Extending enumerative function synthesis via
SMT-driven classification

Haniel Barbosa, Andrew Reynolds, Daniel Larraz, Cesare Tinelli

UF7MG - ThE UNIVERSITY
— | OF lowa

Légicos em Quarentena
2020-04-30, The Internet

Program synthesis: “The Holy Grail of Computer Science”

Specification Program
High-level description Low-level description
"What" "How"

Extending enumerative function synthesis via SMT-driven classification 1/26

Program synthesis: “The Holy Grail of Computer Science”

Specification Program
High-level description Low-level description
"What" "How"
In Out P(x) =
0 1
1 2
2 4
3 8

Extending enumerative function synthesis via SMT-driven classification 1/26

Program synthesis: “The Holy Grail of Computer Science”

Specification Program
High-level description Low-level description
"What" "How"
In Out P(z) =ite(r <2, x+ 1, ite(z < 3, 2%z, 2% x + 2))
0 1
1 2
2 4
3 8

Extending enumerative function synthesis via SMT-driven classification 1/26

Program synthesis: “The Holy Grail of Computer Science”

Specification Program
High-level description Low-level description
"What" "How"

In Out P(z)=ite(z < 2,z + 1, ite(x < 3, 2%z, 2*xx + 2))
0 1 P(z)=2"

1 2

2 4

3 8

Extending enumerative function synthesis via SMT-driven classification 1/26

Program synthesis: “The Holy Grail of Computer Science”

Specification Program
High-level description Low-level description
"What" "How"
In Out P(z) =ite(r <2, x+ 1, ite(z < 3, 2%z, 2% x + 2))
0 1 P(z)=2"
1 2
Plx)=...
2 4 (@)
3 8

Extending enumerative function synthesis via SMT-driven classification 1/26

Program synthesis: “The Holy Grail of Computer Science”

Specification Program
High-level description Low-level description
"What" "How"

In Out

x=0,y=1 x=1,y=0
x=1,y=2 x=2,y=1
x=2,y=3 x=3,y=2
x=3,y=4 x=4,y=3

Extending enumerative function synthesis via SMT-driven classification 1/26

Program synthesis: “The Holy Grail of Computer Science”

Specification Program
High-level description Low-level description
"What" "How"

In Out P(z,y) ={z < z+ Ly« y—1}

x=0,y=1 x=1,y=0
x=1,y=2 x=2,y=1
x=2,y=3 x=3,y=2
x=3,y=4 x=4,y=3

Extending enumerative function synthesis via SMT-driven classification 1/26

Program synthesis: “The Holy Grail of Computer Science”

Specification Program
High-level description Low-level description
"What" "How"
In Out P(z,y) ={z < z+ Ly« y—1}
x=0,y=1 x=1,y=0 P(x,y) ={z ¢+ x;x < y;y + 2}

x=1,y=2 x=2,y=1
x=2,y=3 x=3,y=2
x=3,y=4 x=4,y=3

Extending enumerative function synthesis via SMT-driven classification 1/26

Program synthesis: “The Holy Grail of Computer Science”

Specification Program
High-level description Low-level description
"What" "How"
In Out P(z,y) ={z < z+ Ly« y—1}
x=0,y=1 x=1,y=0 P(x,y) ={z ¢+ x;x < y;y + 2}
x=1,y=2 x=2,y=1 P(z,y) =

x=2,y=3 x=3,y=2
x=3,y=4 x=4,y=3

Extending enumerative function synthesis via SMT-driven classification 1/26

Program synthesis: “The Holy Grail of Computer Science”

Specification Program
High-level description Low-level description
"What" "How"
> Main challenges: > Three main characteristics
» Exploring search space » How to write specification
» Capturing intention » How to constrain search space

» How to guide the search

In Out Plz,y)={z<+z+Ly+y—1}
x=0,y=1 x=1,y=0 P(z,y) ={z+ z;z < y;y < 2z}
x=1y=2 x=2y=1 P(z,y) =...

x=2,y=3 x=3,y=2
x=3,y=4 x=4,y=3

Extending enumerative function synthesis via SMT-driven classification 1/26

Some applications of program synthesis

> Superoptimization

> Program repair

> Programming by examples
> Circuit synthesis

> Loop invariant synthesis

Extending enumerative function synthesis via SMT-driven classification

[SSA13], [NRB+19], ...

[NWK-+17], [LCL+17], ..

[Gulll], [FMG+17] ...

[EWW16], ..

[GLM+14], [PSM16], ...

2/ 26

Syntax-Guided Synthesis (SyGuS) [ABJ+13]

Program

Specification
Syntax @
restrictions

> Specification is given by (second-order) T-formula: 3f.Vz. o[f, Z]

> Syntactic restrictions given by context-free grammar R

Extending enumerative function synthesis via SMT-driven classification 3/26

Enumerative CEGIS [STB-+06; URD~+13]

Consider the example:
¢ = flr,z)~ax4+1A fz,z+1)~zx

A=0|1]z|y| A+ A|ite(B, A, A)

Ro= B—A<A|-B

Counterexamples =

{1}

Solution
Enumerator

J

Solution
Verifier

> De facto approach to SyGuS solving given its simplicity and efficacy

Extending enumerative function synthesis via SMT-driven classification

4/26

Enumerative CEGIS [STB-+06; URD~+13]

Consider the example:
¢ = flr,z)~ax4+1A fz,z+1)~zx

A=0|1]z|y| A+ A|ite(B, A, A)

Ro= B—A<A|-B

Counterexamples =

{1})
Candidate

f(x,y)=x

Solution
Enumerator

J

Solution
Verifier

> De facto approach to SyGuS solving given its simplicity and efficacy

Extending enumerative function synthesis via SMT-driven classification

4/26

Enumerative CEGIS

Consider the example:
¢ = flr,z)~ax4+1A fz,z+1)~zx

A=0|1]z|y| A+ A|ite(B, A, A)

Ro= B—A<A|-B

Counterexamples =

[STB+06; URD-+13]

{f(1,1) =2,
Candidate
f(1,2)=1} f(x,y)=x
N e
Solution
Enumerator
J Counterexample _

f(x=1,y=0)

> De facto approach to SyGuS solving given its simplicity and efficacy

Extending enumerative function synthesis via SMT-driven classification

Solution
Verifier

4/26

Enumerative CEGIS

Consider the example:
¢ = flr,z)~ax4+1A fz,z+1)~zx

A=0|1]z|y| A+ A|ite(B, A, A)

Ro= B—A<A|-B

Counterexamples =
{f(1,1) =2,
f(1,2) =11}

[STB+06; URD-+13]

Examples rule out candidates
0,1,y, x+y, ...

