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Program synthesis: “The Holy Grail of Computer Science”

Specification Program
High-level description Low-level description
"What" "How"
> Main challenges: > Three main characteristics
» Exploring search space » How to write specification
» Capturing intention » How to constrain search space

» How to guide the search

In Out Plz,y)={z<+z+Ly+y—1}
x=0,y=1 x=1,y=0 P(z,y) ={z+ z;z < y;y < 2z}
x=1y=2 x=2y=1 P(z,y) =...

x=2,y=3 x=3,y=2
x=3,y=4 x=4,y=3
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Some applications of program synthesis

> Superoptimization

> Program repair

> Programming by examples
> Circuit synthesis

> Loop invariant synthesis
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[SSA13], [NRB+19], ...

[NWK-+17], [LCL+17], ..

[Gulll], [FMG+17] ...
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Syntax-Guided Synthesis (SyGuS) [ABJ+13]

Program

Specification
Syntax @
restrictions

> Specification is given by (second-order) T-formula: 3f.Vz. o[f, Z]

> Syntactic restrictions given by context-free grammar R
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Enumerative CEGIS [STB-+06; URD~+13]

Consider the example:
¢ = flr,z)~ax4+1A fz,z+1)~zx

A=0|1]z|y| A+ A|ite(B, A, A)

Ro= B—A<A|-B

Counterexamples =

{1}

Solution
Enumerator

J

Solution
Verifier

> De facto approach to SyGuS solving given its simplicity and efficacy

Extending enumerative function synthesis via SMT-driven classification

4/26



Enumerative CEGIS [STB-+06; URD~+13]

Consider the example:
¢ = flr,z)~ax4+1A fz,z+1)~zx

A=0|1]z|y| A+ A|ite(B, A, A)

Ro= B—A<A|-B

Counterexamples =

{1} )
Candidate

f(x,y)=x

Solution
Enumerator

J

Solution
Verifier

> De facto approach to SyGuS solving given its simplicity and efficacy

Extending enumerative function synthesis via SMT-driven classification

4/26



Enumerative CEGIS

Consider the example:
¢ = flr,z)~ax4+1A fz,z+1)~zx

A=0|1]z|y| A+ A|ite(B, A, A)

Ro= B—A<A|-B

Counterexamples =

[STB+06; URD-+13]

{f(1,1) =2,
Candidate
f(1,2)=1} f(x,y)=x
N e
Solution
Enumerator
J Counterexample \_

f(x=1,y=0)

> De facto approach to SyGuS solving given its simplicity and efficacy

Extending enumerative function synthesis via SMT-driven classification

Solution
Verifier

4/26



Enumerative CEGIS

Consider the example:
¢ = flr,z)~ax4+1A fz,z+1)~zx

A=0|1]z|y| A+ A|ite(B, A, A)

Ro= B—A<A|-B

Counterexamples =
{f(1,1) =2,
f(1,2) =11}

[STB+06; URD-+13]
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Consider the example:
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Counterexamples =
{f(1,1) =2,

Candidate
f(1,2) =1, fix,y)=ite(y < z,z +1,2)
£(0,0) = 1, N\ -
f(0,1) = 0 Solution Solution
} Enumerator |[¢ Verifier
J .

> De facto approach to SyGuS solving given its simplicity and efficacy

Extending enumerative function synthesis via SMT-driven classification

4/26



Scalability issues

Enumerative techniques are effective but limited by the explosion of the

enumeration space as term size increases

For this bit-vector grammar, enumerating

> Terms of size = 1 : .05 seconds
Terms of size = 2 : .6 seconds

Terms of size = 3 : 48 seconds
Terms of size = 4 : 5.8 hours

>
>
>
> Terms of size = 5 : 777 (100+ days)
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(synth-fun £ ((s (BitVec 4))
(t (BitVec 4)))

(BitVec 4) (
(Start (BitVec 4) (

s t #x0
(bvneg
(bvnot
(bvadd
(bvmul
(bvand
(bvlshr
(bvor

(bvshl

Start)
Start)

Start
Start
Start
Start
Start
Start

Start)
Start)
Start)
Start)
Start)
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Divide and conquer (D&C) [ARU17; NSM18]

Terms = - Predicates =
Term Predicate redicates
10,1, %y, x+1} Enumerator Enumerator {y<a}

