Efficient Instantiation Techniques in SMT (Work In Progress)

Haniel Barbosa

Inria Nancy – VeriDis team, LORIA Université de Lorraine, FR UFRN, BR

2016-07-02

Outline

- SMT solving with quantifiers
- Instantiation framework
 - CCFV
 - Goal-oriented instantiation
 - Instances dismissal
- Conclusion and future work

How to handle quantified formulas in the SMT context?

- \triangleright Ground solver enumerates models $E \cup Q$
 - \blacktriangleright E is a conjunctive set of ground equality literals
 - $\blacktriangleright \ \mathcal{Q}$ is a conjunctive set of quantified formulas

- \vartriangleright Ground solver enumerates models $E \cup \mathcal{Q}$
 - $\blacktriangleright~E$ is a conjunctive set of ground equality literals
 - $\blacktriangleright \ \mathcal{Q}$ is a conjunctive set of quantified formulas
- \triangleright Instead of evaluating consistency of $E \cup Q$, one generally derives instantiations $\forall \mathbf{x}.\psi \rightarrow \psi\sigma$, for $\forall \mathbf{x}.\psi \in Q$, and lets the ground solver sort it out.

- \triangleright Ground solver enumerates models $E \cup Q$
 - $\blacktriangleright~E$ is a conjunctive set of ground equality literals
 - $\blacktriangleright \ \mathcal{Q}$ is a conjunctive set of quantified formulas
- ▷ Instead of evaluating consistency of $E \cup Q$, one generally derives instantiations $\forall \mathbf{x}.\psi \rightarrow \psi\sigma$, for $\forall \mathbf{x}.\psi \in Q$, and lets the ground solver sort it out.

Triggers

- ▷ Models should be evaluated quickly
- \triangleright With too many instances available, their selection becomes crucial

Triggers

- Models should be evaluated quickly
- > With too many instances available, their selection becomes crucial

Triggers (matching triggers, matching patterns)

- Sets of terms and predicates which combined have all the bound variables of a quantifier
- ▷ Grounding the trigger yields a ground instantiation for the quantifier
- ▷ Instantiations are computed with *E*-matching:

$$E \models s_1 \sigma \simeq t_1 \sigma \land \dots \land s_n \sigma \simeq t_n \sigma$$

[DNS05]

E-matching

Example

Let $E \cup \mathcal{Q}$ be s.t. $\mathcal{Q} = \{ \forall x, y. \ f(x) \simeq t \lor p(g(y)) \}$ $\rhd \ T = \{ f(x), g(y) \}$

E-matching

Example

Let $E \cup \mathcal{Q}$ be s.t. $\mathcal{Q} = \{ \forall x, y. \ f(x) \simeq t \lor p(g(y)) \}$ $\rhd \ T = \{ f(x), g(y) \}$

Computes substitutions σ s.t.

 $E\models f(x)\sigma\simeq f(t)\wedge g(y)\sigma\simeq g(t'),$ for all f(t) and g(t') appearing in E

E-matching

Example

Let $E \cup \mathcal{Q}$ be s.t. $\mathcal{Q} = \{ \forall x, y. \ f(x) \simeq t \lor p(g(y)) \}$ $\rhd \ T = \{ f(x), g(y) \}$

Computes substitutions σ s.t.

 $E \models f(x)\sigma \simeq f(t) \wedge g(y)\sigma \simeq g(t')$, for all f(t) and g(t') appearing in E

yielding instantiations

$$\forall x, y. \ f(x) \simeq t \lor p(g(y)) \to (f(x) \simeq t \lor p(g(y))) \sigma$$

Instantiation framework

CCFV

CCFV : Congruence Closure with Free Variables

- \triangleright A calculus to lift the ground Congruence Closure procedure to FOL
- ▷ Handles conjunctions of non-ground equality literals, yielding ground substitutions solving an *E*-unification problem:

$$E \models s_1 \sigma \not\simeq t_1 \sigma \land \dots \land s_n \sigma \not\simeq t_n \sigma$$

- ▷ Provides a common framework for our instantiation techniques
- Amenable to the efficient implementation techniques of the classical algorithm