Vs

Solution
Enumerator

Solution
Verifier

> De facto approach to SyGuS solving given its simplicity and efficacy

Extending enumerative function synthesis via SMT-driven classification

4/26

Enumerative CEGIS [STB-+06; URD~+13]

Consider the example:
¢ = flr,z)~ax4+1A fz,z+1)~zx

A—=0|1|z|y| A+ A]ite(B, 4, A)

Ro= B—A<A|-B

Counterexamples =

{f(1,1) =2,
Candidate
f1,2) =1, f(x,y)=ite(y<1, 1+1, 1)
f(0,0) =1, N -
f(0,1) = 0 Solution
} Enumerator
J/ Counterexample

Ve

Solution
Verifier

f(x=0,y=0)

> De facto approach to SyGuS solving given its simplicity and efficacy

Extending enumerative function synthesis via SMT-driven classification

4/26

Enumerative CEGIS [STB-+06; URD~+13]

Consider the example:
¢ = flr,z)~ax4+1A fz,z+1)~zx

R - A—=0|1l|z|y| A+ Alite(B, A, A)
~ B—A<A|-B

Counterexamples =
{f(1,1) =2,

Candidate
f(1,2) =1, fix,y)=ite(y < z,z +1,2)
£(0,0) = 1, N\ -
f(0,1) = 0 Solution Solution
} Enumerator |[¢ Verifier
J .

> De facto approach to SyGuS solving given its simplicity and efficacy

Extending enumerative function synthesis via SMT-driven classification

4/26

Scalability issues

Enumerative techniques are effective but limited by the explosion of the

enumeration space as term size increases

For this bit-vector grammar, enumerating

> Terms of size = 1 : .05 seconds
Terms of size = 2 : .6 seconds

Terms of size = 3 : 48 seconds
Terms of size = 4 : 5.8 hours

>
>
>
> Terms of size = 5 : 777 (100+ days)

Extending enumerative function synthesis via SMT-driven classification

(synth-fun £ ((s (BitVec 4))
(t (BitVec 4)))

(BitVec 4) (
(Start (BitVec 4) (

s t #x0
(bvneg
(bvnot
(bvadd
(bvmul
(bvand
(bvlshr
(bvor

(bvshl

Start)
Start)

Start
Start
Start
Start
Start
Start

Start)
Start)
Start)
Start)
Start)
Start)))))

5/26

Divide and conquer (D&C) [ARU17; NSM18]

Terms = - Predicates =
Term Predicate redicates
10,1, %y, x+1} Enumerator Enumerator {y<a}

Counterexamples =

{f(1,1) =2,
f(1,2) = Decision Tree > Solution
f(0,0) = Learner Verifier
f(0,1) =0}

> Generate partial solutions correct on subset of input
> Unify partial solutions via decision tree learning

Extending enumerative function synthesis via SMT-driven classification 6 /26

Divide and conquer (D&C) [ARU17; NSM18]

Terms = - Predicates =
Term Predicate redicates
10,1, %y, x+1} Enumerator Enumerator {y<a}

Counterexamples =

{f(1,1) = 2,
f(1,2) = Decision Tree > Solution
f(0,0) = Learner Verifier
f(0,1) =0}
> Generate partial solutions correct on subset of input
> Unify partial solutions via decision tree learning
y<zw
-
{f(1,1) =2, £(0,0) = 1} {f(1,2) =1, f(0,1) = 0}

Extending enumerative function synthesis via SMT-driven classification 6 /26

Divide and conquer (D&C) [ARU17; NSM18]

Terms = - Predicates =
Term Predicate redicates
10,1, %y, x+1} Enumerator Enumerator {y<a}

Counterexamples =

{f(1,1) = 2,
f(1.2) = Decision Tree > Solution
f(0,0) = Learner Verifier
f(0,1) =0}
> Generate partial solutions correct on subset of input
> Unify partial solutions via decision tree learning
y<z
-
{f(1,1) =2, f(0,0) =1} {f(1,2) =1, f(0,1) = 0}
0x

Extending enumerative function synthesis via SMT-driven classification 6 /26

Divide and conquer (D&C) [ARU17; NSM18]

Terms = - Predicates =
Term Predicate redicates
10,1, %y, x+1} Enumerator Enumerator {y<a}

Counterexamples =

{f(1,1) = 2,
f(1,2) = Decision Tree > Solution
f(0,0) = Learner Verifier
f(0,1) =0}
> Generate partial solutions correct on subset of input
> Unify partial solutions via decision tree learning
y<z
-
{f(1,1) =2,7(0,0) =1} {f(1,2) =1,£(0,1) = 0}

Extending enumerative function synthesis via SMT-driven classification 6 /26

Divide and conquer (D&C) [ARU17; NSM18]

Terms = - Predicates =
Term Predicate redicates
10,1, %y, x+1} Enumerator Enumerator {y<a}

Counterexamples =

{f(1,1) = 2,
f(1,2) = Decision Tree > Solution
f(0,0) = Learner Verifier
f(0,1) =0}
> Generate partial solutions correct on subset of input
> Unify partial solutions via decision tree learning
y<zw
-
{f(1,1) =2, £(0,0) = 1} {f(1,2) =1, f(0,1) = 0}

Extending enumerative function synthesis via SMT-driven classification 6 /26

Divide and conquer (D&C) [ARU17; NSM18]

Terms = - Predicates =
Term Predicate redicates
10,1, %y, x+1} Enumerator Enumerator {y<a}

