
Efficient Instantiation Techniques in SMT
(Work In Progress)

Haniel Barbosa

Inria Nancy – VeriDis team, LORIA
Université de Lorraine, FR

UFRN, BR

2016–07–02

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 1 / 30



Outline

• SMT solving with quantifiers

• Instantiation framework

− CCFV

− Goal-oriented instantiation

− Instances dismissal

• Conclusion and future work

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 2 / 30



SMT solving with quantifiers

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 3 / 30



SMT solving with quantifiers

How to handle quantified formulas in the SMT context?

B Ground solver enumerates models E ∪Q
I E is a conjunctive set of ground equality literals

I Q is a conjunctive set of quantified formulas

B Instead of evaluating consistency of E ∪Q, one generally derives
instantiations ∀x.ψ → ψσ, for ∀x.ψ ∈ Q, and lets the ground solver
sort it out.

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 4 / 30



SMT solving with quantifiers

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

B Ground solver enumerates models E ∪Q
I E is a conjunctive set of ground equality literals

I Q is a conjunctive set of quantified formulas

B Instead of evaluating consistency of E ∪Q, one generally derives
instantiations ∀x.ψ → ψσ, for ∀x.ψ ∈ Q, and lets the ground solver
sort it out.

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 4 / 30



SMT solving with quantifiers

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

B Ground solver enumerates models E ∪Q
I E is a conjunctive set of ground equality literals

I Q is a conjunctive set of quantified formulas

B Instead of evaluating consistency of E ∪Q, one generally derives
instantiations ∀x.ψ → ψσ, for ∀x.ψ ∈ Q, and lets the ground solver
sort it out.

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 4 / 30



SMT solving with quantifiers

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Quantifier-free SMT solver

Model

Instantiation
module

Instance

Model UNSAT (proof/core)

B Ground solver enumerates models E ∪Q
I E is a conjunctive set of ground equality literals

I Q is a conjunctive set of quantified formulas

B Instead of evaluating consistency of E ∪Q, one generally derives
instantiations ∀x.ψ → ψσ, for ∀x.ψ ∈ Q, and lets the ground solver
sort it out.

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 4 / 30



Triggers

B Models should be evaluated quickly

B With too many instances available, their selection becomes crucial

Triggers (matching triggers, matching patterns) [DNS05]

B Sets of terms and predicates which combined have all the bound
variables of a quantifier

B Grounding the trigger yields a ground instantiation for the quantifier

B Instantiations are computed with E-matching:

E |= s1σ ' t1σ ∧ · · · ∧ snσ ' tnσ

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 5 / 30



Triggers

B Models should be evaluated quickly

B With too many instances available, their selection becomes crucial

Triggers (matching triggers, matching patterns) [DNS05]

B Sets of terms and predicates which combined have all the bound
variables of a quantifier

B Grounding the trigger yields a ground instantiation for the quantifier

B Instantiations are computed with E-matching:

E |= s1σ ' t1σ ∧ · · · ∧ snσ ' tnσ

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 5 / 30



E-matching

Example

Let E ∪Q be s.t. Q = {∀x, y. f(x) ' t ∨ p(g(y))}
B T = {f(x), g(y)}

Computes substitutions σ s.t.

E |= f(x)σ ' f(t) ∧ g(y)σ ' g(t′), for all f(t) and g(t′) appearing in E

yielding instantiations

∀x, y. f(x) ' t ∨ p(g(y))→ (f(x) ' t ∨ p(g(y)))σ

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 6 / 30



E-matching

Example

Let E ∪Q be s.t. Q = {∀x, y. f(x) ' t ∨ p(g(y))}
B T = {f(x), g(y)}

Computes substitutions σ s.t.

E |= f(x)σ ' f(t) ∧ g(y)σ ' g(t′), for all f(t) and g(t′) appearing in E

yielding instantiations

∀x, y. f(x) ' t ∨ p(g(y))→ (f(x) ' t ∨ p(g(y)))σ

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 6 / 30



E-matching

Example

Let E ∪Q be s.t. Q = {∀x, y. f(x) ' t ∨ p(g(y))}
B T = {f(x), g(y)}

Computes substitutions σ s.t.