CCFV calculus

$$\begin{array}{c|c} L, x \neq y \parallel U \\ \hline L \parallel U \cup \{x \neq y\} \end{array} (RV) \\ (i) \neq \in \{\simeq, \neq\} \\ (ii) x \text{ or } y \text{ is free in } U, \text{ or } E \cup U \models x \neq y \\ \hline L, x \neq t \parallel U \\ \hline L \parallel U \cup \{x \neq t\} \end{aligned} (RT) \\ (i) \neq \in \{\simeq, \neq\} \\ (ii) \text{ either } x \text{ is free in } U \text{ or } E \cup U \models x \neq t \\ \hline L, f(u) \simeq f(v) \parallel U \\ \hline L, u \simeq v \parallel U \end{aligned} (Decompose) \\ \hline \frac{L \parallel U}{\top} (YIELD) \\ (i) \neq \in \{\simeq, \neq\} \\ \hline L, u \simeq t_1 \parallel U \\ \therefore \\ L, u \simeq t_n \parallel U \end{aligned} (EMATCH) \\ (i) \neq \in \{\simeq, \neq\} \\ \hline L, u \simeq t_1 \parallel U \\ \therefore \\ L, u \simeq t_1 \parallel U \end{aligned} (EMATCH) \\ (ii) f(t_i) \text{ are ground terms from } E \\ \therefore \\ L, u \simeq t_1 \parallel U \\ \therefore \\ L, u \simeq t_1, u \land u \doteq t_1' \parallel U \\ \therefore \\ L, u \simeq t_1, u \land u' \simeq t_1' \parallel U \\ \therefore \\ L, u \simeq t_1, u \land u' \simeq t_1' \parallel U \\ \therefore \\ L, u \simeq t_1, u \land u' \simeq t_1' \parallel U \\ \therefore \\ L, u \simeq t_1, u \land u' \simeq t_1' \parallel U \\ \therefore \\ L, u \simeq t_1, u \land u' \simeq t_1' \parallel U \\ \therefore \\ L, u \simeq t_1, u \land u' \simeq t_1' \parallel U \\ \therefore \\ L, u \simeq t_1, u \land u' \simeq t_1' \parallel U \\ \therefore \\ L, u \simeq t_1, u \land u' \simeq t_1' \parallel U \\ \vdots \\ L, u \simeq t_1, u \land u' \simeq t_1' \parallel U \\ \vdots \\ L, u \simeq t_1, u \land u' \simeq t_1' \parallel U \\ \end{bmatrix} (i) \\ L = \emptyset \text{ or } E \\ (ii) t \downarrow_{i,j}, f(t_i') \text{ are ground terms } from E \\ \vdots \\ L = U \\ (ii) L \text{ is inconsistent modulo } E \text{ or no other } rule \text{ can be applied} \end{aligned}$$

CCFV algorithm

- Any derivation strategy based on the calculus yields a terminating procedure
- ▷ Backtracks may be necessary (non-proof confluent calculus)
- \triangleright A successful run produces unifiers U_1, \ldots, U_n representing sets of solutions

Computing ground substitutions

Unifiers U_i yields ground substitutions $\sigma_1, \ldots, \sigma_{k_i}$ s.t.

 $\sigma_j = \left\{ \begin{array}{c|c} x \mapsto t & x \in X; \ U_i \models x \simeq t \text{ for some ground term } t, \text{ otherwise } t \text{ is a ground term of the same sort as } x. \end{array} \right.$

and $E \models L\sigma_j$

CCFV algorithm

Example

Let $E \cup Q$ be s.t. $Q = \{ \forall x, y. f(x) \simeq t \lor p(g(y)) \}$ $\triangleright T = \{ f(x), g(y) \}$

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT

CCFV algorithm

Example

Let $E \cup \mathcal{Q}$ be s.t. $\mathcal{Q} = \{ \forall x, y. \ f(x) \simeq t \lor p(g(y)) \}$ $\rhd \ T = \{ f(x), g(y) \}$

Applies CCFV with E, $U = \emptyset$, $L = \{f(x) \simeq f(t), g(y) \simeq g(t')\}$, for all f(t) and g(t') appearing in E.

$$\frac{f(x) \simeq f(t), g(y) \simeq g(t') \parallel \varnothing}{x \simeq t, g(y) \simeq g(t') \parallel \varnothing} (\text{Decompose})$$

$$\frac{f(x) \simeq f(t), g(y) \simeq g(t') \parallel \varnothing}{g(y) \simeq g(t') \parallel \{x \simeq t\}} (\text{RT})$$

$$\frac{g(y) \simeq g(t') \parallel \{x \simeq t\}}{y \simeq t' \parallel \{x \simeq t\}} (\text{RT})$$

$$\frac{g(y) \simeq g(t') \parallel \{x \simeq t\}}{\varphi \parallel \{x \simeq t, y \simeq t'\}} (\text{Yield})$$

The only ground substitution derivable from U is $\sigma = \{x \mapsto t, y \mapsto t'\}$

Implementation: Term Indexing

- ▷ Paramount for handling search space
- \triangleright For now, top symbol indexing for ground terms:

$$f \to \begin{cases} f([t]_1, \dots, [t]_n) \\ \dots \\ f([t']_1, \dots, [t']_n) \end{cases}$$

- \triangleright Either from signature table or SAT model
- Optimizations include minimizing model, bitmasks, sorting by congruence class for fast retrieval

Implementation: CCFV

▷ Unifiers data structure

- embodies a congruence closure for free variables
- ▶ array with each position representing a variable's valuation
- ► Handled through UNION-FIND with path-compression

- ▷ Does recursive descent E-unification algorithm with the constraints described in the calculus
- Optimizations include memoization for avoiding recomputing expensive unifications

Impact of CCFV

Figure : Impact of indexing and CCFV for trigger instantiation

* experiments in the "UF", "UFLIA", "UFLRA" and "UFIDL" categories of SMT-LIB, which have 10,495 benchmarks annotated as *unsatisfiable*, with 30s timeout.