Counterexamples =

{f(1,1) = 2,
f(1,2) = Decision Tree > Solution
f(0,0) = Learner Verifier
f(0,1) =0}
> Generate partial solutions correct on subset of input
> Unify partial solutions via decision tree learning
y<zw
-
{f(1,1) =2, £(0,0) = 1} {f(1,2) =1, f(0,1) = 0}

Extending enumerative function synthesis via SMT-driven classification 6 /26

Divide and conquer (D&C) [ARU17; NSM18]

Terms = - Predicates =
Term Predicate redicates
10,1, %y, x+1} Enumerator Enumerator {y<a}

Counterexamples =

{f(1,1) = 2,
f(1,2) = Decision Tree > Solution
f(0,0) = Learner Verifier
f(0,1) =0}
> Generate partial solutions correct on subset of input
> Unify partial solutions via decision tree learning
y<zw
-
{f(1,1) =2, £(0,0) = 1} {f(1,2) =1, f(0,1) = 0}

Extending enumerative function synthesis via SMT-driven classification 6 /26

Divide and conquer (D&C) [ARU17; NSM18]

Terms = - Predicates =
Term Predicate redicates
10,1, %y, x+1} Enumerator Enumerator {y<a}

Counterexamples =

{f(1,1) = 2,
f(1,2) = Decision Tree > Solution
f(0,0) = Learner Verifier
f(0,1) =0}
> Generate partial solutions correct on subset of input
> Unify partial solutions via decision tree learning
y<z
-
{f(1,1) =2, £(0,0) = 1} {f(1,2) =1, f(0,1) = 0}
z+1V z v

Extending enumerative function synthesis via SMT-driven classification 6 /26

Divide and conquer (D&C) [ARU17; NSM18]

Terms = i Predicates =
Term Predicate redicates
{0, L, x,y, x+1} Enumerator Enumerator {y <z}

Candidate E

Counterexamples =

(f11) =2, f(x,y)=ite(y < z,z + 1,x)
f(1,2) = Decision Tree > Solution
f(0,0) = Learner Verifier
f(0,1) = 0 }

> Generate partial solutions correct on subset of input
> Unify partial solutions via decision tree learning

y<z
-
{f(1,1) =2, £(0,0) = 1} {f(1,2) =1, f(0,1) = 0}
r+1Vv z Vv

> D&C provides much better scalability

Extending enumerative function synthesis via SMT-driven classification 6 /26

However...

> D&C can only be applied to point-wise specifications
» Each input valuation is specified independently

Extending enumerative function synthesis via SMT-driven classification 7/ 26

However...

> D&C can only be applied to point-wise specifications
» Each input valuation is specified independently

Consider augmenting the previous example:

o= fle,x)~z+1A flr,z+1)~x
AN fle,y)=e+1= fle+2,y) =z

Counterexample {x — 1, y — 0} yields the constraints:

FO,) ~2 A f(1L,2)~1 A f(1,0)~2= f(3,0)~1

> A solution for f(1, 0) restricts the solution for f(3, 0)

> Breaks assumption that partial solutions can be found indepedently

Extending enumerative function synthesis via SMT-driven classification 7/ 26

Challenges

> This limitation excludes interesting classes of synthesis problems
» Invariants: I(z) AT(z,z') = I(z')
» Ranking functions: rank(z’) < rank(z)
» Modular arithmetic functions: f(z) ~ f(x +n)
> ...
> Extending D&C to arbitrary (non-point-wise) specifications:
» Find a term assignment consistent with point dependencies

» Correctly classify points according to term assignment

Extending enumerative function synthesis via SMT-driven classification 8 /26

Challenges

> This limitation excludes interesting classes of synthesis problems
» Invariants: I(z) AT(z,z') = I(z')
» Ranking functions: rank(z’) < rank(z)
» Modular arithmetic functions: f(z) ~ f(x +n)
> ...

> Extending D&C to arbitrary (non-point-wise) specifications:
» Find a term assignment consistent with point dependencies

SMT solving

» Correctly classify points according to term assignment

Extending enumerative function synthesis via SMT-driven classification 8 /26

Challenges

> This limitation excludes interesting classes of synthesis problems
» Invariants: I(z) AT(z,z') = I(z')
» Ranking functions: rank(z’) < rank(z)
» Modular arithmetic functions: f(z) ~ f(x +n)
> ...

> Extending D&C to arbitrary (non-point-wise) specifications:
» Find a term assignment consistent with point dependencies

SMT solving

» Correctly classify points according to term assignment

Decision tree learning
® SMT-based solution-complete strategy

B Heuristic strategy

Extending enumerative function synthesis via SMT-driven classification 8 /26

Satisfiability Modulo Theories (SMT)

First-order formulas t u= x| f(t,...,1)
in CNF: o = plt,...,t)|~pleVe|Ver...zn @

Given a formula ¢ in FOL and background theories 71, ..., 7Ty, finding a
model M giving an interpretation to all terms and predicates such that

MET,.. T ¢

Extending enumerative function synthesis via SMT-driven classification 9/ 26

Satisfiability Modulo Theories (SMT)

First-order formulas t u= x| f(t,...,1)
in CNF: o = plt,...,t)|~pleVe|Ver...zn @

Given a formula ¢ in FOL and background theories 71, ..., 7Ty, finding a
model M giving an interpretation to all terms and predicates such that

MET,.. T ¢

Example
Is ¢ satisfiable modulo equality and arithmetic?
e = (@ z20)A(@ <) A (fle)#£f(0) V zz3+x>a3+1)

Extending enumerative function synthesis via SMT-driven classification 9/ 26

Satisfiability Modulo Theories (SMT)

First-order formulas t u= x| f(t,...,1)
in CNF: o = plt,...,t)|~pleVe|Ver...zn @

Given a formula ¢ in FOL and background theories 71, ..., T,, finding a
model M giving an interpretation to all terms and predicates such that

MET,.. T ¢

Example
Is satisfiable modulo equality and arithmetic?
p = (@m20)A(@ <) A (flz) #f(O0) V z3t+a1>3+1)

LIA EUF LIA

Extending enumerative function synthesis via SMT-driven classification 9/ 26

Satisfiability Modulo Theories (SMT)

