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Program synthesis: “The Holy Grail of Computer Science”

Specification

High-level description
"What"

Program

Low-level description
"How"

Synthesizer

In Out

0 1
1 2
2 4
3 8

P (x) = ite(x < 2, x+ 1, ite(x < 3, 2 ∗ x, 2 ∗ x+ 2))

P (x) = 2x

P (x) = . . .
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Program synthesis: “The Holy Grail of Computer Science”

Specification

High-level description
"What"

Program

Low-level description
"How"

Synthesizer

B Main challenges:

I Exploring search space
I Capturing intention

B Three main characteristics

I How to write specification
I How to constrain search space
I How to guide the search

In Out

x=0,y=1 x=1,y=0
x=1,y=2 x=2,y=1
x=2,y=3 x=3,y=2
x=3,y=4 x=4,y=3

P (x, y) = {x← x+ 1; y ← y − 1}
P (x, y) = {z ← x;x← y; y ← z}
P (x, y) = . . .
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Some applications of program synthesis

B Superoptimization [SSA13], [NRB+19], ...

B Program repair [NWK+17], [LCL+17], ...

B Programming by examples [Gul11], [FMG+17] ...

B Circuit synthesis [EWW16], ...

B Loop invariant synthesis [GLM+14], [PSM16], ...

B ...
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Syntax-Guided Synthesis (SyGuS) [ABJ+13]

Specification

ProgramSynthesizer
Syntax 

restrictions

B Specification is given by (second-order) T -formula: ∃f. ∀x̄. ϕ[f, x̄]

B Syntactic restrictions given by context-free grammar R
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Enumerative CEGIS [STB+06; URD+13]

Consider the example:

ϕ = f(x, x) ' x+ 1 ∧ f(x, x+ 1) ' x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Solution
Enumerator

Solution
Verifier

Counterexamples =

{  }

B De facto approach to SyGuS solving given its simplicity and efficacy
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SUCCESS
Candidate

f(x,y)=                      
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Scalability issues

Enumerative techniques are effective but limited by the explosion of the
enumeration space as term size increases

For this bit-vector grammar, enumerating

B Terms of size = 1 : .05 seconds

B Terms of size = 2 : .6 seconds

B Terms of size = 3 : 48 seconds

B Terms of size = 4 : 5.8 hours

B Terms of size = 5 : ??? (100+ days)
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Divide and conquer (D&C) [ARU17; NSM18]

Decision Tree
Learner

Solution
Verifier

Counterexamples =

{ f(1,1) = 2,

  f(1,2) = 1,

  f(0,0) = 1,

  f(0,1) = 0 }

Term 
Enumerator

Predicate
Enumerator

Terms =

{ 0, 1, x, y, x+1 }

Predicates =

{         }

B Generate partial solutions correct on subset of input

B Unify partial solutions via decision tree learning

y ≤ x

{f(1, 2) = 1, f(0, 1) = 0}{f(1, 1) = 2, f(0, 0) = 1}

> ⊥

B D&C provides much better scalability
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However...

B D&C can only be applied to point-wise specifications

I Each input valuation is specified independently

Consider augmenting the previous example:

ϕ = f(x, x) ' x+ 1 ∧ f(x, x+ 1) ' x
∧ f(x, y) ' x+ 1⇒ f(x+ 2, y) ' x

Counterexample {x 7→ 1, y 7→ 0} yields the constraints:

f(1, 1) ' 2 ∧ f(1, 2) ' 1 ∧ f(1, 0) ' 2⇒ f(3, 0) ' 1

B A solution for f(1, 0) restricts the solution for f(3, 0)

B Breaks assumption that partial solutions can be found indepedently
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Challenges

B This limitation excludes interesting classes of synthesis problems

I Invariants: I(x) ∧ T (x, x′)⇒ I(x′)
I Ranking functions: rank(x′) < rank(x)
I Modular arithmetic functions: f(x) ' f(x+ n)
I ...

B Extending D&C to arbitrary (non-point-wise) specifications:

I Find a term assignment consistent with point dependencies

SMT solving

I Correctly classify points according to term assignment

Decision tree learning

SMT-based solution-complete strategy

Heuristic strategy

Extending enumerative function synthesis via SMT-driven classification 8 / 26



Challenges

B This limitation excludes interesting classes of synthesis problems

I Invariants: I(x) ∧ T (x, x′)⇒ I(x′)
I Ranking functions: rank(x′) < rank(x)
I Modular arithmetic functions: f(x) ' f(x+ n)
I ...

