of the term's top constructor

Why share selectors?

 $Tree = N_1(int, Tree, Tree) | N_2(int, Int, Tree, Tree) | L(Bool, Int)$

 \triangleright Consider a different kind of selector symbol $\mathrm{S}^{\mathbf{Int},1} : \mathbf{Tree} \to \mathbf{Int}$ which maps each value of type Tree to its *first* subfield of type Int

 \triangleright Mapping is *independent* of the term's top constructor

 \triangleright The previous clause set can be written using a single *shared* selector $\{\neg \text{isN}_1(t) \lor S^{\text{Int},1}(t) \ge 0, \neg \text{isL}(t) \lor S^{\text{Int},1}(t) \ge 0 \}$

- B Note that the arithmetic literal is now the same in both clauses
- \triangleright The Tree datatype requires only five shared selectors instead of nine standard selectors

 \triangleright Theory of Datatypes with Shared Selectors

 \triangleright Application: Syntax-Guided Synthesis (SyGuS)

- ▶ Overview of the SyGuS problem
- ▶ Using Shared Selectors for Syntax-Guided Synthesis

- \triangleright Evaluation
	- \blacktriangleright SyGuS
	- \triangleright SMT-LIB

[Theory of Datatypes with Shared Selectors](#page-5-0)

Theory of Datatypes

\triangleright Specification

datatype
$$
\delta = C_1([S_{\delta}^{C_1,1}] : \tau_1, \ldots, [S_{\delta}^{C_1,n_1}] : \tau_{n_1}) | \ldots | C_m(\ldots)
$$

s.t. $S_{\delta}^{C,k} : \delta \to \tau_k$

 \triangleright Besides basic properties of Distinctness, Injectivity, Exhaustiveness, and Acyclicity, datatypes also respect

$$
\forall x_1, \ldots, x_n. S_{\delta}^{C,k}(C(x_1, \ldots, x_n)) \approx x_k \qquad \text{(Standard selection)}
$$

Theory of Datatypes with Shared Selectors (D)

- \triangleright Extend the signature with *shared selectors* $\mathrm{S}^{\boldsymbol{\tau},k}_{\boldsymbol{\delta}}$ $\delta^{\tau,\kappa}_\delta$ for each datatype δ and type τ in $\mathcal D$ and each natural number k
- $\triangleright \ \text{S}^{\boldsymbol{\tau},k}_{\boldsymbol{\delta}}$ when applied to a δ -term $\text{C}(t_1,\ldots,t_n)$ returns the k -th argument of C that has type τ , if one exists
- \triangleright Formally represented with a partial function stoa, e.g. for

 $Tree = N_1(int, Tree, Tree) | N_2(int, Int, Tree, Tree) | L(Bool, Int)$

$$
\blacktriangleright \text{ stoa}(1, \text{Int}, N_1) = 1, \text{ stoa}(2, \text{Tree}, N_1) = 3
$$

$$
\blacktriangleright \text{ stoa}(2, \text{Int}, N_1), \text{ stoa}(1, \text{Bool}, N_2) \text{ are undefined.}
$$

Datatypes in D also respect the property

$$
\forall x_1, \dots, x_n. S_{\delta}^{\tau,k}(\mathcal{C}(x_1, \dots, x_n)) \approx x_i, \text{ where } i = \text{stoa}(k, \tau, \mathcal{C})
$$

From standard selectors to shared selectors

- \triangleright We reduce arbitrary constraints to constraints with only shared selectors
- \triangleright Thus our calculus only needs to account for shared selectors
- \triangleright We prove that the resulting reduction is equisatisfiable to the original constraints
- \triangleright Reduction can be applied as a preprocessing step in an implementation of D

Calculus for Theory of Datatypes with Shared Selectors D

- \triangleright Similar to previous calculi from [Barrett et al. 2007, Reynolds and Blanchette 2015]
- \triangleright Tableau-like calculus to decide the ${\cal D}$ -satisfiability of a set of quantifier-free constraints E
- \triangleright Our main modification is in the SPLIT rule, which unrolls terms by branching on different constructors
- \triangleright Instead of introducing standard selectors, the SPLIT rule introduces shared selectors

