
Datatypes with Shared Selectors

Andrew Reynolds1, Arjun Viswanathan1, Haniel Barbosa1,
Cesare Tinelli1 and Clark Barrett2

1University of Iowa, Iowa City, U.S.A.

2Department of Computer Science, Stanford University

IJCAR 2018

2018–07–15, Oxford, UK

Introductory example

Tree = N1(Int, Tree, Tree) | N2(Int, Int, Tree, Tree) | L(Bool, Int)

B Subfields are accessed with selectors, which are associated with each
constructor, e.g.

SN1,1 : Tree→ Int
SN1,2 : Tree→ Tree
SN1,3 : Tree→ Tree

B Each constructor is associated with a tester predicate, i.e.

isN1, isN2, isL

B Given a term t of type Tree the following clause set states

{¬isN1(t) ∨ SN1,1(t) ≥ 0, ¬isL(t) ∨ SL,2(t) ≥ 0 }
I when t has top symbol N1, its first subfield is non-negative
I when t has top symbol L, its second subfield is non-negative

Datatypes with Shared Selectors 1 / 16

Why share selectors?

Tree = N1(Int, Tree, Tree) | N2(Int, Int, Tree, Tree) | L(Bool, Int)

B Consider a different kind of selector symbol

SInt,1 : Tree→ Int

which maps each value of type Tree to its first subfield of type Int

B Mapping is independent of the term’s top constructor

B The previous clause set can be written using a single shared selector

{¬isN1(t) ∨ SInt,1(t) ≥ 0, ¬isL(t) ∨ SInt,1(t) ≥ 0 }

B Note that the arithmetic literal is now the same in both clauses

B The Tree datatype requires only five shared selectors instead of nine
standard selectors

Datatypes with Shared Selectors 2 / 16

Why share selectors?

Tree = N1(Int, Tree, Tree) | N2(Int, Int, Tree, Tree) | L(Bool, Int)

B Consider a different kind of selector symbol

SInt,1 : Tree→ Int

which maps each value of type Tree to its first subfield of type Int

B Mapping is independent of the term’s top constructor

B The previous clause set can be written using a single shared selector

{¬isN1(t) ∨ SInt,1(t) ≥ 0, ¬isL(t) ∨ SInt,1(t) ≥ 0 }

B Note that the arithmetic literal is now the same in both clauses

B The Tree datatype requires only five shared selectors instead of nine
standard selectors

Datatypes with Shared Selectors 2 / 16

Outline

B Theory of Datatypes with Shared Selectors

B Application: Syntax-Guided Synthesis (SyGuS)

I Overview of the SyGuS problem
I Using Shared Selectors for Syntax-Guided Synthesis

B Evaluation

I SyGuS
I SMT-LIB

Theory of Datatypes with Shared Selectors

Theory of Datatypes

B Specification

datatype δ = C1([S
C1,1
δ] : τ1, . . . , [SC1,n1

δ] : τn1) | . . . | Cm(. . .)

s.t. SC,k
δ : δ → τk

B Besides basic properties of Distinctness, Injectivity, Exhaustiveness,
and Acyclicity, datatypes also respect

∀x1, . . . , xn. SC,k
δ (C(x1, . . . , xn)) ≈ xk (Standard selection)

Datatypes with Shared Selectors 3 / 16

Theory of Datatypes with Shared Selectors (D)

B Extend the signature with shared selectors Sτ ,k
δ for each datatype δ

and type τ in D and each natural number k

B Sτ ,k
δ when applied to a δ-term C(t1, . . . , tn) returns the k-th

argument of C that has type τ , if one exists

B Formally represented with a partial function stoa, e.g. for

Tree = N1(Int, Tree, Tree) | N2(Int, Int, Tree, Tree) | L(Bool, Int)

I stoa(1, Int, N1) = 1, stoa(2, Tree, N1) = 3
I stoa(2, Int, N1), stoa(1, Bool, N2) are undefined.