B Extending D&C to arbitrary (non-point-wise) specifications:

I Find a term assignment consistent with point dependencies

SMT solving

I Correctly classify points according to term assignment

Decision tree learning

SMT-based solution-complete strategy

Heuristic strategy

Extending enumerative function synthesis via SMT-driven classification 8 / 26



Challenges

B This limitation excludes interesting classes of synthesis problems

I Invariants: I(x) ∧ T (x, x′)⇒ I(x′)
I Ranking functions: rank(x′) < rank(x)
I Modular arithmetic functions: f(x) ' f(x+ n)
I ...

B Extending D&C to arbitrary (non-point-wise) specifications:

I Find a term assignment consistent with point dependencies

SMT solving

I Correctly classify points according to term assignment

Decision tree learning

SMT-based solution-complete strategy

Heuristic strategy

Extending enumerative function synthesis via SMT-driven classification 8 / 26



SMT solving for SyGuS



Satisfiability Modulo Theories (SMT)

First-order formulas
in CNF:

t ::= x | f(t, . . . , t)
ϕ ::= p(t, . . . , t) | ¬ϕ | ϕ ∨ ϕ | ∀x1 . . . xn. ϕ

Given a formula ϕ in FOL and background theories T1, . . . , Tn, finding a
model M giving an interpretation to all terms and predicates such that
M |=T1,...,Tn ϕ

Example

Is ϕ satisfiable modulo equality and arithmetic?

ϕ |=LIA

x1 ' 0 |=EUF f(x1) ' f(0)
x1 ' 0 |=LIA x3 + x1 6> x3 + 1

Therefore |=EUF∪LIA ¬ϕ
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Satisfiability Modulo Theories (SMT)

First-order formulas
in CNF:

t ::= x | f(t, . . . , t)
ϕ ::= p(t, . . . , t) | ¬ϕ | ϕ ∨ ϕ | ∀x1 . . . xn. ϕ
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SMT solving [BT18]

B Decidability depends on the theories being used

B Efficient decision procedures

I Equality and uninterpreted functions (Congruence Closure (CC))
[NO80], [DST80]

I Algebraic datatypes (CC + Injectivity, Distinctness, Exhaustiveness,
Acyclicity) [BST07]

I Linear arithmetic (Simplex) [DM06]

I Bit-vectors (Bit-blasting)
I Combination of theories (Nelson-Oppen)
I ...

B Boolean search leverages SAT solvers

B Users may define their own theories

I New operators as uninterpreted functions + Axioms
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CDCL(T ) architecture

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Rewriter  
 

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

SAT (model) UNSAT (proof/core)

B Rewriter simplifies terms
x+ 0 → x a 6' a → ⊥ (str.replace x (str.++ x x) y) → x

B SAT solver enumerates models for Boolean skeleton of formula

B Theory solvers check consistency in the theory

B Instantiation module selects relevant instances
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Enumerative SyGuS in SMT [RKT+17], [RVB+18]

B Encode problem using a deep embedding into datatypes

ϕ = f(x, x) ' x+ 1 ∧ f(x, x+ 1) ' x

R =
A→ 0 | 1 | x | y | A+A | ite(B, A, A)
B → A ≤ A | ¬B

Becomes

TϕU = evala(d, x, x) ' x+ 1 ∧ evala(d, x, x+ 1) ' x

TRU =
a = Zero | One | X | Y | Plus(a, a) | Ite(b, a, a)
b = Leq(a, a) | Neg(b)

B eval maps datatype terms to their corresponding theory terms

I evala(Plus(X,X), 2, 3) is interpreted as (x+ x){x 7→ 2, y 7→ 3} = 4

B A solution is a model in which e.g.

I d = Ite(Leq(Y, X), Plus(X,One), X), corresponding to
I f = λxy. ite(y ≤ x, x+ 1, x)
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Enumerative SyGuS in SMT [RKT+17], [RVB+18]

Solution
Enumerator

Solution
Verifier

SAT
solver

Boolean Model

SyGuS 
Datatypes solver

Conflict clause

Quantifier-free SMT solver

Instantiation

Instantiation
module

Model

Candidate

Counterexample

B An instantiation module checks candidates against the specification

I Generates lemmas witnessing why a candidate failed

B A specialized datatypes solver for SyGuS generates candidate solutions

I Must satisfy all lemmas
I Dedicated pruning
I Parameterizable fairness criteria for enumeration

Extending enumerative function synthesis via SMT-driven classification 13 / 26



Unif+PI: a general divide-and-conquer framework for
SyGuS solving



Recapping

B D&C can only be applied to point-wise specifications

I Each input valuation is specified independently

B Extending D&C to arbitrary (non-point-wise) specifications requires:

I Find a term assignment consistent with point dependencies

SMT solving

I Correctly classify points according to term assignment

Decision tree learning

SMT-based solution-complete strategy

Heuristic strategy
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Unif+PI: Synthesis via Pointwise-Indepentent unification