Counterexamples =

{f(1,1) =2,
f(1,2) = Decision Tree > Solution
f(0,0) = Learner Verifier
f(0,1) =0}

> Generate partial solutions correct on subset of input
> Unify partial solutions via decision tree learning
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Divide and conquer (D&C) [ARU17; NSM18]

Terms = i Predicates =
Term Predicate redicates
{0, L, x,y, x+1} Enumerator Enumerator {y <z}

Candidate E

Counterexamples =

(f11) =2, f(x,y)=ite(y < z,z + 1,x)
f(1,2) = Decision Tree > Solution
f(0,0) = Learner Verifier
f(0,1) = 0 }

> Generate partial solutions correct on subset of input
> Unify partial solutions via decision tree learning

y<z
-
{f(1,1) =2, £(0,0) = 1} {f(1,2) =1, f(0,1) = 0}
r+1Vv z Vv

> D&C provides much better scalability
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However...

> D&C can only be applied to point-wise specifications
» Each input valuation is specified independently
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However...

> D&C can only be applied to point-wise specifications
» Each input valuation is specified independently

Consider augmenting the previous example:

o= fle,x)~z+1A flr,z+1)~x
AN fle,y)=e+1= fle+2,y) =z

Counterexample {x — 1, y — 0} yields the constraints:

FO, ) ~2 A f(1L,2)~1 A f(1,0)~2= f(3,0)~1

> A solution for f(1, 0) restricts the solution for f(3, 0)

> Breaks assumption that partial solutions can be found indepedently
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Challenges

> This limitation excludes interesting classes of synthesis problems
» Invariants: I(z) AT(z,z') = I(z')
» Ranking functions: rank(z’) < rank(z)
» Modular arithmetic functions: f(z) ~ f(x +n)
> ...
> Extending D&C to arbitrary (non-point-wise) specifications:
» Find a term assignment consistent with point dependencies

» Correctly classify points according to term assignment
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> This limitation excludes interesting classes of synthesis problems
» Invariants: I(z) AT(z,z') = I(z')
» Ranking functions: rank(z’) < rank(z)
» Modular arithmetic functions: f(z) ~ f(x +n)
> ...

> Extending D&C to arbitrary (non-point-wise) specifications:
» Find a term assignment consistent with point dependencies

SMT solving

» Correctly classify points according to term assignment

Decision tree learning
® SMT-based solution-complete strategy

B Heuristic strategy

Extending enumerative function synthesis via SMT-driven classification 8 /26






Satisfiability Modulo Theories (SMT)

First-order formulas t u= x| f(t,...,1)
in CNF: o = plt,...,t)|~pleVe|Ver...zn @

Given a formula ¢ in FOL and background theories 71, ..., 7Ty, finding a
model M giving an interpretation to all terms and predicates such that

MET,.. T ¢
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SMT solving [BT18]

> Decidability depends on the theories being used

> Efficient decision procedures

» Equality and uninterpreted functions (Congruence Closure (CC))
[NO80], [DST80]

> Algebraic datatypes (CC + Injectivity, Distinctness, Exhaustiveness,
Acyclicity) [BSTO7]

» Linear arithmetic (Simplex) [DMO6]

» Bit-vectors (Bit-blasting)

» Combination of theories (Nelson-Oppen)

> .

> Boolean search leverages SAT solvers

> Users may define their own theories
» New operators as uninterpreted functions + Axioms
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CDCL(T) architecture

SMT formula

SMT solver
Quantifier-free SMT solver
Instantiation
module SAT solver

Boolean Model

(SAT (model))A‘(UNSAT (Droof/core))

> Rewriter simplifies terms
z+0— 2z aa— 1 (str.replace z (str.++ z z) y) = =

> SAT solver enumerates models for Boolean skeleton of formula
> Theory solvers check consistency in the theory
> Instantiation module selects relevant instances
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Enumerative SyGuS in SMT [RKT+17], [RVB+18]

> Encode problem using a deep embedding into datatypes
¢ = faa)matlAfl@ o)~
A—=0|1|z|y| A+ Alite(B, A, A)

B = p_a<a | =B
Becomes
lell = evaly(d,z,z) ~2z+1 A evaly(d,z, 2+ 1) ~x
IR] = a = Zero|One | X |Y |Plus(a,a) | Ite(b, a, a)
~ b =Leq(a, a) | Neg(b)