Calculus for Theory of Datatypes with Shared Selectors D

The SPLIT rule:

 $S_{\boldsymbol{\delta}}^{\boldsymbol{\tau},n}(t)\in \mathbf{T}(E)$ or δ is finite E := $E, t \approx C_1(S_{\delta}^{\tau_{1,1},\text{atos}(\tau_{1,1}, C_1, 1)}(t), ..., S_{\delta}^{\tau_{1,n_1},\text{atos}(\tau_{1,n_1}, C_1, n_1)}(t))$. . . E := $E, t \approx C_m(S_{\delta}^{\tau_{m,1}1, \text{atos}(\tau_{m,1}, C_m, 1)}(t), \ldots, S_{\delta}^{\tau_{m,n_m}, \text{atos}(\tau_{m,n_m}, C_m, n_m)}(t))$

 \triangleright Consider again the datatype Tree = N_1 (Int, Tree, Tree) | N_2 (Int, Int, Tree, Tree) | L(Bool, Int)

 \triangleright For a term $\text{S}^{\text{Tree}, 1}(t)$, the split would introduce a branch with $E:=E, \ \ \ \ \ t\approx \mathrm{N}_1(\mathrm{S^{Int,atos(Int,\mathrm{N}_1,\mathrm{1})}}(t),\ \mathrm{S^{Tree,atos(Tree,\mathrm{N}_1,\mathrm{2})}}(t),\ \mathrm{S^{Tree,atos(Tree,\mathrm{N}_1,\mathrm{3})}}(t))$ $\approx N_1(S^{Int,1}(t), S^{Tree,1}(t), S^{Tree,2}(t))$

Calculus is a decision procedure for D

Calculus is

- \triangleright Terminating
	- \blacktriangleright All derivation trees are finite
- \triangleright Refutation sound
	- If a closed derivation tree exists, then indeed E is $\mathcal D$ -unsatisfiable
- \triangleright Solution sound
	- If a saturated node exists, then indeed E is D -satisfiable
	- \blacktriangleright Proof is constructive

Thus the calculus is a decision procedure for D

[Application: Syntax-Guided Synthesis \(SyGuS\)](#page-12-0)

Problem statement

- \triangleright Synthesizing a function that satisfies a given specification, while considering explicit syntactic restrictions on the solution space
	- \triangleright specification is given by a (second-order) T-formula of the form $\exists f. \forall \bar{x}. \varphi[f, \bar{x}]$
	- \blacktriangleright syntactic restrictions on the solutions for f given by a grammar R
- \triangleright A solution for f is a lambda term $\lambda \bar{y}$. e of the same type as f s.t. $\forall \bar{x}$. $\varphi[\lambda \bar{y}, e, \bar{x}]$ is valid in T and e is in the language generated by R

Problem statement

- \triangleright Synthesizing a function that satisfies a given specification, while considering explicit syntactic restrictions on the solution space
	- \triangleright specification is given by a (second-order) T-formula of the form $\exists f. \forall \bar{x}. \varphi[f, \bar{x}]$
	- \blacktriangleright syntactic restrictions on the solutions for f given by a grammar R
- \triangleright A solution for f is a lambda term $\lambda \bar{y}$. e of the same type as f s.t. $\forall \bar{x}$. $\varphi[\lambda \bar{y}, e, \bar{x}]$ is valid in T and e is in the language generated by R

To synthesize e.g. a commutative binary function f over integers, i.e. solve

$$
\exists f \,\forall xy. \, f(x,y) \approx f(y,x)
$$

such that the solution space of f is defined by the grammar

$$
A \to x \mid y \mid 0 \mid 1 \mid A + A \mid A - A \mid \text{ite}(B, A, A)
$$
\n
$$
B \to A \ge A \mid A \approx A \mid \neg B
$$