B Datatypes in D also respect the property

∀x1, . . . , xn. Sτ ,k
δ (C(x1, . . . , xn)) ≈ xi, where i = stoa(k, τ , C)

Datatypes with Shared Selectors 4 / 16

From standard selectors to shared selectors

B We reduce arbitrary constraints to constraints with only shared
selectors

B Thus our calculus only needs to account for shared selectors

B We prove that the resulting reduction is equisatisfiable to the original
constraints

B Reduction can be applied as a preprocessing step in an
implementation of D

Datatypes with Shared Selectors 5 / 16

Calculus for Theory of Datatypes with Shared Selectors D

B Similar to previous calculi from [Barrett et al. 2007, Reynolds and
Blanchette 2015]

B Tableau-like calculus to decide the D-satisfiability of a set of
quantifier-free constraints E

B Our main modification is in the Split rule, which unrolls terms by
branching on different constructors

B Instead of introducing standard selectors, the Split rule introduces
shared selectors

Datatypes with Shared Selectors 6 / 16

Calculus for Theory of Datatypes with Shared Selectors D

The Split rule:

Sτ ,nδ (t) ∈ T(E) or δ is finite

E := E, t ≈ C1(S
τ1,1,atos(τ1,1,C1, 1)

δ (t), . . . , S
τ1,n1

,atos(τ1,n1
,C1, n1)

δ (t))
...

E := E, t ≈ Cm(S
τm,11,atos(τm,1,Cm, 1)

δ (t), . . . , S
τm,nm ,atos(τm,nm ,Cm, nm)

δ (t))

B Consider again the datatype
Tree = N1(Int, Tree, Tree) | N2(Int, Int, Tree, Tree) | L(Bool, Int)

B For a term STree,1(t), the split would introduce a branch with

E := E, t ≈ N1(S
Int,atos(Int,N1, 1)(t), STree,atos(Tree,N1, 2)(t), STree,atos(Tree,N1, 3)(t))

≈ N1(S
Int,1(t), STree,1(t), STree,2(t))

Datatypes with Shared Selectors 7 / 16

Calculus is a decision procedure for D

Calculus is

B Terminating

I All derivation trees are finite

B Refutation sound

I If a closed derivation tree exists, then indeed E is D-unsatisfiable

B Solution sound

I If a saturated node exists, then indeed E is D-satisfiable
I Proof is constructive

Thus the calculus is a decision procedure for D

Datatypes with Shared Selectors 8 / 16

Application: Syntax-Guided Synthesis (SyGuS)

Problem statement

B Synthesizing a function that satisfies a given specification, while
considering explicit syntactic restrictions on the solution space

I specification is given by a (second-order) T -formula of the form
∃f. ∀x̄. ϕ[f, x̄]

I syntactic restrictions on the solutions for f given by a grammar R

B A solution for f is a lambda term λȳ. e of the same type as f s.t.
∀x̄. ϕ[λȳ. e, x̄] is valid in T and e is in the language generated by R

To synthesize e.g. a commutative binary function f over integers, i.e. solve

∃f ∀xy. f(x, y) ≈ f(y, x)

such that the solution space of f is defined by the grammar

A→ x | y | 0 | 1 | A+A | A−A | ite(B, A, A) B → A ≥ A | A ≈ A | ¬B

A solution is e.g. f = λxy. 0 or f = λxy. x+ y

Datatypes with Shared Selectors 9 / 16

Problem statement

B Synthesizing a function that satisfies a given specification, while
considering explicit syntactic restrictions on the solution space

I specification is given by a (second-order) T -formula of the form
∃f. ∀x̄. ϕ[f, x̄]

I syntactic restrictions on the solutions for f given by a grammar R

B A solution for f is a lambda term λȳ. e of the same type as f s.t.
∀x̄. ϕ[λȳ. e, x̄] is valid in T and e is in the language generated by R

To synthesize e.g. a commutative binary function f over integers, i.e. solve

∃f ∀xy. f(x, y) ≈ f(y, x)

such that the solution space of f is defined by the grammar

A→ x | y | 0 | 1 | A+A | A−A | ite(B, A, A) B → A ≥ A | A ≈ A | ¬B

A solution is e.g. f = λxy. 0 or f = λxy. x+ y

Datatypes with Shared Selectors 9 / 16

Problem statement

B Synthesizing a function that satisfies a given specification, while
considering explicit syntactic restrictions on the solution space

I specification is given by a (second-order) T -formula of the form
∃f. ∀x̄. ϕ[f, x̄]

I syntactic restrictions on the solutions for f given by a grammar R

B A solution for f is a lambda term λȳ. e of the same type as f s.t.
∀x̄. ϕ[λȳ. e, x̄] is valid in T and e is in the language generated by R