E |= f(x)σ ' f(t) ∧ g(y)σ ' g(t′), for all f(t) and g(t′) appearing in E

yielding instantiations

∀x, y. f(x) ' t ∨ p(g(y))→ (f(x) ' t ∨ p(g(y)))σ

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 6 / 30



Instantiation framework

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 7 / 30



CCFV

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 8 / 30



CCFV: Congruence Closure with Free Variables

B A calculus to lift the ground Congruence Closure procedure to FOL

B Handles conjunctions of non-ground equality literals, yielding ground
substitutions solving an E-unification problem:

E |= s1σ ' t1σ ∧ · · · ∧ snσ ' tnσ

B Provides a common framework for our instantiation techniques

B Amenable to the efficient implementation techniques of the classical
algorithm

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 9 / 30



CCFV calculus

L, x 'y ‖ U
(RV)

L ‖ U ∪ {x 'y}
(i) '∈ {', 6'}
(ii) x or y is free in U , or E ∪ U |= x 'y

L, x ' t ‖ U
(RT)

L ‖ U ∪ {x ' t}
(i) '∈ {', 6'}
(ii) either x is free in U or E ∪ U |= x ' t

L, f(u) ' f(v) ‖ U
(Decompose)

L, u ' v ‖ U

L ‖ U
(Yield)

>
(i) L = ∅ or E |= L

L, f(u) ' t ‖ U
(Ematch)

L, u ' tn ‖ U
. . .

L, u ' t1 ‖ U
(i) '∈ {', 6'}
(ii) f(ti) are ground terms from E

(iii) E |= t 'f(ti), for 1 ≤ i ≤ n

L, u 'f(u′) ‖ U
(Euni)

L, u ' tn,mn , u′ ' t′n ‖ U

. . .
L, u ' t1,m1

, u′ ' t′1 ‖ U

. . .
L, u ' t1,1, u′ ' t′1 ‖ U

(i) '∈ {', 6'}
(ii) ti,j , f(t′i) are ground terms

from E

(iii) E |= ti,j 'f(t′i),

for 1 ≤ i ≤ n, 1 ≤ j ≤ mi

L ‖ U
(Close)

⊥
(i) L is inconsistent modulo E or no other

rule can be applied

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 10 / 30



CCFV algorithm

B Any derivation strategy based on the calculus yields a terminating
procedure

B Backtracks may be necessary (non-proof confluent calculus)

B A successful run produces unifiers U1, . . . , Un representing sets of
solutions

Computing ground substitutions

Unifiers Ui yields ground substitutions σ1, . . . , σki s.t.

σj =

{
x 7→ t x ∈ X; Ui |= x ' t for some ground term t, otherwise t is a ground

term of the same sort as x.

}
and E |= Lσj

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 11 / 30



CCFV algorithm

Example

Let E ∪Q be s.t. Q = {∀x, y. f(x) ' t ∨ p(g(y))}
B T = {f(x), g(y)}

Applies CCFV with E, U = ∅, L = {f(x) ' f(t), g(y) ' g(t′)}, for all
f(t) and g(t′) appearing in E.

f(x) ' f(t), g(y) ' g(t′) ‖ ∅
(Decompose)

x ' t, g(y) ' g(t′) ‖ ∅
(RT)

g(y) ' g(t′) ‖ {x ' t}
(Decompose)

y ' t′ ‖ {x ' t}
(RT)

∅ ‖ {x ' t, y ' t′}
(Yield)>

The only ground substitution derivable from U is σ = {x 7→ t, y 7→ t′}

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 12 / 30



CCFV algorithm

Example

Let E ∪Q be s.t. Q = {∀x, y. f(x) ' t ∨ p(g(y))}
B T = {f(x), g(y)}

Applies CCFV with E, U = ∅, L = {f(x) ' f(t), g(y) ' g(t′)}, for all
f(t) and g(t′) appearing in E.

f(x) ' f(t), g(y) ' g(t′) ‖ ∅
(Decompose)

x ' t, g(y) ' g(t′) ‖ ∅
(RT)

g(y) ' g(t′) ‖ {x ' t}
(Decompose)

y ' t′ ‖ {x ' t}
(RT)