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT

PAAR 2016 15 / 30

Goal-oriented instantiation

Conflicting instances

 \triangleright Define the refutation of the current model as a goal for instantiations

Conflicting instances

 $\,\vartriangleright\,$ Define the refutation of the current model as a goal for instantiations

Ground conflicting instances[Reynolds et al., 2014] \triangleright SMT solver enumerates models $E \cup Q$ \triangleright Derive, for some $\forall \mathbf{x}.\psi \in Q$, ground substitutions σ s.t. $E \models \neg \psi \sigma$ \triangleright Instantiations $\forall \mathbf{x}.\psi \rightarrow \psi \sigma$ refute $E \cup Q$

Particular case of Rigid E-unification

For $\forall \mathbf{x}. \psi \in \mathcal{Q}$ in CNF and $\neg \psi = s_1 \not\simeq t_1 \land \dots \land s_n \not\simeq t_n$, solve

$$E \models (s_1 \not\simeq t_1) \sigma \land \dots \land (s_n \not\simeq t_n) \sigma$$

[TBR00]

Finding conflicting instantiations

Apply CCFV over $\neg \psi = l_1 \land \cdots \land l_n$ and compute, **if any**, sequences of substitutions $\sigma_0, \ldots, \sigma_n$ such that

$$\sigma_0 = \varnothing; \ \sigma_{i-1} \subseteq \sigma_i \text{ and } E \models l_i \sigma_i$$

which guarantees that $E \models \neg \psi \sigma_n$

Finding conflicting instances

Example

$$\begin{array}{rcl} E &=& \{f(c,c) \simeq d, \ f(c,b) \simeq d\} \\ \neg \psi &=& \{g(y) \simeq g(b), \ f(x,a) \simeq f(y,z)), \ f(c,x) \simeq d\} \end{array}$$

Finding conflicting instances

Example

$$\begin{array}{rcl} E &=& \{f(c,c) \simeq d, \ f(c,b) \simeq d\} \\ \neg \psi &=& \{g(y) \simeq g(b), \ f(x,a) \simeq f(y,z)), \ f(c,x) \simeq d\} \end{array}$$

$$\frac{g(y) \simeq g(b), f(x, a) \simeq f(y, z), f(c, x) \simeq d \parallel \varnothing}{f(x, a) \simeq f(y, z), f(c, x) \simeq d \parallel \{y \simeq b\}} (DECOMPOSE, RT)$$

$$\frac{f(x, a) \simeq f(y, z), f(c, x) \simeq d \parallel \{y \simeq b\}}{f(c, x) \simeq d \parallel \{x \simeq y, y \simeq b, z \simeq a\}} (RV, RT)$$

$$\frac{f(c, x) \simeq f(c, c) \parallel \{x \simeq y, y \simeq b, z \simeq a\}}{f(c, x) \simeq f(c, b) \parallel \{x \simeq y, y \simeq b, z \simeq a\}} (\Pi_1)$$

Finding conflicting instances

Example

$$\begin{array}{lll} E &=& \{f(c,c)\simeq d, \ f(c,b)\simeq d\} \\ \neg \psi &=& \{g(y)\simeq g(b), \ f(x,a)\simeq f(y,z)), \ f(c,x)\simeq d\} \end{array}$$

$$\frac{g(y) \simeq g(b), f(x, a) \simeq f(y, z), f(c, x) \simeq d \parallel \varnothing}{f(x, a) \simeq f(y, z), f(c, x) \simeq d \parallel \{y \simeq b\}} (DECOMPOSE, RT)
\frac{f(x, a) \simeq f(y, z), f(c, x) \simeq d \parallel \{y \simeq b\}}{f(c, x) \simeq d \parallel \{x \simeq y, y \simeq b, z \simeq a\}} (RV, RT)
\frac{f(c, x) \simeq f(c, c) \parallel \{x \simeq y, y \simeq b, z \simeq a\}}{f(c, x) \simeq f(c, b) \parallel \{x \simeq y, y \simeq b, z \simeq a\}} (\Pi_1)$$

$$\frac{\Pi_{1}}{\bot} \text{(Decompose, Close)} \quad \frac{\Pi_{2}}{\varnothing \parallel \{x \simeq y, x \simeq b, y \simeq b, z \simeq a\}} \text{(Decompose, RT)}$$
$$\frac{\top}{\top} \text{(Yield)}$$

The single conflicting instantiation is $\{x \mapsto b, y \mapsto b, z \mapsto a\}$.