Problem statement

- \triangleright Synthesizing a function that satisfies a given specification, while considering explicit syntactic restrictions on the solution space
	- \triangleright specification is given by a (second-order) T-formula of the form $\exists f. \forall \bar{x}. \varphi[f, \bar{x}]$
	- \blacktriangleright syntactic restrictions on the solutions for f given by a grammar R
- \triangleright A solution for f is a lambda term $\lambda \bar{y}$. e of the same type as f s.t. $\forall \bar{x}.\ \varphi[\lambda \bar{y}. e, \bar{x}]$ is valid in T and e is in the language generated by R

To synthesize e.g. a commutative binary function f over integers, i.e. solve

$$
\exists f \,\forall xy. \, f(x,y) \approx f(y,x)
$$

such that the solution space of f is defined by the grammar

$$
A \to x \mid y \mid 0 \mid 1 \mid A + A \mid A - A \mid \text{ite}(B, A, A)
$$
\n
$$
B \to A \ge A \mid A \approx A \mid \neg B
$$

A solution is e.g. $f = \lambda x y$. 0 or $f = \lambda x y$. $x + y$

 \triangleright Encode problem using a deep embedding into datatypes

 $\mathbf{a} = X | Y | Zero | One | Plus(\mathbf{a}, \mathbf{a}) | Minus(\mathbf{a}, \mathbf{a}) | Ite(\mathbf{b}, \mathbf{a}, \mathbf{a})$ $\mathbf{b} = \text{Geq}(\mathbf{a}, \mathbf{a}) \mid \text{Eq}(\mathbf{a}, \mathbf{a}) \mid \text{Neg}(\mathbf{b})$

represent the grammar R and the specification becomes

 $\forall xy. \text{ eval}_a(d, x, y) \approx \text{eval}_a(d, y, x)$

where d is a fresh constant of type a .

 \triangleright eval maps datatype terms to their corresponding theory terms

 \bullet eval_a(Plus(X, X), 2, 3) is interpreted as $(x + x)$ { $x \mapsto 2, y \mapsto 3$ } = 4

 \triangleright Encode problem using a deep embedding into datatypes

 $\mathbf{a} = X | Y | Zero | One | Plus(\mathbf{a}, \mathbf{a}) | Minus(\mathbf{a}, \mathbf{a}) | Ite(\mathbf{b}, \mathbf{a}, \mathbf{a})$ $\mathbf{b} = \text{Geq}(\mathbf{a}, \mathbf{a}) \mid \text{Eq}(\mathbf{a}, \mathbf{a}) \mid \text{Neg}(\mathbf{b})$

represent the grammar R and the specification becomes

 $\forall xy. \text{ eval}_a(d, x, y) \approx \text{eval}_a(d, y, x)$

where d is a fresh constant of type a .

 \triangleright eval maps datatype terms to their corresponding theory terms

 \bullet eval_a(Plus(X, X), 2, 3) is interpreted as $(x + x)$ { $x \mapsto 2, y \mapsto 3$ } = 4

 \triangleright Solutions are models in which d is interpreted is interpreted e.g. as Zero or Plus(X, Y), corresponding to $f = \lambda xy$. 0 and $f = \lambda xy$. $x + y$

- \triangleright Given the explosive nature of enumeration, reducing the number of candidate terms is key
- \triangleright Only consider terms whose theory interpretation is unique up to theory-specific simplification!
	- \triangleright Since x and $x + 0$ are equivalent, ignore one of them

- \triangleright Given the explosive nature of enumeration, reducing the number of candidate terms is key
- \triangleright Only consider terms whose theory interpretation is unique up to theory-specific simplification!
	- \triangleright Since x and $x + 0$ are equivalent, ignore one of them
- \triangleright Symmetry breaking clauses

$$
\neg \text{isPlus}(z) \lor \neg \text{isX}(\text{S}^{\text{Int},1}(z)) \lor \neg \text{isZero}(\text{S}^{\text{Int},2}(z))
$$

which can be read as "do not consider solutions s.t. z is $x + 0$ "

By instantiating z with selector chains we can rule out entire families of redundant candidates, e.g.