∅ ‖ {x ' t, y ' t′}
(Yield)>

The only ground substitution derivable from U is σ = {x 7→ t, y 7→ t′}

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 12 / 30



Implementation: Term Indexing

B Paramount for handling search space

B For now, top symbol indexing for ground terms:

f →


f([t]1, . . . , [t]n)

. . .
f([t′]1, . . . , [t

′]n)

B Either from signature table or SAT model

B Optimizations include minimizing model, bitmasks, sorting by
congruence class for fast retrieval

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 13 / 30



Implementation: CCFV

B Unifiers data structure

I embodies a congruence closure for free variables
I array with each position representing a variable’s valuation
I Handled through UNION-FIND with path-compression

B Does recursive descent E-unification algorithm with the constraints
described in the calculus

B Optimizations include memoization for avoiding recomputing
expensive unifications

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 14 / 30



Impact of CCFV

0.1

1

10

0.1 1 10

ve
riT

_
i

veriT

0.1

1

10

0.1 1 10

ve
riT

_
i

veriT

0.1

1

10

0.1 1 10

ve
riT

_
i

veriT

0.1

1

10

0.1 1 10

ve
riT

_
i

veriT

Figure : Impact of indexing and CCFV for trigger instantiation

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB,

which have 10,495 benchmarks annotated as unsatisfiable, with 30s timeout.
Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 15 / 30



Goal-oriented instantiation

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 16 / 30



Conflicting instances

B Define the refutation of the current model as a goal for instantiations

Ground conflicting instances [Reynolds et al., 2014]

B SMT solver enumerates models E ∪Q
B Derive, for some ∀x.ψ ∈ Q, ground substitutions σ s.t. E |= ¬ψσ
B Instantiations ∀x.ψ → ψσ refute E ∪Q

Particular case of Rigid E-unification [TBR00]

For ∀x.ψ ∈ Q in CNF and ¬ψ = s1 ' t1 ∧ · · · ∧ sn ' tn, solve

E |= (s1 ' t1)σ ∧ · · · ∧ (sn ' tn)σ

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 17 / 30



Conflicting instances

B Define the refutation of the current model as a goal for instantiations

Ground conflicting instances [Reynolds et al., 2014]

B SMT solver enumerates models E ∪Q
B Derive, for some ∀x.ψ ∈ Q, ground substitutions σ s.t. E |= ¬ψσ
B Instantiations ∀x.ψ → ψσ refute E ∪Q

Particular case of Rigid E-unification [TBR00]

For ∀x.ψ ∈ Q in CNF and ¬ψ = s1 ' t1 ∧ · · · ∧ sn ' tn, solve

E |= (s1 ' t1)σ ∧ · · · ∧ (sn ' tn)σ

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 17 / 30



Finding conflicting instances

Finding conflicting instantiations

Apply CCFV over ¬ψ = l1 ∧ · · · ∧ ln and compute, if any, sequences of
substitutions σ0, . . . , σn such that

σ0 = ∅; σi−1 ⊆ σi and E |= liσi

which guarantees that E |= ¬ψσn

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 18 / 30



Finding conflicting instances

Example

E = {f(c, c) ' d, f(c, b) ' d}
¬ψ = {g(y) ' g(b), f(x, a) ' f(y, z)), f(c, x) ' d}

g(y) ' g(b), f(x, a) ' f(y, z), f(c, x) ' d ‖ ∅
(Decompose, RT)

f(x, a) ' f(y, z), f(c, x) ' d ‖ {y ' b}
(Decompose)

x ' y, z ' a, f(c, x) ' d ‖ {y ' b}
(RV, RT)

f(c, x) ' d ‖ {x ' y, y ' b, z ' a}
(Ematch)

f(c, x) ' f(c, b) ‖ {x ' y, y ' b, z ' a} (Π2)

f(c, x) ' f(c, c) ‖ {x ' y, y ' b, z ' a} (Π1)

Π1 (Decompose, Close)⊥

Π2 (Decompose, RT)
∅ ‖ {x ' y, x ' b, y ' b, z ' a}

(Yield)>

The single conflicting instantiation is {x 7→ b, y 7→ b, z 7→ a}.