First-order formulas t u= x| f(t,...,1)
in CNF: o = plt,...,t)|~pleVe|Ver...zn @

Given a formula ¢ in FOL and background theories 71, ..., T,, finding a
model M giving an interpretation to all terms and predicates such that

MET,.. T ¢

Example
Is satisfiable modulo equality and arithmetic?
p = (@m20)A(@ <) A (flz) #f(O0) V z3t+a1>3+1)

LIA EUF LIA

¢ Eua 10

Extending enumerative function synthesis via SMT-driven classification 9/ 26

Satisfiability Modulo Theories (SMT)

First-order formulas t u= x| f(t,...,1)
in CNF: o = plt,...,t)|~pleVe|Ver...zn @

Given a formula ¢ in FOL and background theories 71, ..., T,, finding a
model M giving an interpretation to all terms and predicates such that

MET,.. T ¢

Example
Is satisfiable modulo equality and arithmetic?
¢ = (@ 20)A(er<1) A (flz) 2 f(0) V z3+a1>a35+1)

LIA EUF LIA

¢ FEra 11 ~0
x1~0 Egur f(x1) = f(0)

Extending enumerative function synthesis via SMT-driven classification 9/ 26

Satisfiability Modulo Theories (SMT)

First-order formulas t u= x| f(t,...,1)
in CNF: o = plt,...,t)|~pleVe|Ver...zn @

Given a formula ¢ in FOL and background theories 71, ..., T,, finding a
model M giving an interpretation to all terms and predicates such that

MET,.. T ¢

Example
Is satisfiable modulo equality and arithmetic?
p = (@ 20)A(@m <) A (fle)#£f0) vV zz+a>a3+1)

LIA EUF LIA

%2):LIA xr = 0
r =~ 0):EUF f(l‘l) >~ f(O)
r1 ~0 ':LIA r3+x pasg+1

Extending enumerative function synthesis via SMT-driven classification 9/ 26

Satisfiability Modulo Theories (SMT)

First-order formulas t u= x| f(t,...,1)
in CNF: o = plt,...,t)|~pleVe|Ver...zn @

Given a formula ¢ in FOL and background theories 71, ..., T,, finding a
model M giving an interpretation to all terms and predicates such that

MET,.. T ¢

Example
Is satisfiable modulo equality and arithmetic?
¢ = (@20)A(x1<1) AN (flz) £ f(0) V z3+x1>03+1)
LIA EUF LIA
%2):LIA 1 ~0
Theref -
w1 ~0 Egur flz1) ~ £(0) erefore [=puruLia ¢
r1 ~0 ':LIA r3+x pasg+1

Extending enumerative function synthesis via SMT-driven classification 9/ 26

SMT solving [BT18]

> Decidability depends on the theories being used

> Efficient decision procedures

» Equality and uninterpreted functions (Congruence Closure (CC))
[NO80], [DST80]

> Algebraic datatypes (CC + Injectivity, Distinctness, Exhaustiveness,
Acyclicity) [BSTO7]

» Linear arithmetic (Simplex) [DMO6]

» Bit-vectors (Bit-blasting)

» Combination of theories (Nelson-Oppen)

> .

> Boolean search leverages SAT solvers

> Users may define their own theories
» New operators as uninterpreted functions + Axioms

Extending enumerative function synthesis via SMT-driven classification 10 / 26

CDCL(T) architecture

SMT formula

SMT solver
Quantifier-free SMT solver
Instantiation
module SAT solver

Boolean Model

(SAT (model))A‘(UNSAT (Droof/core))

> Rewriter simplifies terms
z+0— 2z aa— 1 (str.replace z (str.++ z z) y) = =

> SAT solver enumerates models for Boolean skeleton of formula
> Theory solvers check consistency in the theory
> Instantiation module selects relevant instances

Extending enumerative function synthesis via SMT-driven classification 11 /26

Enumerative SyGuS in SMT [RKT+17], [RVB+18]

> Encode problem using a deep embedding into datatypes
¢ = faa)matlAfl@ o)~
A—=0|1|z|y| A+ Alite(B, A, A)

B = p_a<a | =B
Becomes
lell = evaly(d,z,z) ~2z+1 A evaly(d,z, 2+ 1) ~x
IR] = a = Zero|One | X |Y |Plus(a,a) | Ite(b, a, a)
~ b =Leq(a, a) | Neg(b)

> eval maps datatype terms to their corresponding theory terms
> eval,(Plus(X,X),2,3) is interpreted as (z + z){x +— 2,y — 3} =4

Extending enumerative function synthesis via SMT-driven classification 12 / 26

Enumerative SyGuS in SMT [RKT+17], [RVB+18]

> Encode problem using a deep embedding into datatypes
¢ = faa)matlAfl@ o)~
A—=0|1|z|y| A+ Alite(B, A, A)

B = p_a<a | =B

Becomes
lell = evaly(d,z,z) ~2z+1 A evaly(d,z, 2+ 1) ~x
IR] = a = Zero|One | X |Y |Plus(a,a) | Ite(b, a, a)

b = Leq(a, a)

Neg(b)

> eval maps datatype terms to their corresponding theory terms

> eval,(Plus(X,X),2,3) is interpreted as (z + z){x +— 2,y — 3} =4

> A solution is a model in which e.g.
» d = Tte(Leq(Y, X), Plus(X, One), X), corresponding to
> =)y ite(y <z, x+1, x)

Extending enumerative function synthesis via SMT-driven classification

12 / 26

Enumerative SyGuS in SMT [RKT+17], [RVB+18]

Candidate
Solution > Solution

Enumerator Counterexample Veriﬁer

Quantifier-free SMT solver 3
Instantiation
SyGuS SAT module
Datatypes solver solver

Boolean Model

> An instantiation module checks candidates against the specification
» Generates lemmas witnessing why a candidate failed

> A specialized datatypes solver for SyGuS generates candidate solutions
» Must satisfy all lemmas
» Dedicated pruning
» Parameterizable fairness criteria for enumeration