SMT-based
Classifier

Term assignment Ordered 
predicates list

Classification
checker

B SMT-based classifier
I Assigns terms to points so that lemmas hold

f(1, 1) 7→ y + y, {f(1, 0), f(3, 0), f(1, 2)} 7→ x

I Generates ordered list of predicates to separate points: P1 7→ x 6= y

B Classification checker : whether corresponding decision tree correctly
classifies sample

I Failures are encoded as separation lemmas
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Unif+PI: Synthesis via Pointwise-Indepentent unification

SMT-based
Classifier

Term assignment Ordered 
predicates list

Classification
checker

B Successful candidates that are not verified lead to refinement lemmas
and the learning restarts

B Bounded solution-completeness and minimality results due to
exhaustive enumeration of possible classifiers according to

I size and number of distinct terms to be assigned
I size and number of distinct predicates

B Our fairness criteria are size = log2(#terms), #pred = #terms− 1
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Consider again:

ϕ = f(x, x) ' x+ 1 ∧ f(x, x+ 1) ' x
∧ f(x, y) ' x+ 1⇒ f(x+ 2, y) ' x

B Initially a single term of size 0 will be a trivial successful classifier

B Refinement lemma:

f(1, 1) ' 2 ∧ f(1, 0) ' 2⇒ f(3, 0) ' 1 ∧ f(1, 2) ' 1

B Since no assignment with a single term suffices, the threshold is
increased to consider two distinct terms

I Maximum size increases to 1 and up to 1 predicate can be used

B A candidate classifier is

f(1, 1) 7→ y + y, {f(1, 0), f(3, 0), f(1, 2)} 7→ x
P1 7→ >

B This classifier fails on the sample, yielding a separation lemma

P1 ' > ⇒ f(1, 1) ' f(1, 0)
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ϕR = f(1, 1) ' 2 ∧ f(1, 0) ' 2⇒ f(3, 0) ' 1 ∧ f(1, 2) ' 1
ϕS = P1 ' > ⇒ f(1, 1) ' f(1, 0)

B Given this constraints and current threshold the next candidate
classifier produced is:

{f(1, 1), f(1, 0), f(3, 0)} 7→ y + 1, f(1, 2) 7→ 1
P1 7→ y ≤ x

B Running the classification checker:

→

y ≤ x

f(1, 2)f(1, 1), f(1, 0), f(3, 0)

> ⊥

B As the classification succeeds, a candidate is generated

B The candidate fails, so the process restarts with new refinement
lemmas

B Eventually finds solution f = λxy. ite(x ≤ y, ite(y ≤ x, x+ 1, x), y)
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Unif+PI with unconstrained predicate enumeration

Term assignment

SMT-based
Classifier

Predicate
Enumerator

Predicates

B Unif+PI+E uses SMT solver only to produce term assignments

I Relies on standard decision tree learning to classify a labeled sample
I Predicates chosen from enumerated pool with information-gain heuristic
I Separation conflicts solved when new predicates are enumerated

B Often sacrificing completeness and minimality allows problems to be
solved more efficiently
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Experimental results



Setup

B Benchmarks (all over LIA)

I 127 invariant synthesis benchmarks from SyGuS-COMP’18
I 440 invariant synthesis benchmarks from test suite of Kind 2

B Three configurations of cvc4sy

cvc+c enumerative CEGIS [RBN+19]

cvc+upi Unif+PI
cvc+upi+e Unif+PI+E

B loopinvgen [PM17] and cvc+c as baselines

B 1800s timeout, 8gb RAM

Full data at http://cvc4.cs.stanford.edu/papers/FMCAD2019-UnifPI/
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Summary

Solved Unique Total time Fastest Shortest

cvc+c 341 30 436251s 245 259

loopinvgen 298 7 433273s 261 289

100 150 200 250 300 350
10−1

100

101

102

103
cvc+c
loopinvgen
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Summary

Solved Unique Total time Fastest Shortest

cvc+c 341 30 436251s 245 259
cvc+upi+e 332 47 414356s 306 222
cvc+upi 291 3 494534s 236 231
loopinvgen 298 7 433273s 261 289

cvc-port 400 - 31476s 379 306
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Advantages and disadvantages of Unif+PI

B cvc+upi and cvc+upi+e thrive when invariants can be built from
combination of small literals

B cvc+c is superior when invariant is a single complex literal

I 29 of its 30 unique solves are such cases

B cvc+upi and cvc+upi+e also suffer from dependence on samples

I Sometimes search is biased towards simple classifiers when only a more
complex one would suffice
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SyGuS-COMP 2019

Inv Track (829)

