
Scalable Algorithms for Abduction via
Enumerative Syntax-Guided Synthesis

Andrew Reynolds, Haniel Barbosa, Daniel Larraz, Cesare Tinelli

IJCAR 2020

2020–07–04, The Internet



Overview

1 Abduction

2 Abduction via Enumerative Syntax-Guided Synthesis (SyGuS)

3 Evaluation

4 Conclusions

Scalable Algorithms for Abduction via Enumerative Syntax-Guided Synthesis 1 / 19



Abduction



Abduction

“What facts am I missing to reach a conclusion?”

The abduction problem

Given axioms Ax and a goal G, find a solution S such that:

B Ax ∧ S |= G,

B Ax ∧ S is satisfiable
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Some applications of abduction

B Finding missing facts for discharging proof obligations [DDA12]

B Inferring library specifications [ZDD13]

B Synthesizing specifications for unknown subprocedures [ADG16]

B Loop invariant generation [DDLM13; EPS19]

B Compositional program verification [LDD+13]

B Synthesis of missing guards for memory safety [DDC14]

B ...
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Despite numerous applications...

B Few standalone tools for abductive reasoning

I GPiD [EPS18]

I Explain [DD13]

B Issues with

I generality: restricted to specific logic fragments
I flexibility: solutions within fixed criteria

Abduction via syntax-guided synthesis (SyGuS)

B Can be used with any background theory supported by SMT solvers

B Syntax restrictions can encode different criteria for solutions

B Standardized language: SyGuS-IF built on top of SMT-LIB
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Redefining the abduction problem

The (syntax-restricted) abduction problem for theory T

Given axioms Ax, goal G, theory T and grammar R, find a solution S
such that:

B Ax ∧ S |=T G,

B Ax ∧ S is T -satisfiable

B S is generated by a context-free grammar R.
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Abduction via Enumerative Syntax-Guided Synthesis
(SyGuS)



Syntax-Guided Synthesis (SyGuS) [ABJ+13]

Specification

ProgramSynthesizer
Syntax 

restrictions

B Specification is given by (second-order) T -formula: ∃f. ∀x̄. ϕ[f, x̄]

B Syntactic restrictions given by context-free grammar R

B Commonly solved via enumerative CEGIS [STB+06; URD+13; RBN+19]

Learner Teacher

Counterexample
f(x=0,y=1)

Candidate
f(x,y)=x
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Solving abduction with enumerative CEGIS

B We exploit the specification requiring that

I Ax[x̄] ∧ S[x̄] ∧ ¬G[x̄] be unsatisfiable

to eagerly discard candidates

B Accumulate points (values p̄ for x̄) on which

I Axioms are satisfied: eval(Ax[p̄]) = >
I Goal is falsified: eval(¬G[p̄]) = >

B Every candidate solution must be false on such points!

I Otherwise eval(Ax[p̄] ∧ S[p̄] ∧ ¬G[p̄]) = >

Scalable Algorithms for Abduction via Enumerative Syntax-Guided Synthesis 7 / 19



Solving abduction with enumerative CEGIS

Consider T as LIA, Ax = {y ≥ 0}, G = {x+ y + z ≥ 0},

R = A→ 0 | 1 | x | y | z | A+A B → A < A | A ≥ A

and let P be the set of points satisfying Ax and falsifying G.

P Candidate
{}

∧y ≥ 0 ∧ x+ y + z � 0 is T -SAT
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Scalability issues

Enumerative CEGIS is effective but limited by the explosion of the
enumeration space as term size increases

For this bit-vector grammar, enumerating

B Terms of size = 1 : .05 seconds

B Terms of size = 2 : .6 seconds

B Terms of size = 3 : 48 seconds

B Terms of size = 4 : 5.8 hours

B Terms of size = 5 : ??? (100+ days)
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Divide and conquer SyGuS [ARU17; NSM18; BRLT19]

Learner Teacher

Counterexamples =

{ f(1,1) = 2,

  f(1,2) = 1,

  f(0,0) = 1,

  f(0,1) = 0 }

 
EnumeratorTerms ={ 0, 1, x, y, x+1 } Predicates ={         }

Candidate
f(x,y)=                      

B Generate partial solutions correct on examples seen so far

B Unify partial solutions (e.g. via decision tree learning)

y ≤ x

{f(1, 2) = 1, f(0, 1) = 0}
x X

{f(1, 1) = 2, f(0, 0) = 1}
x+ 1 X

> ⊥

B D&C provides much better scalability
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Scalable syntax-guided synthesis for abduction