Impact of goal conflicting instantiation

Figure : Impact of goal-oriented along with trigger instantiation

* experiments in the "UF", "UFLIA", "UFLRA" and "UFIDL" categories of SMT-LIB, which have 10,495 benchmarks annotated as *unsatisfiable*, with 30s timeout.

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT

PAAR 2016 20 / 30

Instances dismissal

Instance dismissal

- > Trigger instantiation is quite fast, but quite chaotic
- $\vartriangleright\,$ No straightforward redundancy criteria for removal of instances in SMT
- We propose a lightweight approach combining heuristic deletion [dMB07] and instantiation levels [GBT07]

Instance dismissal

- > Trigger instantiation is quite fast, but quite chaotic
- $\vartriangleright\,$ No straightforward redundancy criteria for removal of instances in SMT
- We propose a lightweight approach combining heuristic deletion [dMB07] and instantiation levels [GBT07]

- ▷ SAT activity as criterion
- Only instances from previous rounds plus promoted ones are considered
- \triangleright Avoids deleting instances

Example

Assume that a given instantiation $\forall \mathbf{x}. \psi \rightarrow \psi \sigma$ is derived at level 2:

$$\forall \mathbf{x}.\psi \rightarrow \underbrace{\psi\sigma}_{C_1 \wedge \dots \wedge C_n} \\ \downarrow \\ promoted$$

Terms appearing in C_1 are indexed at any instantiation level, while those from the other clauses would be so only at level at least 3.

Impact of instances dismissal

Figure : Comparison of the two main strategies

* experiments in the "UF", "UFLIA", "UFLRA" and "UFIDL" categories of SMT-LIB, which have 10,495 benchmarks annotated as *unsatisfiable*, with 30s timeout.

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT

PAAR 2016 24 / 30

Conclusion and future work

Comparison with other SMT solvers

Logic	Class	CVC4	Z3	veriT₋igd	veriT₋ig	veriT_i	veriT
UF	grasshopper	410	418	431	437	418	413
	sledgehammer	1412	1249	1293	1272	1134	1066
UFIDL	all	61	62	56	58	58	58
UFLIA	boogie	841	852	722	681	660	661
	sexpr	15	26	15	7	5	5
	grasshopper	320	341	356	367	340	335
	sledgehammer	1892	1581	1781	1778	1620	1569
	simplify	770	831	797	803	735	690
	simplify2	2226	2337	2277	2298	2291	2177
Total		7947	7697	7727	7701	7203	6916

- \triangleright Each veriT configuration solves ≈ 150 problems exclusively (in comparison with itself)
- \triangleright Z3 very good for arithmetic
- $\rhd~{\rm CVC4}$ more robust, introduced goal-oriented inst in SMT

* experiments in the "UF", "UFLIA", "UFLRA" and "UFIDL" categories of SMT-LIB, which have 10,495 benchmarks annotated as *unsatisfiable*, with 30s timeout. Results over 8,701 problems which are not trivially solved by all systems.

Comparison with other SMT solvers

* experiments in the "UF", "UFLIA", "UFLRA" and "UFIDL" categories of SMT-LIB, which have 10,495 benchmarks annotated as *unsatisfiable*, with 30s timeout.

 Haniel Barbosa (Inria Nancy, UL, UFRN)
 Efficient Instantiation Techniques in SMT
 PAAR 2016
 27 / 30

Future work

\triangleright CCFV

- ► Improve formalization
- ► Learning dismatching constraints
- Better indexing and incrementality
- \triangleright Goal-oriented instantiation
 - ▶ If you catch a tiger by the tail, don't fail
 - ► Complete proof search
- > Instances dismissal
 - ► Improve criteria (LBD, proof analysis)
 - Better promotion heuristics

Thanks

Questions?

References

Leonardo de Moura and Nikolaj Bjørner.
Efficient E-Matching for SMT Solvers.
In Frank Pfenning, editor, Automated Deduction CADE-21, volume 4603 of Lecture Notes in Computer Science, pages 183–198. Springer Berlin Heidelberg, 2007.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem Prover for Program Checking. J. ACM, 52(3):365–473, May 2005.

Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving Quantified Verification Conditions Using Satisfiability Modulo Theories.

In Frank Pfenning, editor, *Automated Deduction CADE-21*, volume 4603 of *Lecture Notes in Computer Science*, pages 167–182. Springer Berlin Heidelberg, 2007.

Ashish Tiwari, Leo Bachmair, and Harald Ruess.

Haniel Barbosa (Inria Nancy, UL, UFRN) Efficient Instantiation Techniques in SMT