> eval maps datatype terms to their corresponding theory terms
> eval,(Plus(X,X),2,3) is interpreted as (z + z){x +— 2,y — 3} =4
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Enumerative SyGuS in SMT [RKT+17], [RVB+18]

> Encode problem using a deep embedding into datatypes
¢ = faa)matlAfl@ o)~
A—=0|1|z|y| A+ Alite(B, A, A)

B = p_a<a | =B

Becomes
lell = evaly(d,z,z) ~2z+1 A evaly(d,z, 2+ 1) ~x
IR] = a = Zero|One | X |Y |Plus(a,a) | Ite(b, a, a)

b = Leq(a, a)

Neg(b)

> eval maps datatype terms to their corresponding theory terms

> eval,(Plus(X,X),2,3) is interpreted as (z + z){x +— 2,y — 3} =4

> A solution is a model in which e.g.
» d = Tte(Leq(Y, X), Plus(X, One), X), corresponding to
> =)y ite(y <z, x+1, x)
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Enumerative SyGuS in SMT [RKT+17], [RVB+18]

Candidate
Solution > Solution

Enumerator Counterexample Veriﬁer

Quantifier-free SMT solver 3
Instantiation
SyGuS SAT module
Datatypes solver solver

Boolean Model

> An instantiation module checks candidates against the specification
» Generates lemmas witnessing why a candidate failed

> A specialized datatypes solver for SyGuS generates candidate solutions
» Must satisfy all lemmas
» Dedicated pruning
» Parameterizable fairness criteria for enumeration
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Unif+Pl: a general divide-and-conquer framework for
SyGuS solving




Recapping

> D&C can only be applied to point-wise specifications
» Each input valuation is specified independently

> Extending D&C to arbitrary (non-point-wise) specifications requires:
» Find a term assignment consistent with point dependencies

SMT solving

» Correctly classify points according to term assignment

Decision tree learning
® SMT-based solution-complete strategy

B Heuristic strategy
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Unif+Pl: Synthesis via Pointwise-Indepentent unification

SMT-based

Separation lemmas as
Classifier

Refinement lemmas  f(1, 1) ~2A f(1, 2) ~ 1A
F(1,0)~2= £(3,0)~1

Ordered
predicates list

Term assignment

Verification
oracle

Classification
checker

Candidate solution

> SMT-based classifier
» Assigns terms to points so that lemmas hold
fL ) =y+y, {f(1,0), f(3,0), f(1,2)} ==
» Generates ordered list of predicates to separate points: P, — x # y

o> Classification checker: whether corresponding decision tree correctly
classifies sample

» Failures are encoded as separation lemmas
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Unif+Pl: Synthesis via Pointwise-Indepentent unification

SMT-based

Separation lemmas as
Classifier

Refinement lemmas

Ordered
predicates list

Term assignment

Classification
checker

Verification
oracle

> Successful candidates that are not verified lead to refinement lemmas
and the learning restarts

Candidate solution
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Unif+Pl: Synthesis via Pointwise-Indepentent unification

SMT-based
Classifier

Separation lemmas Refinement lemmas

Ordered
predicates list

Term assignment

Classification
checker

Candidate solution

Verification
oracle

> Successful candidates that are not verified lead to refinement lemmas
and the learning restarts

> Bounded solution-completeness and minimality results due to
exhaustive enumeration of possible classifiers according to
» size and number of distinct terms to be assigned
» size and number of distinct predicates
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SMT-based
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Separation lemmas Refinement lemmas

Ordered
predicates list

Term assignment

Classification
checker

Candidate solution

Verification
oracle

> Successful candidates that are not verified lead to refinement lemmas
and the learning restarts

> Bounded solution-completeness and minimality results due to
exhaustive enumeration of possible classifiers according to

» size and number of distinct terms to be assigned
» size and number of distinct predicates

> Our fairness criteria are size = loga(#terms), #pred = #terms — 1
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Consider again:
fle,x) ~z+1A flz,o+1)~x
r+1=flz+2,y)~x

~

SD =
AN flz,y) >~
> Initially a single term of size 0 will be a trivial successful classifier
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Consider again:

= flz,2) ~x+1A fla,z+1)~z
AN flzy)=z+l= flz+2,y) =

> Initially a single term of size 0 will be a trivial successful classifier

> Refinement lemma:
fL,)~2 A f(L0O)~2=f30~1 A f(1,2)~1
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> Refinement lemma:
f,)~2 A f(1,0)~2=f(3,00~1 A f(1,2)x~1