B We extend the procedure by unifying partial solutions into conjunctions

B Besides P also maintains

I a set E of enumerated formulas

I a set U of subsets of E which are inconsistent with Ax

B Candidates C are subsets of E such that

I For every point in P at least one element of C is false

Otherwise eval(Ax[p̄] ∧ C[p̄] ∧ ¬G[p̄]) = >

I no subset of C occurs in U

Otherwise C is inconsistent with Ax

B Leverages unsat cores to improve eagerly discarding candidates
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Consider again Ax = {y ≥ 0} and G = {x+ y + z ≥ 0}

e ∈ E U p ∈ P C

∧y ≥ 0 ∧ x+ y + z � 0 is T -SAT
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Incremental weakening

B Algorithms can be extended to incrementally generate weaker solutions

B Generate new abduct C and test if C ∧ Ax ∧ ¬S is T -satisfiable

I If yes, then C has more models than S consistent with Ax
I S is updated to S ∨ C
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Evaluation



Setup

B Two configurations of cvc4sy

cvc4sy+b abduction via enumerative CEGIS
cvc4sy+u abduction via divide and conquer

B GPiD and Explain as baselines

B 300s timeout, 8gb RAM, Intel E5-2637 v4 CPUs, Ubuntu 16.04

B We had to generate our own benchmarks

I No existing standard benchmark library for abduction
I Integration into verification tools was beyond the scope of this work

Full data at http://cvc4.cs.stanford.edu/papers/abduction-sygus/
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Benchmark selection

B Three relevant-to-verification SMT-LIB logics:

I QF LIA, QF NIA, and QF SLIA

B From SAT benchmarks ϕ = ψ1 ∧ · · · ∧ ψn:

I ψ1 ∧ · · · ∧ ψn−1 ∧ S |= ¬ψn

Axioms Solution Goal

B Grammars are generated based on logic and benchmark variables

B Example of grammar for QF LIA problem with variables x1, . . . , xn:

A → x1 | · · · | xn | 0 | 1 | A+A | A−A | ite(B, A, A)
B → A ≥ A | A ' A | ¬B
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Finding missing assumptions in SAT benchmarks

cvc4sy+b cvc4sy+u

Logic # Solved Unique

Weaker

Solved Unique

Weaker

QF SLIA 11954 10902 3

466

10980 81

0

QF LIA 2025 721 261

183

594 134

2

QF NIA 12214 1492 171

671

1712 391

45

Total 26593 13329 435

1320

13628 606

47

B Can any solution be found in 300s?

I Orthogonality in QF {LIA,NIA} probably due to fragility of integer solvers

B Who finds weaker solution overall?

I cvc4sy+u has better success rate but often produces stronger solutions
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Comparison with Explain

B Restricted to QF LIA as it was better supported by Explain

B Explain solves harder problem: solutions with minimal variable set

B Can any solution be found in 300s?

Solved Unique Total time

cvc4sy+b 721 261 418849s
cvc4sy+u 594 125 449424s
Explain 33 0 532839s

B In incremental mode cvc4sy+u finds solution with minimal number
of variables to 25 of the 33 Explain solves
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Comparison with GPiD

B Restricted to 400 satisfiable QF UFLIA benchmarks used in [EPS18]

I While GPiD’s method is theory agnostic, their tooling restricts usage

B GPiD solves similar problem: implicates for satisfiable benchmarks

I No axioms, goal is whole original formula
I Uses pre-computed abduces. GPiD-1 restricts abduces to size 1

B Can any solution be found in 300s?

Solved Unique Total time

cvc4sy+b 214 0 57290s
cvc4sy+u 342 0 18735s
GPiD 193 0 69s
GPiD-1 398 54 1188s

B GPiD heavily dependent on pre-computed abduces

B cvc4sy+u 30% slower on average than GPiD-1 on commonly solved
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Conclusions



Conclusions

B New scalable enumerative SyGuS framework for abduction

I General
I Flexible

B Evaluation shows favorable comparison with abduction tools

B Future work:

I Integration into verification engines

I Generating conditional rewrite rules for SMT solvers

Synthesize most general condition under which two terms are equivalent
Generalizes semi-automated development of rewrite rules [NRB+19]

I Lifting approach to interpolation
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Completing UNSAT cores

B From SMT-LIB benchmarks with minimal unsat cores U :

I U {ψG, ψmax} ∧ S |= ¬ψG, with S as weak as ψmax, where

I ψmax is U ’s component with maximal size, used as a reference
I ψG ∈ U {ψmax}

B We chose the goal as the last formula in the core (viewed as a list)
after the reference was removed

