Extending SMT solvers to higher-order logic*

Haniel Barbosa

Andrew Reynolds Daniel El Ouraoui Clark Barrett
Cesare Tinelli
L 7 3
THE UNIVERSITY formatcs 7 mthematc [%j
| oF lowa &Z’Zéa/- (b_]
STANFORD
SMT 2019

2019-07-07, Lisbon, PT
*To be published in the proceedings of CADE 2019

Why higher-order logic?

Higher-Order logic

> Expressive

» Mathematics
» Verification conditions

> The language of proof assistants
» lsabelle, Coq, Lean, ...

Automation

> Reducing the burden of proof on users

Extending SMT solvers to higher-order logic 1/16

State of the art of HOL automation

> Higher-order provers Leo-Ill, Satalax, ...
» Scalability issues on problems with large FO component

> Hammers HOLYHammer, MizAR, Sledgehammer, ...
» Issues with performance, soundness, or completeness

Extending SMT solvers to higher-order logic 2 /16

State of the art of HOL automation

> Higher-order provers Leo-Ill, Satalax, ...
» Scalability issues on problems with large FO component

> Hammers HOLYHammer, MizAR, Sledgehammer, ...

» Issues with performance, soundness, or completeness

“Timeouts into quick unsats”
f(Az.g(z) + h(z)) =~ f(Az. h(z) + g(z))

J cong, ext

(Vx.g(z) + h(z) = h(z) + g(z)) = f(Az. g(z) + h(z)) = f(Az. h(z) + g(z))

} -, CNF
g(sk) + h(sk) % h(sk) + g(sk)
f(Az.g(z) + h(z)) % f(Az. h(z) + g(z))

Extending SMT solvers to higher-order logic

Outline

> What we mean by higher-order logic

> Extending an SMT solver pragmatically

> Extending an SMT solver via redesign

> Evaluation

Fragments of interest

Features FOL AfHOL HOL
function v v v
quantification on objects v v v
quantification on functions X v v
partial applications X v v
anonymous functions X X v

> Henkin semantics
» Function interpretations restricted to terms expressible in formula’s
signature

> