
Extending SMT solvers to higher-order logic∗

Haniel Barbosa
Andrew Reynolds

Cesare Tinelli
Daniel El Ouraoui Clark Barrett

SMT 2019

2019–07–07, Lisbon, PT
∗To be published in the proceedings of CADE 2019



Why higher-order logic?

Higher-Order logic

B Expressive

I Mathematics
I Verification conditions

B The language of proof assistants

I Isabelle, Coq, Lean, ...

Automation

B Reducing the burden of proof on users

Extending SMT solvers to higher-order logic 1 / 16



State of the art of HOL automation

B Higher-order provers Leo-III, Satalax, ...

I Scalability issues on problems with large FO component

B Hammers HOLyHammer, MizAR, Sledgehammer, ...

I Issues with performance, soundness, or completeness

“Timeouts into quick unsats”

f(λx. g(x) + h(x)) ' f(λx. h(x) + g(x))

↓ cong, ext

(∀x. g(x) + h(x) ' h(x) + g(x))⇒ f(λx. g(x) + h(x)) ' f(λx. h(x) + g(x))

↓ ¬, CNF

g(sk) + h(sk) 6' h(sk) + g(sk)
f(λx. g(x) + h(x)) 6' f(λx. h(x) + g(x))

Extending SMT solvers to higher-order logic 2 / 16



State of the art of HOL automation

B Higher-order provers Leo-III, Satalax, ...

I Scalability issues on problems with large FO component

B Hammers HOLyHammer, MizAR, Sledgehammer, ...

I Issues with performance, soundness, or completeness

“Timeouts into quick unsats”

f(λx. g(x) + h(x)) ' f(λx. h(x) + g(x))

↓ cong, ext

(∀x. g(x) + h(x) ' h(x) + g(x))⇒ f(λx. g(x) + h(x)) ' f(λx. h(x) + g(x))

↓ ¬, CNF

g(sk) + h(sk) 6' h(sk) + g(sk)
f(λx. g(x) + h(x)) 6' f(λx. h(x) + g(x))

Extending SMT solvers to higher-order logic 2 / 16



Outline

B What we mean by higher-order logic

B Extending an SMT solver pragmatically

B Extending an SMT solver via redesign

B Evaluation



Fragments of interest

Features FOL λfHOL HOL

function X X X
quantification on objects X X X
quantification on functions 7 X X
partial applications 7 X X
anonymous functions 7 7 X

B Henkin semantics
I Function interpretations restricted to terms expressible in formula’s

signature

B Extensionality
∀x̄. f(x̄) ' g(x̄)↔ f ' g

Goal: simplicity, practicality, and effectiveness

Extending SMT solvers to higher-order logic 3 / 16



Fragments of interest

Features FOL λfHOL HOL

function X X X
quantification on objects X X X
quantification on functions 7 X X
partial applications 7 X X
anonymous functions 7 7 X

B Henkin semantics
I Function interpretations restricted to terms expressible in formula’s

signature

B Extensionality
∀x̄. f(x̄) ' g(x̄)↔ f ' g

Goal: simplicity, practicality, and effectiveness

Extending SMT solvers to higher-order logic 3 / 16



A CDCL(T ) SMT solver

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
solver

Rewriter

B Rewriter simplifies terms
x+ 0→ x a 6' a→ ⊥ (str.replace x (str.++ x x) y)→ x

B Ground solver enumerates assignments E ∪ Q
I E is a set of ground literals {a ≤ b, b ≤ a+ x, x ' 0, f(a) 6' f(b)}
I Q is a set of quantified clauses {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}

B Instantiation module generates instances of Q f(a) 6' f(b) ∨ g(a) ' h(b)

Extending SMT solvers to higher-order logic 4 / 16



A pragmatic extension

B Preprocessing

I Totalizing applications of theory symbols
ϕ[1+]

ϕ[λx. 1 + x]

I λ-lifting
ϕ[λx. t]

ϕ[f(t)] ∧ ∀x. f(x) ' t

B Ground EUF solver

I Lazy applicative encoding
I Extensionality lemmas
I Polynomial model construction for partial functions

B Instantiation module

I Extending E-matching
I Adding expressivity via axioms

Extending SMT solvers to higher-order logic 5 / 16



Applicative encoding

B Every functional sort converted into an atomic sort

B Every n-ary function symbol converted into a constant

B Every function application converted into @ applications

ϕ[f(t1, . . . , tn)]