B We used Z3 to compute minimal unsat cores (120s)

B Excluded cores with less than three assertions
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Completing UNSAT cores

B Can any solution at least as weak as the reference be found in 300s?

cvc4sy+b cvc4sy+u

Logic # Solved Unique Solved Unique

QF LIA 97 6 0 6 0
QF SLIA 2546 2546 32 2514 0
QF NIA 781 86 49 41 4

Total 3424 2638 81 2561 4

B cvc4sy+b significantly outperforms cvc4sy+u in QF SLIA

I Small references (generally size < 3) void need for specialized procedure

B Overall cvc4sy+b has an advantage for finding weaker solutions

Scalable Algorithms for Abduction via Enumerative Syntax-Guided Synthesis 21 / 19



Completing UNSAT cores

B Can any solution at least as weak as the reference be found in 300s?

cvc4sy+b cvc4sy+u

Logic # Solved Unique Solved Unique

QF LIA 97 6 0 6 0
QF SLIA 2546 2546 32 2514 0
QF NIA 781 86 49 41 4

Total 3424 2638 81 2561 4

B cvc4sy+b significantly outperforms cvc4sy+u in QF SLIA

I Small references (generally size < 3) void need for specialized procedure

B Overall cvc4sy+b has an advantage for finding weaker solutions

Scalable Algorithms for Abduction via Enumerative Syntax-Guided Synthesis 21 / 19



References

Rajeev Alur, Rastislav Bod́ık, Garvit Juniwal, et al. “Syntax-guided synthesis”.
In: Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2013, pp. 1–8.

Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. “Maximal specification
synthesis”. In: Symposium on Principles of Programming Languages (POPL).
Ed. by Rastislav Bod́ık and Rupak Majumdar. ACM, 2016, pp. 789–801.

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. “Scaling Enumerative
Program Synthesis via Divide and Conquer”. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS).
Ed. by Axel Legay and Tiziana Margaria. Vol. 10205. Lecture Notes in Computer
Science. 2017, pp. 319–336.

Haniel Barbosa, Andrew Reynolds, Daniel Larraz, et al. “Extending enumerative
function synthesis via SMT-driven classification”. In:
Formal Methods In Computer-Aided Design (FMCAD). Ed. by Clark W. Barrett
and Jin Yang. IEEE, 2019, pp. 212–220.

Isil Dillig and Thomas Dillig. “Explain: A Tool for Performing Abductive
Inference”. In: Computer Aided Verification (CAV). Ed. by Natasha Sharygina
and Helmut Veith. Vol. 8044. Lecture Notes in Computer Science. Springer,
2013, pp. 684–689.



References

Isil Dillig, Thomas Dillig, and Alex Aiken. “Automated error diagnosis using
abductive inference”. In:
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012.
Ed. by Jan Vitek, Haibo Lin, and Frank Tip. ACM, 2012, pp. 181–192.

Thomas Dillig, Isil Dillig, and Swarat Chaudhuri. “Optimal Guard Synthesis for
Memory Safety”. In: Computer Aided Verification (CAV). Ed. by Armin Biere
and Roderick Bloem. Vol. 8559. Lecture Notes in Computer Science. Springer,
2014, pp. 491–507.

Isil Dillig, Thomas
Dillig, Boyang Li, et al. “Inductive invariant generation via abductive inference”. In:
International Conference on Object Oriented Programming Systems Languages & Applications (OOPSLA).
Ed. by Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes. ACM,
2013, pp. 443–456.

Mnacho Echenim, Nicolas Peltier, and Yanis Sellami. “A Generic Framework for
Implicate Generation Modulo Theories”. In:
International Joint Conference on Automated Reasoning (IJCAR). Ed. by
Didier Galmiche, Stephan Schulz, and Roberto Sebastiani. Vol. 10900. Lecture
Notes in Computer Science. Springer, 2018, pp. 279–294.



References

Mnacho Echenim, Nicolas Peltier, and Yanis Sellami. “Ilinva: Using Abduction to
Generate Loop Invariants”. In: Frontiers of Combining Systems (FroCoS). Ed. by
Andreas Herzig and Andrei Popescu. Vol. 11715. Lecture Notes in Computer
Science. Springer, 2019, pp. 77–93.

Boyang Li, Isil Dillig, Thomas Dillig, et al. “Synthesis of Circular Compositional
Program Proofs via Abduction”. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS).
Ed. by Nir Piterman and Scott A. Smolka. Vol. 7795. Lecture Notes in Computer
Science. Springer, 2013, pp. 370–384.
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