Extending enumerative function synthesis via SMT-driven classification 13 / 26

Unif+Pl: a general divide-and-conquer framework for
SyGuS solving

Recapping

> D&C can only be applied to point-wise specifications
» Each input valuation is specified independently

> Extending D&C to arbitrary (non-point-wise) specifications requires:
» Find a term assignment consistent with point dependencies

SMT solving

» Correctly classify points according to term assignment

Decision tree learning
® SMT-based solution-complete strategy

B Heuristic strategy

Extending enumerative function synthesis via SMT-driven classification 14 / 26

Unif+Pl: Synthesis via Pointwise-Indepentent unification

SMT-based

Separation lemmas as
Classifier

Refinement lemmas f(1, 1) ~2A f(1, 2) ~ 1A
F(1,0)~2= £(3,0)~1

Ordered
predicates list

Term assignment

Verification
oracle

Classification
checker

Candidate solution

> SMT-based classifier
» Assigns terms to points so that lemmas hold
fL) =y+y, {f(1,0), f(3,0), f(1,2)} ==
» Generates ordered list of predicates to separate points: P, — x # y

o> Classification checker: whether corresponding decision tree correctly
classifies sample

» Failures are encoded as separation lemmas

Extending enumerative function synthesis via SMT-driven classification 15 / 26

Unif+Pl: Synthesis via Pointwise-Indepentent unification

SMT-based

Separation lemmas as
Classifier

Refinement lemmas

Ordered
predicates list

Term assignment

Classification
checker

Verification
oracle

> Successful candidates that are not verified lead to refinement lemmas
and the learning restarts

Candidate solution

Extending enumerative function synthesis via SMT-driven classification 16 / 26

Unif+Pl: Synthesis via Pointwise-Indepentent unification

SMT-based
Classifier

Separation lemmas Refinement lemmas

Ordered
predicates list

Term assignment

Classification
checker

Candidate solution

Verification
oracle

> Successful candidates that are not verified lead to refinement lemmas
and the learning restarts

> Bounded solution-completeness and minimality results due to
exhaustive enumeration of possible classifiers according to
» size and number of distinct terms to be assigned
» size and number of distinct predicates

Extending enumerative function synthesis via SMT-driven classification 16 / 26

Unif+Pl: Synthesis via Pointwise-Indepentent unification

SMT-based
Classifier

Separation lemmas Refinement lemmas

Ordered
predicates list

Term assignment

Classification
checker

Candidate solution

Verification
oracle

> Successful candidates that are not verified lead to refinement lemmas
and the learning restarts

> Bounded solution-completeness and minimality results due to
exhaustive enumeration of possible classifiers according to

» size and number of distinct terms to be assigned
» size and number of distinct predicates

> Our fairness criteria are size = loga(#terms), #pred = #terms — 1

Extending enumerative function synthesis via SMT-driven classification 16 / 26

Consider again:
fle,x) ~z+1A flz,o+1)~x
r+1=flz+2,y)~x

~

SD =
AN flz,y) >~
> Initially a single term of size 0 will be a trivial successful classifier

17 / 26

Extending enumerative function synthesis via SMT-driven classification

Consider again:

= flz,2) ~x+1A fla,z+1)~z
AN flzy)=z+l= flz+2,y) =

> Initially a single term of size 0 will be a trivial successful classifier

> Refinement lemma:
fL,)~2 A f(L0O)~2=f30~1 A f(1,2)~1

Extending enumerative function synthesis via SMT-driven classification 17 / 26

Consider again:
© = fle,x) ~z+1A flz,o+1)~x
AN flay)=z+l=flz+2,y) =

> Initially a single term of size 0 will be a trivial successful classifier

> Refinement lemma:
f,)~2 A f(1,0)~2=f(3,00~1 A f(1,2)x~1

> Since no assignment with a single term suffices, the threshold is
increased to consider two distinct terms

» Maximum size increases to 1 and up to 1 predicate can be used

Extending enumerative function synthesis via SMT-driven classification 17 / 26

Consider again:
© = fle,x) ~z+1A flz,o+1)~x
AN flay)=z+l=flz+2,y) =

> Initially a single term of size 0 will be a trivial successful classifier

> Refinement lemma:
f,)~2 A f(1,0)~2=f(3,00~1 A f(1,2)x~1

> Since no assignment with a single term suffices, the threshold is
increased to consider two distinct terms

» Maximum size increases to 1 and up to 1 predicate can be used

> A candidate classifier is

FL) =y+y, {f(10), f3,0), f(1,2)} =
P1 — T

Extending enumerative function synthesis via SMT-driven classification 17 / 26

Consider again:
© = fle,x) ~z+1A flz,o+1)~x
AN flay)=z+l=flz+2,y) =

> Initially a single term of size 0 will be a trivial successful classifier

> Refinement lemma:
f,)~2 A f(1,0)~2=f(3,00~1 A f(1,2)x~1

> Since no assignment with a single term suffices, the threshold is
increased to consider two distinct terms

» Maximum size increases to 1 and up to 1 predicate can be used

> A candidate classifier is

FL) =y+y, {f(10), f3,0), f(1,2)} =
P1 — T

> This classifier fails on the sample, yielding a separation lemma
P~T= f(1,1) ~ f(1, 0)

Extending enumerative function synthesis via SMT-driven classification 17 / 26

er = f(L)~2 A f(1,0)=2=f3,00~1 A [f(1,2)~1
ps = Pi~T= f(1,1)~ f(1,0)

> Given this constraints and current threshold the next candidate
classifier produced is:

{11, f(1,0), f(3, 0} =y +1, f(1,2) =1
P — y<x

Extending enumerative function synthesis via SMT-driven classification 18 / 26

or = f(1,1)~2 A f(1,0)~2= f(3,00~1 A f(1,2)~1

pvs = Pi~T= f(1,1)~ f(1,0)

> Given this constraints and current threshold the next candidate
classifier produced is:

{f(1, 1), f(1,0), f3, 0)} =y +1 f(1,2) =1
P—y<zx

> Running the classification checker:

L)

