Extending SMT solvers to higher-order logic*

Haniel Barbosa Andrew Reynolds Cesare Tinelli

The University of Iowa Daniel El Ouraoui

Clark Barrett

SMT 2019 2019–07–07, Lisbon, PT *To be published in the proceedings of CADE 2019

Why higher-order logic?

Higher-Order logic

▷ Expressive

- Mathematics
- Verification conditions
- ▷ The language of proof assistants
 - Isabelle, Coq, Lean, ...

Automation

 \triangleright Reducing the burden of proof on users

State of the art of HOL automation

▷ Higher-order provers

Leo-III, Satalax, ...

- Scalability issues on problems with large FO component
- $\vdash \mathsf{Hammers} \qquad \qquad \mathsf{HOLYHammer, Miz} \mathbb{AR}, \mathsf{Sledgehammer, } \dots$

Issues with performance, soundness, or completeness

State of the art of HOL automation

▷ Higher-order provers

Leo-III, Satalax, ...

- Scalability issues on problems with large FO component
- ► Hammers HOLYHammer, MizAR, Sledgehammer, ...
 - Issues with performance, soundness, or completeness

"Timeouts into quick unsats" $f(\lambda x. g(x) + h(x)) \simeq f(\lambda x. h(x) + g(x))$ $\downarrow \text{ cong, ext}$ $(\forall x. g(x) + h(x) \simeq h(x) + g(x)) \Rightarrow f(\lambda x. g(x) + h(x)) \simeq f(\lambda x. h(x) + g(x))$ $\downarrow \neg, \text{ CNF}$ $g(\text{sk}) + h(\text{sk}) \not\simeq h(\text{sk}) + g(\text{sk})$ $f(\lambda x. g(x) + h(x)) \not\simeq f(\lambda x. h(x) + g(x))$

Outline

 \triangleright What we mean by higher-order logic

 \triangleright Extending an SMT solver pragmatically

 \triangleright Extending an SMT solver via redesign

 \triangleright Evaluation

Fragments of interest

Features	FOL	λ fHOL	HOL
function	\checkmark	\checkmark	\checkmark
quantification on objects	\checkmark	\checkmark	\checkmark
quantification on functions	×	\checkmark	\checkmark
partial applications	×	\checkmark	\checkmark
anonymous functions	X	×	\checkmark

Henkin semantics

- Function interpretations restricted to terms expressible in formula's signature
- ▷ Extensionality

$$\forall \bar{x}.\ \mathsf{f}(\bar{x}) \simeq \mathsf{g}(\bar{x}) \leftrightarrow \mathsf{f} \simeq \mathsf{g}$$

Fragments of interest

Features	FOL	λ fHOL	HOL
function	\checkmark	\checkmark	\checkmark
quantification on objects	\checkmark	\checkmark	\checkmark
quantification on functions	×	\checkmark	\checkmark
partial applications	×	\checkmark	\checkmark
anonymous functions	X	×	\checkmark

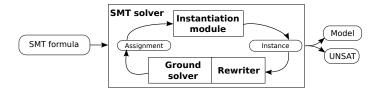
▷ Henkin semantics

- Function interpretations restricted to terms expressible in formula's signature
- ▷ Extensionality

$$\forall \bar{x}. \ \mathsf{f}(\bar{x}) \simeq \mathsf{g}(\bar{x}) \leftrightarrow \mathsf{f} \simeq \mathsf{g}$$

Goal: simplicity, practicality, and effectiveness

A CDCL($\mathcal{T})$ SMT solver



▷ Rewriter simplifies terms

 $x + 0 \to x \qquad \mathsf{a} \not\simeq \mathsf{a} \to \bot \qquad (\text{str.replace } x \ (\text{str.}{+}{+}\ x \ x) \ y) \to x$

- \triangleright Ground solver enumerates assignments $\mathsf{E} \cup \mathsf{Q}$
 - ► E is a set of ground literals ${a \le b, b \le a + x, x \simeq 0, f(a) \not\simeq f(b)}$
 - Q is a set of quantified clauses

 $\{ a \le b, b \le a + x, x \ge 0, f(a) \neq f(b) \}$ $\{ \forall xyz. f(x) \neq f(z) \lor g(y) \simeq h(z) \}$

 \triangleright Instantiation module generates instances of Q $f(a) \simeq f(b) \lor g(a) \simeq h(b)$

A pragmatic extension

Preprocessing

Totalizing applications of theory symbols

$$\frac{\varphi[1+]}{\varphi[\lambda x.\,1+x]}$$

▶
$$\lambda$$
-lifting

$$\frac{\varphi[\lambda x. t]}{\varphi[\mathbf{f}(t)] \land \forall x. \mathbf{f}(x) \simeq t}$$

▷ Ground EUF solver

- Lazy applicative encoding
- Extensionality lemmas
- Polynomial model construction for partial functions

Instantiation module

- Extending *E*-matching
- Adding expressivity via axioms

Applicative encoding

- > Every functional sort converted into an atomic sort
- \triangleright Every *n*-ary function symbol converted into a constant
- $\succ \text{ Every function application converted into @ applications} \\ \frac{\varphi[\mathsf{f}(t_1, \ldots, t_n)]}{\overline{\varphi[@(\ldots (@(\mathsf{f}, t_1), \ldots), t_n)]}}$

$$\begin{array}{ccccc} f(a)\simeq g & \wedge & f(a,a) \not\simeq g(a) & \wedge & g(a)\simeq h(a) \\ \downarrow & & \downarrow & & \downarrow \\ @(f,a)\simeq g & \wedge & @(@(f,a),a) \not\simeq @(g,a) & \wedge & @(g,a)\simeq @(h,a) \end{array}$$

Lazy applicative encoding

- ▷ Encode partial applications eagerly
- ▷ Apply regular congruence closure
- ▷ Lazily encode relevant applications

1
$$E = \{@(f,a) \simeq g, f(a,a) \not\simeq g(a), g(a) \simeq h(a)\}$$
 is satisfiable
 $E \not\models f(a, a) \simeq g(a)$

Lazy applicative encoding

- ▷ Encode partial applications eagerly
- ▷ Apply regular congruence closure
- ▷ Lazily encode relevant applications

1
$$E = \{@(f,a) \simeq g, f(a,a) \not\simeq g(a), g(a) \simeq h(a)\}$$
 is satisfiable

$$E \not\models \mathsf{f}(\mathsf{a},\,\mathsf{a}) \simeq \mathsf{g}(\mathsf{a})$$

2 Applications of f and g need to be encoded

Lazy applicative encoding

- ▷ Encode partial applications eagerly
- ▷ Apply regular congruence closure
- ▷ Lazily encode relevant applications

1
$$E = \{ @(f,a) \simeq g, f(a,a) \not\simeq g(a), g(a) \simeq h(a) \}$$
 is satisfiable

$$E \not\models f(a, a) \simeq g(a)$$

2 Applications of f and g need to be encoded

3
$$E' = E \cup \{@(@(f, a), a) \simeq f(a, a), @(g, a) \simeq g(a)\}$$
 is unsatisfiable
 $E' \models f(a, a) \simeq g(a)$

Note that h(a) is not encoded!

 $\forall \bar{x}.\,\mathsf{f}(\bar{x})\simeq\mathsf{g}(\bar{x})\leftrightarrow\mathsf{f}\simeq\mathsf{g}$

 $\,\triangleright\,$ "—" handled by lazy encoding and congruence

$$\frac{\mathbf{f} \simeq \mathbf{g}}{\underbrace{@(\mathbf{f}, t_1) \simeq @(\mathbf{g}, t_1)}_{\dots} \operatorname{Cong}} \underbrace{\operatorname{Cong}}_{\operatorname{Cong}}$$

$$\frac{\vdots}{\underbrace{@(\dots (@(\mathbf{f}, t_1), \dots), t_n) \simeq @(\dots (@(\mathbf{g}, t_1), \dots), t_n)}}_{\mathbb{C}} \operatorname{Cong}}$$