$$
\neg \text{isPlus}(\mathbf{S}^{\text{Int},1}(d)) \lor \neg \text{isX}(\mathbf{S}^{\text{Int},1}(\mathbf{S}^{\text{Int},1}(d))) \lor \neg \text{isZero}(\mathbf{S}^{\text{Int},2}(\mathbf{S}^{\text{Int},1}(d)))
$$

rules out terms that have $x + 0$ as their first child of type a, such as

$$
(x+0) + y \equiv x + y
$$

ite $(x \ge y, x+0, y) \equiv$ ite $(x \ge y, x, y)$
 $(x+0) - 1 \equiv x - 1$

By instantiating z with selector chains we can rule out entire families of redundant candidates, e.g.

$$
\neg \text{isPlus}(\mathbf{S}^{\text{Int},1}(d)) \lor \neg \text{isX}(\mathbf{S}^{\text{Int},1}(\mathbf{S}^{\text{Int},1}(d))) \lor \neg \text{isZero}(\mathbf{S}^{\text{Int},2}(\mathbf{S}^{\text{Int},1}(d)))
$$

rules out terms that have $x + 0$ as their first child of type a, such as

$$
(x+0) + y \equiv x + y
$$

ite $(x \ge y, x+0, y) \equiv$ ite $(x \ge y, x, y)$
 $(x+0) - 1 \equiv x - 1$

- \triangleright Sharing selectors allows the same blocking clause to be reused for the different constructors
- \triangleright standard selectors would require three different clauses in this case

$$
\neg \text{isPlus}(\text{S}^{\text{Plus},1}(d)) \lor \neg \text{isX}(\text{S}^{\text{Plus},1}(\text{S}^{\text{Plus},1}(d))) \lor \neg \text{isZero}(\text{S}^{\text{Plus},1}(\text{S}^{\text{Plus},2}(d)))
$$

\n
$$
\neg \text{isPlus}(\text{S}^{\text{lte},2}(d)) \lor \neg \text{isX}(\text{S}^{\text{lte},2}(\text{S}^{\text{Plus},1}(d))) \lor \neg \text{isZero}(\text{S}^{\text{lte},2}(\text{S}^{\text{Plus},2}(d)))
$$

\n
$$
\neg \text{isPlus}(\text{S}^{\text{Minus},1}(d)) \lor \neg \text{isX}(\text{S}^{\text{Minus},1}(\text{S}^{\text{Plus},1}(d))) \lor \neg \text{isZero}(\text{S}^{\text{Minus},1}(\text{S}^{\text{Plus},2}(d)))
$$

[Evaluation](#page-22-0)

Impact on SyGuS-COMP 2017 benchmarks

- \triangleright Over 80% reduction in average number of selectors for PBE BV
- \triangleright PBE Strings, General also show significant improvements

Comparison with other SygGuS solvers

- \triangleright Comparison also includes CVC4's single-invocation approach (impacts General and CLIA)
- \triangleright CVC4 is only competitive on General, PBE Strinsg and, specially, in PBE BV due to shared selectors
- \triangleright Further improvements with other techniques in the past months now have CVC4 leading EUSOLVER in all families in SyGuS-COMP 2018

Evaluation on SMT-LIB benchmarks

 \triangleright Leon benchmarks show the most impact of sharing selectors

- \blacktriangleright Reduction of over 60% in the average number of selectors
- \blacktriangleright 4 more problems solved

 \triangleright Overall SMT-LIB benchmarks are not significantly impacted

Conclusions

- \triangleright We have presented an extension to theory of algebraic datatypes that adds shared selectors
- Introduced a correct decision procedure for the new theory
- \triangleright Shared selectors can lead to significant gains in SyGuS solving
	- \triangleright A main reason for CVC4 becoming the best known solver is certain classes of SyGuS problems
- \triangleright Possible future work is to generalize our approach for selector *chains*
	- \triangleright Compressing chain of applications to a single one
	- \blacktriangleright Requires more sophisticated criteria for transformation
	- \triangleright We expect that such an extension can lead to performance improvements as well