Extending enumerative function synthesis via SMT-driven classification

18 / 26

or = f(1,1)~2 A f(1,0)~2= f(3,00~1 A f(1,2)~1

pvs = Pi~T= f(1,1)~ f(1,0)

> Given this constraints and current threshold the next candidate
classifier produced is:

{f(1, 1), f(1,0), f3, 0)} =y +1 f(1,2) =1
P—y<zx

> Running the classification checker:

f(1,1), £(1,0)

Extending enumerative function synthesis via SMT-driven classification

18 / 26

or = f(1,1)~2 A f(1,0)~2= f(3,00~1 A f(1,2)~1

pvs = Pi~T= f(1,1)~ f(1,0)

> Given this constraints and current threshold the next candidate
classifier produced is:

{f(1, 1), f(1,0), f3, 0)} =y +1 f(1,2) =1
P—y<zx

> Running the classification checker:

f(L1), f(1,0), £(3,0)

Extending enumerative function synthesis via SMT-driven classification

18 / 26

or = f(1,1)~2 A f(1,0)~2= f(3,00~1 A f(1,2)~1

pvs = Pi~T= f(1,1)~ f(1,0)

> Given this constraints and current threshold the next candidate
classifier produced is:

{f(1, 1), f(1,0), f3, 0)} =y +1 f(1,2) =1
P—y<zx

> Running the classification checker:

f(,1), f(1,0), f(3,0) o f(1,2)

Extending enumerative function synthesis via SMT-driven classification

18 / 26

er = f(L)~2 A f(1,0)=2=f3,00~1 A [f(1,2)~1
ps = Pi~T= f(1,1)~ f(1,0)

> Given this constraints and current threshold the next candidate
classifier produced is:

{f(1, 1), f(1,0), f3, 0)} =y +1 f(1,2) =1
P—y<zx

> Running the classification checker:
y<w

F(L1), £(1,0), £(3,0) o £(1,2) — /\

f(1,1), f(1,0), f(3,0) f(1,2)

Extending enumerative function synthesis via SMT-driven classification 18 / 26

or = f(1,1)~2 A f(1,0)~2= f(3,00~1 A f(1,2)~1
pvs = Pi~T= f(1,1)~ f(1,0)

> Given this constraints and current threshold the next candidate
classifier produced is:

{f(1, 1), f(1,0), f3, 0)} =y +1 f(1,2) =1
P—y<zx

> Running the classification checker:
y<w

T 1
L1, £(1,0), £(3,0) o £(1,2) — /\
> As the classification succeeds, a candidate is generated

> The candidate fails, so the process restarts with new refinement
lemmas

> Eventually finds solution f = Axy. ite(x <y, ite(y <z, x + 1, x), y)

Extending enumerative function synthesis via SMT-driven classification 18 / 26

Unif+Pl with unconstrained predicate enumeration

Predicate SMT-based Refinement lemmas
Enumerator Classifier
Predicates Term assignment
Learner Verification

Candidate solution oracle

> Unif+PI4+-E uses SMT solver only to produce term assignments

» Relies on standard decision tree learning to classify a labeled sample
» Predicates chosen from enumerated pool with information-gain heuristic
» Separation conflicts solved when new predicates are enumerated

> Often sacrificing completeness and minimality allows problems to be
solved more efficiently

Extending enumerative function synthesis via SMT-driven classification 19 / 26

Setup

> Benchmarks (all over LIA)

» 127 invariant synthesis benchmarks from SyGuS-COMP’'18
» 440 invariant synthesis benchmarks from test suite of Kind 2

> Three configurations of cvc4sy

cveH-C enumerative CEGIS [RBN+19]
CVC+UPI Unif+PlI
CVC+UPI+E Unif4+-PI+E

> LOOPINVGEN [PM17] and CVC+H-C as baselines

>> 1800s timeout, 8gb RAM

Full data at http://cvcé.cs.stanford.edu/papers/FMCAD2019-UnifPI/

Extending enumerative function synthesis via SMT-driven classification 20 / 26

http://cvc4.cs.stanford.edu/papers/FMCAD2019-UnifPI/

Summary

Solved Unique Total time Fastest Shortest
cve+c 341 30 436251s 245
LOOPINVGEN 298 7 433273s 261
| "l

3 H
1073 —— cvete
—£3— loopinvgen

10?
10!
10° £
R ERRET R REEY
1 o o :
I oo s
100 150 200 250 300

Extending enumerative function synthesis via SMT-driven classification

350
21 /26

Summary

Solved Unique Total time Fastest Shortest

cve+-c 341 30 436251s 245 259
CVC—+UPI 291 3 494534s 236 231
LOOPINVGEN 208 7 433273s 261 289

3. -
10 —— cve+e

—£3— loopinvgen
—— cve+upi

102 .

10!

100

SRR
OO

10-1 P o
100 150 200 250 300 350

Extending enumerative function synthesis via SMT-driven classification 21 /26

Summary

Solved Unique Total time Fastest Shortest
cve+c 341 30 436251s 245 259
CVCHUPIHE 332 a7 414356s 306 222
CVC+UPI 201 3 494534s 236 231
LOOPINVGEN 208 7 433273s 261 289
CVC-PORT 400 - 31476s 379 306
103 § - r" 1 o r_,ff"‘ "]
; cve+e . 4 /
—/~— cvc+upite B
1024 —£3— loopinvgen ! J
—— cve+upi |
/
e
10!
10°
10-1 bamad i
100 150 200 250 300 350

Extending enumerative function synthesis via SMT-driven classification

21 /26

Advantages and disadvantages of Unif+PI

> CVC-+UPI and CVC+UPI+E thrive when invariants can be built from
combination of small literals

> CVCHC is superior when invariant is a single complex literal

» 29 of its 30 unique solves are such cases

> CVC4UPI and CVC+UPIHE also suffer from dependence on samples

» Sometimes search is biased towards simple classifiers when only a more
complex one would suffice

Extending enumerative function synthesis via SMT-driven classification 22 /26

SyGuS-COMP 2019

Inv Track (829)