 \triangleright " \rightarrow " handled by

$$\frac{\mathsf{f} \not\simeq \mathsf{g}}{\mathsf{f}(\mathsf{sk}_1, \ldots, \mathsf{sk}_n) \not\simeq \mathsf{g}(\mathsf{sk}_1, \ldots, \mathsf{sk}_n)} \text{ Extensionality}$$

Functions are interpreted as if-then-else:

$$M(\mathbf{f}) = \lambda x. \operatorname{ite}(x \simeq t_1, s_1, \dots \operatorname{ite}(x \simeq t_{n-1}, s_{n-1}, s_n) \dots)$$

Partial applications can lead to exponentially many cases!

$$\begin{array}{l} f_1(\textbf{a}) \simeq f_1(\textbf{b}) \wedge f_1(\textbf{b}) \simeq f_2 \\ \wedge \quad f_2(\textbf{a}) \simeq f_2(\textbf{b}) \wedge f_2(\textbf{b}) \simeq f_3 \\ \wedge \quad f_3(\textbf{a}) \simeq f_3(\textbf{b}) \wedge f_3(\textbf{b}) \simeq \textbf{c} \end{array}$$

8 ite entries to model that $f_1(x, y, z) \simeq c$, for $x, y, z \in \{a, b\}$

Functions are interpreted as if-then-else:

$$M(\mathbf{f}) = \lambda x. \operatorname{ite}(x \simeq t_1, s_1, \dots \operatorname{ite}(x \simeq t_{n-1}, s_{n-1}, s_n) \dots)$$

Partial applications can lead to exponentially many cases!

$$\begin{array}{l} f_1(\textbf{a})\simeq f_1(\textbf{b})\wedge f_1(\textbf{b})\simeq f_2\\ \wedge \quad f_2(\textbf{a})\simeq f_2(\textbf{b})\wedge f_2(\textbf{b})\simeq f_3\\ \wedge \quad f_3(\textbf{a})\simeq f_3(\textbf{b})\wedge f_3(\textbf{b})\simeq \textbf{c} \end{array}$$

8 ite entries to model that $f_1(x,y,z) \simeq c$, for $x,y,z \in \{a,b\}$

Polynomial construction in the "depth" of functions chain $M(f_1) = \lambda xyz$. ite $(x \simeq a, M(f_2)(y, z), ite(x \simeq b, M(f_2)(y, z), ...))$

Functions are interpreted as if-then-else:

$$M(\mathbf{f}) = \lambda x. \operatorname{ite}(x \simeq t_1, s_1, \dots \operatorname{ite}(x \simeq t_{n-1}, s_{n-1}, s_n) \dots)$$

Partial applications can lead to exponentially many cases!

$$\begin{array}{l} f_1(\textbf{a})\simeq f_1(\textbf{b})\wedge f_1(\textbf{b})\simeq f_2\\ \wedge \quad f_2(\textbf{a})\simeq f_2(\textbf{b})\wedge f_2(\textbf{b})\simeq f_3\\ \wedge \quad f_3(\textbf{a})\simeq f_3(\textbf{b})\wedge f_3(\textbf{b})\simeq \textbf{c} \end{array}$$

8 ite entries to model that $f_1(x,y,z) \simeq c$, for $x,y,z \in \{a,b\}$

Polynomial construction in the "depth" of functions chain $M(f_1) = \lambda xyz$. ite $(x \simeq a, M(f_2)(y, z), \text{ite}(x \simeq b, M(f_2)(y, z), .))$ $M(f_2) = \lambda xy$. ite $(x \simeq a, M(f_3)(y), \text{ite}(x \simeq b, M(f_3)(y), .))$

Functions are interpreted as if-then-else:

$$M(\mathbf{f}) = \lambda x. \operatorname{ite}(x \simeq t_1, s_1, \dots \operatorname{ite}(x \simeq t_{n-1}, s_{n-1}, s_n) \dots)$$