To synthesize e.g. a commutative binary function f over integers, i.e. solve

∃f ∀xy. f(x, y) ≈ f(y, x)

such that the solution space of f is defined by the grammar

A→ x | y | 0 | 1 | A+A | A−A | ite(B, A, A) B → A ≥ A | A ≈ A | ¬B

A solution is e.g. f = λxy. 0 or f = λxy. x+ y

Datatypes with Shared Selectors 9 / 16

Enumerative SyGuS in SMT [Reynolds et al. FMSD’17]

B Encode problem using a deep embedding into datatypes

a = X | Y | Zero | One | Plus(a,a) | Minus(a,a) | Ite(b, a, a)

b = Geq(a, a) | Eq(a, a) | Neg(b)

represent the grammar R and the specification becomes

∀xy. evala(d, x, y) ≈ evala(d, y, x)

where d is a fresh constant of type a.

B eval maps datatype terms to their corresponding theory terms

I evala(Plus(X,X), 2, 3) is interpreted as (x+ x){x 7→ 2, y 7→ 3} = 4

B Solutions are models in which d is interpreted is interpreted e.g. as
Zero or Plus(X,Y), corresponding to f = λxy. 0 and f = λxy. x+ y

Datatypes with Shared Selectors 10 / 16

Enumerative SyGuS in SMT [Reynolds et al. FMSD’17]

B Encode problem using a deep embedding into datatypes

a = X | Y | Zero | One | Plus(a,a) | Minus(a,a) | Ite(b, a, a)

b = Geq(a, a) | Eq(a, a) | Neg(b)

represent the grammar R and the specification becomes

∀xy. evala(d, x, y) ≈ evala(d, y, x)

where d is a fresh constant of type a.

B eval maps datatype terms to their corresponding theory terms

I evala(Plus(X,X), 2, 3) is interpreted as (x+ x){x 7→ 2, y 7→ 3} = 4

B Solutions are models in which d is interpreted is interpreted e.g. as
Zero or Plus(X,Y), corresponding to f = λxy. 0 and f = λxy. x+ y

Datatypes with Shared Selectors 10 / 16

Pruning the search space: symmetry breaking

B Given the explosive nature of enumeration, reducing the number of
candidate terms is key

B Only consider terms whose theory interpretation is unique up to
theory-specific simplification!

I Since x and x+ 0 are equivalent, ignore one of them

B Symmetry breaking clauses

¬isPlus(z) ∨ ¬isX(SInt,1(z)) ∨ ¬isZero(SInt,2(z))

which can be read as “do not consider solutions s.t. z is x+ 0”

Datatypes with Shared Selectors 11 / 16

Pruning the search space: symmetry breaking

B Given the explosive nature of enumeration, reducing the number of
candidate terms is key

B Only consider terms whose theory interpretation is unique up to
theory-specific simplification!

I Since x and x+ 0 are equivalent, ignore one of them

B Symmetry breaking clauses

¬isPlus(z) ∨ ¬isX(SInt,1(z)) ∨ ¬isZero(SInt,2(z))

which can be read as “do not consider solutions s.t. z is x+ 0”

Datatypes with Shared Selectors 11 / 16

Pruning the search space: symmetry breaking

By instantiating z with selector chains we can rule out entire families of
redundant candidates, e.g.

¬isPlus(SInt,1(d)) ∨ ¬isX(SInt,1(SInt,1(d))) ∨ ¬isZero(SInt,2(SInt,1(d)))

rules out terms that have x+ 0 as their first child of type a, such as

(x+ 0) + y ≡ x+ y

ite(x ≥ y, x+ 0, y) ≡ ite(x ≥ y, x, y)

(x+ 0)− 1 ≡ x− 1

B Sharing selectors allows the same blocking clause to be reused for the
different constructors

B standard selectors would require three different clauses in this case

¬isPlus(SPlus,1(d)) ∨ ¬isX(SPlus,1(SPlus,1(d))) ∨ ¬isZero(SPlus,1(SPlus,2(d)))

¬isPlus(SIte,2(d)) ∨ ¬isX(SIte,2(SPlus,1(d))) ∨ ¬isZero(SIte,2(SPlus,2(d)))

¬isPlus(SMinus,1(d)) ∨ ¬isX(SMinus,1(SPlus,1(d))) ∨ ¬isZero(SMinus,1(SPlus,2(d)))

Datatypes with Shared Selectors 12 / 16

Pruning the search space: symmetry breaking

By instantiating z with selector chains we can rule out entire families of
redundant candidates, e.g.