ϕ[@(. . . (@(f, t1), . . .), tn)]

f(a) ' g ∧ f(a, a) 6' g(a) ∧ g(a) ' h(a)

↓ ↓ ↓
@(f, a) ' g ∧ @(@(f, a), a) 6' @(g, a) ∧ @(g, a) ' @(h, a)

Extending SMT solvers to higher-order logic 6 / 16



Lazy applicative encoding

B Encode partial applications eagerly

B Apply regular congruence closure

B Lazily encode relevant applications

1 E = {@(f, a) ' g, f(a, a) 6' g(a), g(a) ' h(a)} is satisfiable

E 6|= f(a, a) ' g(a)

2 Applications of f and g need to be encoded

3 E′ = E ∪ {@(@(f, a), a) ' f(a, a), @(g, a) ' g(a)} is unsatisfiable

E′ |= f(a, a) ' g(a)

Note that h(a) is not encoded!

Extending SMT solvers to higher-order logic 7 / 16



Lazy applicative encoding

B Encode partial applications eagerly

B Apply regular congruence closure

B Lazily encode relevant applications

1 E = {@(f, a) ' g, f(a, a) 6' g(a), g(a) ' h(a)} is satisfiable

E 6|= f(a, a) ' g(a)

2 Applications of f and g need to be encoded

3 E′ = E ∪ {@(@(f, a), a) ' f(a, a), @(g, a) ' g(a)} is unsatisfiable

E′ |= f(a, a) ' g(a)

Note that h(a) is not encoded!

Extending SMT solvers to higher-order logic 7 / 16



Lazy applicative encoding

B Encode partial applications eagerly

B Apply regular congruence closure

B Lazily encode relevant applications

1 E = {@(f, a) ' g, f(a, a) 6' g(a), g(a) ' h(a)} is satisfiable

E 6|= f(a, a) ' g(a)

2 Applications of f and g need to be encoded

3 E′ = E ∪ {@(@(f, a), a) ' f(a, a), @(g, a) ' g(a)} is unsatisfiable

E′ |= f(a, a) ' g(a)

Note that h(a) is not encoded!

Extending SMT solvers to higher-order logic 7 / 16



Handling extensionality ∀x̄. f(x̄) ' g(x̄)↔ f ' g

B “←” handled by lazy encoding and congruence

f ' g
Cong

@(f, t1) ' @(g, t1)
Cong

. . .
Cong

@(. . . (@(f, t1), . . .), tn) ' @(. . . (@(g, t1), . . .), tn)

B “→” handled by

f 6' g
Extensionality

f(sk1, . . . , skn) 6' g(sk1, . . . , skn)

Extending SMT solvers to higher-order logic 8 / 16



Avoiding exponential model construction

Functions are interpreted as if-then-else:

M(f) = λx. ite(x ' t1, s1, . . . ite(x ' tn−1, sn−1, sn) . . .)

Partial applications can lead to exponentially many cases!

f1(a) ' f1(b) ∧ f1(b) ' f2
∧ f2(a) ' f2(b) ∧ f2(b) ' f3
∧ f3(a) ' f3(b) ∧ f3(b) ' c

8 ite entries to model that f1(x, y, z) ' c, for x, y, z ∈ {a, b}

Polynomial construction in the “depth” of functions chain

M(f1) = λxyz. ite(x ' a,M(f2)(y, z), ite(x ' b,M(f2)(y, z), ))

M(f2) = λxy. ite(x ' a,M(f3)(y), ite(x ' b,M(f3)(y), ))

M(f3) = λx. ite(x ' a, c, ite(x ' b, c, ))

Extending SMT solvers to higher-order logic 9 / 16



Avoiding exponential model construction

Functions are interpreted as if-then-else:

M(f) = λx. ite(x ' t1, s1, . . . ite(x ' tn−1, sn−1, sn) . . .)

Partial applications can lead to exponentially many cases!

f1(a) ' f1(b) ∧ f1(b) ' f2
∧ f2(a) ' f2(b) ∧ f2(b) ' f3
∧ f3(a) ' f3(b) ∧ f3(b) ' c

8 ite entries to model that f1(x, y, z) ' c, for x, y, z ∈ {a, b}

Polynomial construction in the “depth” of functions chain

M(f1) = λxyz. ite(x ' a,M(f2)(y, z), ite(x ' b,M(f2)(y, z), ))

M(f2) = λxy. ite(x ' a,M(f3)(y), ite(x ' b,M(f3)(y), ))

M(f3) = λx. ite(x ' a, c, ite(x ' b, c, ))

Extending SMT solvers to higher-order logic 9 / 16



Avoiding exponential model construction

Functions are interpreted as if-then-else:

M(f) = λx. ite(x ' t1, s1, . . . ite(x ' tn−1, sn−1, sn) . . .)