Partial applications can lead to exponentially many cases!

$$\begin{array}{l} f_1(\textbf{a})\simeq f_1(\textbf{b})\wedge f_1(\textbf{b})\simeq f_2\\ \wedge \quad f_2(\textbf{a})\simeq f_2(\textbf{b})\wedge f_2(\textbf{b})\simeq f_3\\ \wedge \quad f_3(\textbf{a})\simeq f_3(\textbf{b})\wedge f_3(\textbf{b})\simeq \textbf{c} \end{array}$$

8 ite entries to model that $f_1(x, y, z) \simeq c$, for $x, y, z \in \{a, b\}$

Polynomial construction in the "depth" of functions chain $M(f_1) = \lambda xyz$. ite $(x \simeq a, M(f_2)(y, z), \text{ite}(x \simeq b, M(f_2)(y, z), ...))$ $M(f_2) = \lambda xy$. ite $(x \simeq a, M(f_3)(y), \text{ite}(x \simeq b, M(f_3)(y), ...))$ $M(f_3) = \lambda x$. ite $(x \simeq a, c, \text{ite}(x \simeq b, c, ...))$ ▷ Since @ is overloaded, matching must account for types of arguments
 ▶ @(x, a) can't match @(f, a) if x and f of different types

▷ Indexing robust to mixed partial/total applications
 ▷ In HOL applications with different heads can be equal
 @(f, a) ≃ g allows matching g(x) with f(a, b)

▷ HO-*E*-matching left for future work

▷ Store axiom

$$\forall F. \, \forall x, y. \, \exists G. \, \forall z. \, G(z) \simeq \mathsf{ite}(z \simeq x, \, y, \, F(z))$$

> Instances from the larger set of functions representable in the signature

 $a \not\simeq b \land \forall F, G. F \simeq G$ is unsatisfiable

$$\triangleright$$
 Requires $F \mapsto (\lambda w. a), G \mapsto (\lambda w. b)$

 \triangleright *E*-matching can't derive this instantiation

▷ Simpler and more flexible congruence closure

- Graph representation rather than UNION-FIND
- ▶ Quadratic instead of $\mathcal{O}(n \log n)$

- ▷ Ground solver uses two term representations
 - Curried for EUF
 - Regular for the rest

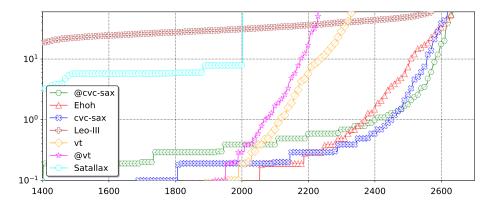
> Theory combination and instantiation operate via interface

 $\triangleright~$ Pragmatic ${\rm CVC4}$ and redesigned ${\rm VERIT}$

- Benchmarks
 - ► Monomorphic TPTP-THF
 - ▶ Benchmarks from Sledghammer, with 32, 512 and 1024 axioms

- Compared against
 - \blacktriangleright Full encoding-based versions of ${\rm CVC4}$ and ${\rm VERIT}$
 - HO-provers Leo-III and Satallax
 - ► λ fHO-prover Ehoh

Evaluation



Solved problems among 5,543 benchmarks supported by all solvers
 60s timeout

 $\,\triangleright\,$ Extended $_{\rm CVC4}$ complementary to its encoding-based counterpart

- ▷ Both versions of CVC4 on par with Ehoh
- \triangleright Extended verial T clearly ahead of its encoding-based counterpart
- Leo-III and Satallax much ahead on THF, but fail to scale on Sledghammer problems
- ▷ FO-performance of the extensions is not compromised

Conclusions

 $\,\triangleright\,$ Successful extensions of SMT solvers to HOL

 \triangleright On par with encoding-based approach

Future work

- ▷ Tackle HO-unification
 - Will allow extending conflict-based instantiation

Implement dedicated simplifications