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 19 / 30



Finding conflicting instances

Example

E = {f(c, c) ' d, f(c, b) ' d}
¬ψ = {g(y) ' g(b), f(x, a) ' f(y, z)), f(c, x) ' d}

g(y) ' g(b), f(x, a) ' f(y, z), f(c, x) ' d ‖ ∅
(Decompose, RT)

f(x, a) ' f(y, z), f(c, x) ' d ‖ {y ' b}
(Decompose)

x ' y, z ' a, f(c, x) ' d ‖ {y ' b}
(RV, RT)

f(c, x) ' d ‖ {x ' y, y ' b, z ' a}
(Ematch)

f(c, x) ' f(c, b) ‖ {x ' y, y ' b, z ' a} (Π2)

f(c, x) ' f(c, c) ‖ {x ' y, y ' b, z ' a} (Π1)

Π1 (Decompose, Close)⊥

Π2 (Decompose, RT)
∅ ‖ {x ' y, x ' b, y ' b, z ' a}

(Yield)>

The single conflicting instantiation is {x 7→ b, y 7→ b, z 7→ a}.

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 19 / 30



Finding conflicting instances

Example

E = {f(c, c) ' d, f(c, b) ' d}
¬ψ = {g(y) ' g(b), f(x, a) ' f(y, z)), f(c, x) ' d}

g(y) ' g(b), f(x, a) ' f(y, z), f(c, x) ' d ‖ ∅
(Decompose, RT)

f(x, a) ' f(y, z), f(c, x) ' d ‖ {y ' b}
(Decompose)

x ' y, z ' a, f(c, x) ' d ‖ {y ' b}
(RV, RT)

f(c, x) ' d ‖ {x ' y, y ' b, z ' a}
(Ematch)

f(c, x) ' f(c, b) ‖ {x ' y, y ' b, z ' a} (Π2)

f(c, x) ' f(c, c) ‖ {x ' y, y ' b, z ' a} (Π1)

Π1 (Decompose, Close)⊥

Π2 (Decompose, RT)
∅ ‖ {x ' y, x ' b, y ' b, z ' a}

(Yield)>

The single conflicting instantiation is {x 7→ b, y 7→ b, z 7→ a}.
Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 19 / 30



Impact of goal conflicting instantiation

0.1

1

10

0.1 1 10

ve
riT

_
ig

veriT_i

0.1

1

10

0.1 1 10

ve
riT

_
ig

veriT_i

0.1

1

10

0.1 1 10

ve
riT

_
ig

veriT_i

0.1

1

10

0.1 1 10

ve
riT

_
ig

veriT_i

Figure : Impact of goal-oriented along with trigger instantiation

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB,

which have 10,495 benchmarks annotated as unsatisfiable, with 30s timeout.
Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 20 / 30



Instances dismissal

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 21 / 30



Instance dismissal

B Trigger instantiation is quite fast, but quite chaotic

B No straightforward redundancy criteria for removal of instances in
SMT

B We propose a lightweight approach combining heuristic
deletion [dMB07] and instantiation levels [GBT07]

. . .

I1′

. . .

. . .

I2′

⊥3

I2

⊥2

I1

⊥1

. . .

⊥ B SAT activity as criterion

B Only instances from previous
rounds plus promoted ones
are considered

B Avoids deleting instances

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 22 / 30



Instance dismissal

B Trigger instantiation is quite fast, but quite chaotic

B No straightforward redundancy criteria for removal of instances in
SMT

B We propose a lightweight approach combining heuristic
deletion [dMB07] and instantiation levels [GBT07]

. . .

I1′

. . .

. . .

I2′

⊥3

I2

⊥2

I1

⊥1

. . .

⊥ B SAT activity as criterion

B Only instances from previous
rounds plus promoted ones
are considered

B Avoids deleting instances

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 22 / 30



Instances dismissal

Example

Assume that a given instantiation ∀x.ψ → ψσ is derived at level 2:

∀x.ψ → ψσ︷ ︸︸ ︷
C1 ∧ · · · ∧ Cn

↓
promoted

Terms appearing in C1 are indexed at any instantiation level, while those
from the other clauses would be so only at level at least 3.