> Since no assignment with a single term suffices, the threshold is
increased to consider two distinct terms

» Maximum size increases to 1 and up to 1 predicate can be used

> A candidate classifier is
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P1 — T

Extending enumerative function synthesis via SMT-driven classification 17 / 26



Consider again:
© = fle,x) ~z+1A flz,o+1)~x
AN flay)=z+l=flz+2,y) =

> Initially a single term of size 0 will be a trivial successful classifier

> Refinement lemma:
f,)~2 A f(1,0)~2=f(3,00~1 A f(1,2)x~1

> Since no assignment with a single term suffices, the threshold is
increased to consider two distinct terms

» Maximum size increases to 1 and up to 1 predicate can be used

> A candidate classifier is

FL ) =y+y, {f(10), f3,0), f(1,2)} =
P1 — T

> This classifier fails on the sample, yielding a separation lemma
P~T= f(1,1) ~ f(1, 0)
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er = f(L)~2 A f(1,0)=2=f3,00~1 A [f(1,2)~1
ps = Pi~T= f(1,1)~ f(1,0)

> Given this constraints and current threshold the next candidate
classifier produced is:

{11, f(1,0), f(3, 0} =y +1, f(1,2) =1
P — y<x
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or = f(1,1)~2 A f(1,0)~2= f(3,00~1 A f(1,2)~1

pvs = Pi~T= f(1,1)~ f(1,0)

> Given this constraints and current threshold the next candidate
classifier produced is:

{f(1, 1), f(1,0), f3, 0)} =y +1 f(1,2) =1
P—y<zx

> Running the classification checker:

L)
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er = f(L)~2 A f(1,0)=2=f3,00~1 A [f(1,2)~1
ps = Pi~T= f(1,1)~ f(1,0)

> Given this constraints and current threshold the next candidate
classifier produced is:

{f(1, 1), f(1,0), f3, 0)} =y +1 f(1,2) =1
P—y<zx

> Running the classification checker:
y<w

F(L1), £(1,0), £(3,0) o £(1,2) — /\

f(1,1), f(1,0), f(3,0) f(1,2)
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or = f(1,1)~2 A f(1,0)~2= f(3,00~1 A f(1,2)~1
pvs = Pi~T= f(1,1)~ f(1,0)

> Given this constraints and current threshold the next candidate
classifier produced is:

{f(1, 1), f(1,0), f3, 0)} =y +1 f(1,2) =1
P—y<zx

> Running the classification checker:
y<w

T 1
L1, £(1,0), £(3,0) o £(1,2) — /\
> As the classification succeeds, a candidate is generated

> The candidate fails, so the process restarts with new refinement
lemmas

> Eventually finds solution f = Axy. ite(x <y, ite(y <z, x + 1, x), y)
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Unif+Pl with unconstrained predicate enumeration

Predicate SMT-based Refinement lemmas
Enumerator Classifier
Predicates Term assignment
Learner Verification

Candidate solution oracle

> Unif+PI4+-E uses SMT solver only to produce term assignments

» Relies on standard decision tree learning to classify a labeled sample
» Predicates chosen from enumerated pool with information-gain heuristic
» Separation conflicts solved when new predicates are enumerated

> Often sacrificing completeness and minimality allows problems to be
solved more efficiently
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Setup

> Benchmarks (all over LIA)

» 127 invariant synthesis benchmarks from SyGuS-COMP’'18
» 440 invariant synthesis benchmarks from test suite of Kind 2

> Three configurations of cvc4sy

cveH-C enumerative CEGIS [RBN+19]
CVC+UPI Unif+PlI
CVC+UPI+E Unif4+-PI+E

> LOOPINVGEN [PM17] and CVC+H-C as baselines

>> 1800s timeout, 8gb RAM

Full data at http://cvcé.cs.stanford.edu/papers/FMCAD2019-UnifPI/
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Summary

Solved Unique Total time Fastest Shortest
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Advantages and disadvantages of Unif+PI

> CVC-+UPI and CVC+UPI+E thrive when invariants can be built from
combination of small literals

> CVCHC is superior when invariant is a single complex literal

» 29 of its 30 unique solves are such cases

> CVC4UPI and CVC+UPIHE also suffer from dependence on samples

» Sometimes search is biased towards simple classifiers when only a more
complex one would suffice
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SyGuS-COMP 2019