Solver Solved Fastest Smallest Score
CVC4-su 592 423 264 4493
LooplnvGen 512 442 364 4250
LoopInvGen-gplearn 511 411 349 4137
CVC4-Fast 522 319 243 3810
CVC4-Smart 539 283 260 3804
OASIS 538 20 317 3067
DryadSynth 277 161 39 1907

W

Subus

> 829 benchmarks from the literature in loop invariant synthesis
> 3600s timeout

Extending enumerative function synthesis via SMT-driven classification 23 /26

Injecting some welcome realism

> Kind 2 employs in cooperation:

» IC3 [Brall]
» k-induction [SSS00]
» Generation of auxiliary invariants [KGT11]

> Kind 2 solves all the 480 benchmarks it its test suite in less than 120s

> Considering k-induction in isolation, CVC-PORT is competitive

Solved Unique Time (commonly solved)

CVC-PORT 323 82 109.6
Kind 2 (k-induction) 313 72 9.6

Extending enumerative function synthesis via SMT-driven classification 24 / 26

Injecting some welcome realism

> Kind 2 employs in cooperation:

» IC3 [Brall]
» k-induction [SSS00]
» Generation of auxiliary invariants [KGT11]

> Kind 2 solves all the 480 benchmarks it its test suite in less than 120s

> Considering k-induction in isolation, CVC-PORT is competitive

Solved Unique Time (commonly solved)

CVC-PORT 323 82 109.6
Kind 2 (k-induction) 313 72 9.6

> We consider this encouraging given our framework is

» not theory-specific
» single-threaded
» not optimized for reachability

Extending enumerative function synthesis via SMT-driven classification 24 / 26

Conclusions

> New enumerative function synthesis framework via divide and conquer

» No dependence on point-wise specifications
» Powered by SMT-driven classification algorithms
» Implemented in CvC4sy

> Experimental evaluation shows significant gains w.r.t. previous SyGuS
techniques for invariant synthesis

Extending enumerative function synthesis via SMT-driven classification 25 /26

Future work

>> Improving classification
» Using constraint solving for synthesizing term assignments
» Only considering relevant arguments when synthesizing predicates

£(0,0,0,1,2,1,0) o £(1,0,0,5,2,1,3)

m Can drastically reduce search space

> Improving sample
» Reducing noise: make points as similar as possible
£(1,0,0,1,2,1,0) o £(1,0,0,5,2,1,0)

» Improve diversity via clustering analysis: only add new points to sample
that are sufficiently different

Extending enumerative function synthesis via SMT-driven classification 26 / 26

Extending enumerative function synthesis via
SMT-driven classification

Haniel Barbosa, Andrew Reynolds, Daniel Larraz, Cesare Tinelli

UF7MG - ThE UNIVERSITY
— | OF lowa

Légicos em Quarentena
2020-04-30, The Internet

Invariant Synthesis

Add(lnt X, y

return z;

Post-condition:
Ve,y: z=x+vy

Result is the sum
of the inputs

Invariant Synthesis

Add(Int x, y) {
z:=x;i:=0;
assume(y > 0);
while (i <y) {

z:=z+1;
i=i+1;

return z; q
Invariant?

Post-condition: Reg?'ti'es i%h,fui'gm

Ve,y: z=x+y

Verification:

z=xzANi=0Ay>0 - Inv(z, y, z, 1)
Inv(z, y, z,)ANi<yAZ =z241ANI'=i+1 — Inv(z,y, 2,)
Inv(z,y, z,) Ni >y - z=x+y

Invariant Synthesis

Add(Int x, y) {

z:=X%Xi:=0; 0
assume(y > 0); ITL’U(.‘L’, ya Z7 Z)
while (i <y) { _ .
z:=2z+1; Z=x+1
i=i+1; <

} ARSI
return z;

Post-condition: Ref;?'tth'é itnhpeuigm

Ve,y: z=x+y

Verification:

z=xzANi=0Ay>0 - Inv(z, y, z, 1)
Inv(z, y, z,)ANi<yAZ =z241ANI'=i+1 — Inv(z,y, 2,)
Inv(z,y, z,) Ni >y - z=x+y

Invariant Synthesis in SyGuS

> State-of-the-art: LooplnvGen [PM17]: data-driven loop invariant
inference with automatic feature synthesis
» Precondition inference from sets of “good” and “bad” states
m Feature synthesis for solving conflicts
» PAC (probably approximately correct) algorithm for building candidate
invariants

> “Bad" states are dependent on model of initial condition (no
guaranteed convergence)

> No support for implication counterexamples

Invariant Synthesis with Unif+PlI

> Refinement lemmas allows derivation of three kinds on data points:

» “good points” (invariant must always hold)

> “bad points” (invariant can never hold)

» ‘“implication points” (if invariant holds in first point it must hold in
second)

>> Native support for implication counterexamples

o> Straightforward usage of classic information gain heuristic to build
candidate solutions with decision tree learning

» SMT solver “resolves” implication counterexample points as “good” and
“bad”

» Out-of-the-box Shannon entropy

References

@ Rajeev Alur, Rastislav Bodik, Garvit Juniwal, et al. “Syntax-guided synthesis”.
In: Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2013, pp. 1-8.

@ Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. “Scaling Enumerative
Program Synthesis via Divide and Conquer”. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS).
Ed. by Axel Legay and Tiziana Margaria. Vol. 10205. Lecture Notes in
Computer Science. 2017, pp. 319-336.

@ Aaron R. Bradley. "SAT-Based Model Checking without Unrolling”. In:
Verification, Model Checking, and Abstract Interpretation (VMCAI). Ed. by
Ranjit Jhala and David Schmidt. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 70-87.

@ Clark Barrett, lgor Shikanian, and Cesare Tinelli. “An Abstract Decision
Procedure for a Theory of Inductive Data Types”. In: JSAT 3.1-2 (2007),
pp. 21-46.

@ Clark W. Barrett and Cesare Tinelli. “Satisfiability Modulo Theories”. In:

Handbook of Model Checking. Ed. by Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, et al. Springer, 2018, pp. 305-343.