Partial applications can lead to exponentially many cases!

f1(a) ' f1(b) ∧ f1(b) ' f2
∧ f2(a) ' f2(b) ∧ f2(b) ' f3
∧ f3(a) ' f3(b) ∧ f3(b) ' c

8 ite entries to model that f1(x, y, z) ' c, for x, y, z ∈ {a, b}

Polynomial construction in the “depth” of functions chain

M(f1) = λxyz. ite(x ' a,M(f2)(y, z), ite(x ' b,M(f2)(y, z), ))

M(f2) = λxy. ite(x ' a,M(f3)(y), ite(x ' b,M(f3)(y), ))

M(f3) = λx. ite(x ' a, c, ite(x ' b, c, ))

Extending SMT solvers to higher-order logic 9 / 16



Avoiding exponential model construction

Functions are interpreted as if-then-else:

M(f) = λx. ite(x ' t1, s1, . . . ite(x ' tn−1, sn−1, sn) . . .)

Partial applications can lead to exponentially many cases!

f1(a) ' f1(b) ∧ f1(b) ' f2
∧ f2(a) ' f2(b) ∧ f2(b) ' f3
∧ f3(a) ' f3(b) ∧ f3(b) ' c

8 ite entries to model that f1(x, y, z) ' c, for x, y, z ∈ {a, b}

Polynomial construction in the “depth” of functions chain

M(f1) = λxyz. ite(x ' a,M(f2)(y, z), ite(x ' b,M(f2)(y, z), ))

M(f2) = λxy. ite(x ' a,M(f3)(y), ite(x ' b,M(f3)(y), ))

M(f3) = λx. ite(x ' a, c, ite(x ' b, c, ))

Extending SMT solvers to higher-order logic 9 / 16



Extending E-matching

B Since @ is overloaded, matching must account for types of arguments

I @(x, a) can’t match @(f, a) if x and f of different types

B Indexing robust to mixed partial/total applications

I In HOL applications with different heads can be equal

@(f, a) ' g allows matching g(x) with f(a, b)

B HO-E-matching left for future work

Extending SMT solvers to higher-order logic 10 / 16



Using well-chosen axioms

B Store axiom

∀F.∀x, y.∃G.∀z.G(z) ' ite(z ' x, y, F (z))

B Instances from the larger set of functions representable in the signature

a 6' b ∧ ∀F,G. F ' G is unsatisfiable

B Requires F 7→ (λw. a), G 7→ (λw. b)

B E-matching can’t derive this instantiation

Extending SMT solvers to higher-order logic 11 / 16



Redesigning the SMT solver

B Simpler and more flexible congruence closure

I Graph representation rather than UNION-FIND
I Quadratic instead of O(n log n)

B Ground solver uses two term representations

I Curried for EUF
I Regular for the rest

B Theory combination and instantiation operate via interface

Extending SMT solvers to higher-order logic 12 / 16



Evaluation

B Pragmatic cvc4 and redesigned veriT

B Benchmarks

I Monomorphic TPTP-THF
I Benchmarks from Sledghammer, with 32, 512 and 1024 axioms

B Compared against

I Full encoding-based versions of cvc4 and veriT
I HO-provers Leo-III and Satallax
I λfHO-prover Ehoh

Extending SMT solvers to higher-order logic 13 / 16



Evaluation

1400 1600 1800 2000 2200 2400 2600
10 1

100

101

@cvc-sax
Ehoh
cvc-sax
Leo-III
vt
@vt
Satallax

B Solved problems among 5,543 benchmarks supported by all solvers

B 60s timeout

Extending SMT solvers to higher-order logic 14 / 16



Evaluation

B Extended cvc4 complementary to its encoding-based counterpart

B Both versions of cvc4 on par with Ehoh

B Extended veriT clearly ahead of its encoding-based counterpart

B Leo-III and Satallax much ahead on THF, but fail to scale on
Sledghammer problems

B FO-performance of the extensions is not compromised

Extending SMT solvers to higher-order logic 15 / 16



Conclusions

B Successful extensions of SMT solvers to HOL

B On par with encoding-based approach

Future work

B Tackle HO-unification

I Will allow extending conflict-based instantiation

B Implement dedicated simplifications

Extending SMT solvers to higher-order logic 16 / 16