Inv Track (829)

Solver Solved Fastest Smallest Score
CVC4-su 592 423 264 4493
LooplnvGen 512 442 364 4250
LoopInvGen-gplearn 511 411 349 4137
CVC4-Fast 522 319 243 3810
CVC4-Smart 539 283 260 3804
OASIS 538 20 317 3067
DryadSynth 277 161 39 1907

W

Subus

> 829 benchmarks from the literature in loop invariant synthesis
> 3600s timeout
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Injecting some welcome realism

> Kind 2 employs in cooperation:

» IC3 [Brall]
» k-induction [SSS00]
» Generation of auxiliary invariants [KGT11]

> Kind 2 solves all the 480 benchmarks it its test suite in less than 120s

> Considering k-induction in isolation, CVC-PORT is competitive

Solved Unique Time (commonly solved)

CVC-PORT 323 82 109.6
Kind 2 (k-induction) 313 72 9.6
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Injecting some welcome realism

> Kind 2 employs in cooperation:

» IC3 [Brall]
» k-induction [SSS00]
» Generation of auxiliary invariants [KGT11]

> Kind 2 solves all the 480 benchmarks it its test suite in less than 120s

> Considering k-induction in isolation, CVC-PORT is competitive

Solved Unique Time (commonly solved)

CVC-PORT 323 82 109.6
Kind 2 (k-induction) 313 72 9.6

> We consider this encouraging given our framework is

» not theory-specific
» single-threaded
» not optimized for reachability
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Conclusions

> New enumerative function synthesis framework via divide and conquer

» No dependence on point-wise specifications
» Powered by SMT-driven classification algorithms
» Implemented in CvC4sy

> Experimental evaluation shows significant gains w.r.t. previous SyGuS
techniques for invariant synthesis
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Future work

>> Improving classification
» Using constraint solving for synthesizing term assignments
» Only considering relevant arguments when synthesizing predicates

£(0,0,0,1,2,1,0) o £(1,0,0,5,2,1,3)

m Can drastically reduce search space

> Improving sample
» Reducing noise: make points as similar as possible
£(1,0,0,1,2,1,0) o £(1,0,0,5,2,1,0)

» Improve diversity via clustering analysis: only add new points to sample
that are sufficiently different
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Invariant Synthesis

Add(lnt X, y

return z;

Post-condition:
Ve,y: z=x+vy

Result is the sum
of the inputs




Invariant Synthesis

Add(Int x, y) {
z:=x;i:=0;
assume(y > 0);
while (i <y) {

z:=z+1;
i=i+1;

return z; q
Invariant?

Post-condition: Reg?'ti'es i%h,fui'gm

Ve,y: z=x+y

Verification:

z=xzANi=0Ay>0 - Inv(z, y, z, 1)
Inv(z, y, z, )ANi<yAZ =z241ANI'=i+1 — Inv(z,y, 2, )
Inv(z,y, z, ) Ni >y - z=x+y



Invariant Synthesis

Add(Int x, y) {

z:=X%Xi:=0; 0
assume(y > 0); ITL’U(.‘L’, ya Z7 Z)
while (i <y) { _ .
z:=2z+1; Z=x+1
i=i+1; <

} ARSI
return z;

Post-condition: Ref;?'tth'é itnhpeuigm

Ve,y: z=x+y

Verification:
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Invariant Synthesis in SyGuS

> State-of-the-art: LooplnvGen [PM17]: data-driven loop invariant
inference with automatic feature synthesis
» Precondition inference from sets of “good” and “bad” states
m Feature synthesis for solving conflicts
» PAC (probably approximately correct) algorithm for building candidate
invariants

> “Bad" states are dependent on model of initial condition (no
guaranteed convergence)

> No support for implication counterexamples



Invariant Synthesis with Unif+PlI

> Refinement lemmas allows derivation of three kinds on data points:

» “good points” (invariant must always hold)

> “bad points” (invariant can never hold)

» ‘“implication points” (if invariant holds in first point it must hold in
second)

>> Native support for implication counterexamples

o> Straightforward usage of classic information gain heuristic to build
candidate solutions with decision tree learning

» SMT solver “resolves” implication counterexample points as “good” and
“bad”

» Out-of-the-box Shannon entropy
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