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 23 / 30



Impact of instances dismissal

0.1

1

10

0.1 1 10

ve
riT

_
ig

d

veriT_ig

0.1

1

10

0.1 1 10

ve
riT

_
ig

d

veriT_ig

0.1

1

10

0.1 1 10

ve
riT

_
ig

d

veriT_ig

0.1

1

10

0.1 1 10

ve
riT

_
ig

d

veriT_ig

Figure : Comparison of the two main strategies

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB,

which have 10,495 benchmarks annotated as unsatisfiable, with 30s timeout.
Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 24 / 30



Conclusion and future work

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 25 / 30



Comparison with other SMT solvers

Logic Class CVC4 Z3 veriT igd veriT ig veriT i veriT

UF
grasshopper 410 418 431 437 418 413
sledgehammer 1412 1249 1293 1272 1134 1066

UFIDL all 61 62 56 58 58 58

UFLIA

boogie 841 852 722 681 660 661
sexpr 15 26 15 7 5 5
grasshopper 320 341 356 367 340 335
sledgehammer 1892 1581 1781 1778 1620 1569
simplify 770 831 797 803 735 690
simplify2 2226 2337 2277 2298 2291 2177

Total 7947 7697 7727 7701 7203 6916

B Each veriT configuration solves ≈ 150 problems exclusively (in
comparison with itself)

B Z3 very good for arithmetic

B CVC4 more robust, introduced goal-oriented inst in SMT

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10,495 benchmarks

annotated as unsatisfiable, with 30s timeout. Results over 8,701 problems which are not trivially solved by all systems.

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 26 / 30



Comparison with other SMT solvers

0.1

1

10

0.1 1 10

z3

veriT_igd

0.1

1

10

0.1 1 10

z3

veriT_igd

0.1

1

10

0.1 1 10

z3

veriT_igd

0.1

1

10

0.1 1 10

z3

veriT_igd

(a) Z3 vs veriT igd

0.1

1

10

0.1 1 10

cv
c4

veriT_igd

0.1

1

10

0.1 1 10

cv
c4

veriT_igd

0.1

1

10

0.1 1 10

cv
c4

veriT_igd

0.1

1

10

0.1 1 10

cv
c4

veriT_igd

(b) CVC4 vs veriT igd

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB,

which have 10,495 benchmarks annotated as unsatisfiable, with 30s timeout.
Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 27 / 30



Future work

B CCFV

I Improve formalization
I Learning dismatching constraints
I Better indexing and incrementality

B Goal-oriented instantiation

I If you catch a tiger by the tail, don’t fail
I Complete proof search

B Instances dismissal

I Improve criteria (LBD, proof analysis)
I Better promotion heuristics

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 28 / 30



Thanks

Questions?

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 29 / 30



References

Leonardo de Moura and Nikolaj Bjørner.
Efficient E-Matching for SMT Solvers.
In Frank Pfenning, editor, Automated Deduction CADE-21, volume
4603 of Lecture Notes in Computer Science, pages 183–198. Springer
Berlin Heidelberg, 2007.

David Detlefs, Greg Nelson, and James B. Saxe.
Simplify: A Theorem Prover for Program Checking.
J. ACM, 52(3):365–473, May 2005.

Yeting Ge, Clark Barrett, and Cesare Tinelli.
Solving Quantified Verification Conditions Using Satisfiability Modulo
Theories.
In Frank Pfenning, editor, Automated Deduction CADE-21, volume
4603 of Lecture Notes in Computer Science, pages 167–182. Springer
Berlin Heidelberg, 2007.

Ashish Tiwari, Leo Bachmair, and Harald Ruess.
Rigid E-Unification Revisited.
In David McAllester, editor, Automated Deduction - CADE-17,
volume 1831 of Lecture Notes in Computer Science, pages 220–234.
Springer Berlin Heidelberg, 2000.

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT PAAR 2016 30 / 30