¬isPlus(SInt,1(d)) ∨ ¬isX(SInt,1(SInt,1(d))) ∨ ¬isZero(SInt,2(SInt,1(d)))

rules out terms that have x+ 0 as their first child of type a, such as

(x+ 0) + y ≡ x+ y

ite(x ≥ y, x+ 0, y) ≡ ite(x ≥ y, x, y)

(x+ 0)− 1 ≡ x− 1

B Sharing selectors allows the same blocking clause to be reused for the
different constructors

B standard selectors would require three different clauses in this case

¬isPlus(SPlus,1(d)) ∨ ¬isX(SPlus,1(SPlus,1(d))) ∨ ¬isZero(SPlus,1(SPlus,2(d)))

¬isPlus(SIte,2(d)) ∨ ¬isX(SIte,2(SPlus,1(d))) ∨ ¬isZero(SIte,2(SPlus,2(d)))

¬isPlus(SMinus,1(d)) ∨ ¬isX(SMinus,1(SPlus,1(d))) ∨ ¬isZero(SMinus,1(SPlus,2(d)))

Datatypes with Shared Selectors 12 / 16

Evaluation

Impact on SyGuS-COMP 2017 benchmarks

10−2 10−1 100 101 102 103 104

cvc4-shared

10−2

10−1

100

101

102

103

104

cv
c4

-s
ta

nd
ar

d

Time

100 101 102 103 104 105 106 107 108

cvc4-shared

100

101

102

103

104

105

106

107

108

cv
c4

-s
ta

nd
ar

d

SAT Decisions

Solved Terms Sels
Family # sh std (both) sh std sh std

General 535 319 235 (232) 189k 284k 5.8 16.8
CLIA 73 18 17 (17) 25k 60k 9.6 22.2
Invariant 67 46 46 (46) 37k 61k 5.7 13.1
PBE BV 750 665 253 (253) 14k 202k 3.0 16.0
PBE Strings 108 93 64 (64) 14k 41k 8.6 18.7

B Over 80% reduction in average
number of selectors for PBE BV

B PBE Strings, General also show
significant improvements

Datatypes with Shared Selectors 13 / 16

Comparison with other SygGuS solvers

Family # eusolver cvc4-si-sh cvc4-si-std

General 535 404 391 334
CLIA 73 71 73 73
Invariant 67 42 46 46
PBE BV 750 739 665 253
PBE Strings 108 68 93 64

B Comparison also includes CVC4’s single-invocation approach (impacts
General and CLIA)

B CVC4 is only competitive on General, PBE Strinsg and, specially, in
PBE BV due to shared selectors

B Further improvements with other techniques in the past months now
have CVC4 leading EUSolver in all families in SyGuS-COMP 2018

Datatypes with Shared Selectors 14 / 16

Evaluation on SMT-LIB benchmarks

Solved Time Decs Terms Sels
Family # sh std (both) sh std sh std sh std sh std

Leon 410 179 175 (175) 0.96 0.75 9.9k 9.9k 718 929 8.67 23.10
Sledgehammer 321 113 112 (112) 0.47 0.47 6.9k 6.9k 185 185 10.50 12.76
Nunchaku 158 67 67 (67) 0.49 0.44 7.1k 6.6k 1373 1297 6.22 7.22

B Leon benchmarks show the most impact of sharing selectors

I Reduction of over 60% in the average number of selectors
I 4 more problems solved

B Overall SMT-LIB benchmarks are not significantly impacted

Datatypes with Shared Selectors 15 / 16

Conclusions

B We have presented an extension to theory of algebraic datatypes that
adds shared selectors

B Introduced a correct decision procedure for the new theory

B Shared selectors can lead to significant gains in SyGuS solving

I A main reason for CVC4 becoming the best known solver is
certain classes of SyGuS problems

B Possible future work is to generalize our approach for selector chains

I Compressing chain of applications to a single one
I Requires more sophisticated criteria for transformation
I We expect that such an extension can lead to performance

improvements as well

Datatypes with Shared Selectors 16 / 16

	Theory of Datatypes with Shared Selectors
	Application: Syntax-Guided Synthesis (SyGuS)
	Evaluation