CVC4-su

Solver Solved Fastest Smallest Score

CVC4-su 592 423 264 4493

LoopInvGen 512 442 364 4250

LoopInvGen-gplearn 511 411 349 4137

CVC4-Fast 522 319 243 3810

CVC4-Smart 539 283 260 3804

OASIS 538 20 317 3067

DryadSynth 277 161 39 1907

B 829 benchmarks from the literature in loop invariant synthesis

B 3600s timeout
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Injecting some welcome realism

B Kind 2 employs in cooperation:

I IC3 [Bra11]

I k-induction [SSS00]

I Generation of auxiliary invariants [KGT11]

B Kind 2 solves all the 480 benchmarks it its test suite in less than 120s

B Considering k-induction in isolation, cvc-port is competitive

Solved Unique Time (commonly solved)

cvc-port 323 82 109.6
Kind 2 (k-induction) 313 72 9.6

B We consider this encouraging given our framework is

I not theory-specific
I single-threaded
I not optimized for reachability
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Conclusions



Conclusions

B New enumerative function synthesis framework via divide and conquer

I No dependence on point-wise specifications
I Powered by SMT-driven classification algorithms
I Implemented in cvc4sy

B Experimental evaluation shows significant gains w.r.t. previous SyGuS
techniques for invariant synthesis
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Future work

B Improving classification

I Using constraint solving for synthesizing term assignments

I Only considering relevant arguments when synthesizing predicates

f(0, 0, 0, 1, 2, 1, 0) � f(1, 0, 0, 5, 2, 1, 3)

Can drastically reduce search space

B Improving sample

I Reducing noise: make points as similar as possible

f(1, 0, 0, 1, 2, 1, 0) � f(1, 0, 0, 5, 2, 1, 0)

I Improve diversity via clustering analysis: only add new points to sample
that are sufficiently different
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Extra slides



Invariant Synthesis

Add(Int x, y) {
  z := x; i := 0;
  assume(y > 0);
  while (i < y) {
    z := z + 1;
    i := i + 1;
  }
  return z;
}

Post-condition: Result is the sum 
of the inputs

Verification:

z = x ∧ i = 0 ∧ y > 0 → Inv(x, y, z, i)
Inv(x, y, z, i)∧ i < y ∧ z′ = z + 1 ∧ i′ = i+ 1 → Inv(x, y, z′, i′)
Inv(x, y, z, i)∧ i ≥ y → z = x+ y
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Invariant Synthesis in SyGuS

B State-of-the-art: LoopInvGen [PM17]: data-driven loop invariant
inference with automatic feature synthesis
I Precondition inference from sets of “good” and “bad” states

Feature synthesis for solving conflicts

I PAC (probably approximately correct) algorithm for building candidate
invariants

B “Bad” states are dependent on model of initial condition (no
guaranteed convergence)

B No support for implication counterexamples



Invariant Synthesis with Unif+PI

B Refinement lemmas allows derivation of three kinds on data points:

I “good points” (invariant must always hold)
I “bad points” (invariant can never hold)
I “implication points” (if invariant holds in first point it must hold in

second)

B Native support for implication counterexamples

B Straightforward usage of classic information gain heuristic to build
candidate solutions with decision tree learning

I SMT solver “resolves” implication counterexample points as “good” and
“bad”

I Out-of-the-box Shannon entropy
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Andres Nötzli, Andrew Reynolds, Haniel Barbosa, et al. “Syntax-Guided Rewrite
Rule Enumeration for SMT Solvers”. In:
Theory and Applications of Satisfiability Testing (SAT). Ed. by Mikolás Janota
and Inês Lynce. Vol. 11628. Lecture Notes in Computer Science. Springer, 2019,
pp. 279–297.

Daniel Neider, Shambwaditya Saha, and P. Madhusudan. “Compositional
Synthesis of Piece-Wise Functions by Learning Classifiers”. In:
ACM Trans. Comput. Log. 19.2 (2018), 10:1–10:23.

ThanhVu Nguyen, Westley Weimer, Deepak Kapur, et al. “Connecting Program
Synthesis and Reachability: Automatic Program Repair Using Test-Input
Generation”. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS).
Ed. by Axel Legay and Tiziana Margaria. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017, pp. 301–318.

Saswat Padhi and Todd D. Millstein. “Data-Driven Loop Invariant Inference
with Automatic Feature Synthesis”. In: CoRR abs/1707.02029 (2017). arXiv:
1707.02029.

http://arxiv.org/abs/1707.02029


References

Saswat Padhi, Rahul Sharma, and Todd D. Millstein. “Data-driven precondition
inference with learned features”. In:
Conference on Programming Language Design and Implementation (PLDI).
Ed. by Chandra Krintz and Emery Berger. ACM, 2016, pp. 42–56.

Andrew Reynolds, Haniel Barbosa, Andres Nötzli, et al. “cvc4sy: Smart and Fast
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