References

]

Bruno Dutertre and Leonardo de Moura. “A Fast Linear-Arithmetic Solver for
DPLL(T)". English. In: Computer Aided Verification (CAV). Ed. by

Thomas Ball and Robert B. Jones. Vol. 4144. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2006, pp. 81-94.

Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. “Variations on the
Common Subexpression Problem”. In: J. ACM 27.4 (Oct. 1980), pp. 758-771.

Hassan Eldib, Meng Wu, and Chao Wang. “Synthesis of Fault-Attack
Countermeasures for Cryptographic Circuits”. In:

Computer Aided Verification (CAV), Part Il. Ed. by Swarat Chaudhuri and
Azadeh Farzan. Vol. 9780. Lecture Notes in Computer Science. Springer, 2016,
pp. 343-363.

Yu Feng, Ruben Martins, Jacob Van Geffen, et al. “Component-based synthesis
of table consolidation and transformation tasks from examples”. In:

Conference on Programming Language Design and Implementation (PLDI).

Ed. by Albert Cohen and Martin T. Vechev. ACM, 2017, pp. 422—-436.

Pranav Garg, Christof Loding, P. Madhusudan, et al. “ICE: A Robust
Framework for Learning Invariants”. In: Computer Aided Verification (CAV).
Ed. by Armin Biere and Roderick Bloem. Vol. 8559. Lecture Notes in Computer
Science. Springer, 2014, pp. 69-87.

References

@ Sumit Gulwani. “Automating string processing in spreadsheets using
input-output examples”. In:
Symposium on Principles of Programming Languages (POPL). Ed. by
Thomas Ball and Mooly Sagiv. ACM, 2011, pp. 317-330.

@ Temesghen Kahsai, Yeting Ge, and Cesare Tinelli. “Instantiation-Based Invariant
Discovery”. In: NASA Formal Methods. Ed. by Mihaela Gheorghiu Bobaru,
Klaus Havelund, Gerard J. Holzmann, et al. Vol. 6617. Lecture Notes in
Computer Science. Springer, 2011, pp. 192-206.

@ Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, et al. “S3: syntax- and
semantic-guided repair synthesis via programming by examples”. In:
Joint Meeting on Foundations of Software Engineering (ESEC/FSE). Ed. by
Eric Bodden, Wilhelm Schifer, Arie van Deursen, et al. ACM, 2017,
pp. 593-604.

@ Greg Nelson and Derek C. Oppen. “Fast Decision Procedures Based on
Congruence Closure”. In: J. ACM 27.2 (1980), pp. 356-364.

References

B

Andres No6tzli, Andrew Reynolds, Haniel Barbosa, et al. “Syntax-Guided Rewrite
Rule Enumeration for SMT Solvers”. In:

Theory and Applications of Satisfiability Testing (SAT). Ed. by Mikolds Janota
and Inés Lynce. Vol. 11628. Lecture Notes in Computer Science. Springer, 2019,
pp. 279-297.

Daniel Neider, Shambwaditya Saha, and P. Madhusudan. “Compositional
Synthesis of Piece-Wise Functions by Learning Classifiers”. In:
ACM Trans. Comput. Log. 19.2 (2018), 10:1-10:23.

ThanhVu Nguyen, Westley Weimer, Deepak Kapur, et al. “Connecting Program
Synthesis and Reachability: Automatic Program Repair Using Test-Input
Generation”. In:

Tools and Algorithms for Construction and Analysis of Systems (TACAS).

Ed. by Axel Legay and Tiziana Margaria. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017, pp. 301-318.

Saswat Padhi and Todd D. Millstein. “Data-Driven Loop Invariant Inference
with Automatic Feature Synthesis”. In: CoRR abs/1707.02029 (2017). arXiv:
1707.02029.

http://arxiv.org/abs/1707.02029

References

@ Saswat Padhi, Rahul Sharma, and Todd D. Millstein. “Data-driven precondition
inference with learned features”. In:
Conference on Programming Language Design and Implementation (PLDI).
Ed. by Chandra Krintz and Emery Berger. ACM, 2016, pp. 42-56.

@ Andrew Reynolds, Haniel Barbosa, Andres Notzli, et al. “cvcdsy: Smart and Fast
Term Enumeration for Syntax-Guided Synthesis”. In:
Computer Aided Verification (CAV), Part Il. Ed. by Isil Dillig and
Serdar Tasiran. Vol. 11562. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2019, pp. 74-83.

@ Andrew Reynolds, Viktor Kuncak, Cesare Tinelli, et al. “Refutation-based
synthesis in SMT". In: Formal Methods in System Design (2017).

@ Andrew Reynolds, Arjun Viswanathan, Haniel Barbosa, et al. “Datatypes with
Shared Selectors”. In:
International Joint Conference on Automated Reasoning (IJCAR). Ed. by
Didier Galmiche, Stephan Schulz, and Roberto Sebastiani. Vol. 10900. Lecture
Notes in Computer Science. Springer, 2018, pp. 591-608.

@ Eric Schkufza, Rahul Sharma, and Alex Aiken. “Stochastic superoptimization”. In:
Architectural Support for Programming Languages and Operating Systems (ASPLOS
Ed. by Vivek Sarkar and Rastislav Bodik. ACM, 2013, pp. 305-316.

References

@ Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. “Checking Safety
Properties Using Induction and a SAT-Solver”. In:
Formal Methods In Computer-Aided Design (FMCAD). Ed. by Warren
A. Hunt Jr. and Steven D. Johnson. Vol. 1954. Lecture Notes in Computer
Science. Springer, 2000, pp. 108-125.

@ Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, et al. “Combinatorial
sketching for finite programs”. In:
Architectural Support for Programming Languages and Operating Systems (ASPLOS
Ed. by John Paul Shen and Margaret Martonosi. ACM, 2006, pp. 404-415.

@ Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, et al. “TRANSIT:
specifying protocols with concolic snippets”. In:
Conference on Programming Language Design and Implementation (PLDI).
Ed. by Hans-Juergen Boehm and Cormac Flanagan. ACM, 2013, pp. 287-296.

	SMT solving for SyGuS
	Unif+PI: a general divide-and-conquer framework for SyGuS solving
	Experimental results
	Conclusions
	Extra slides
	References
	References

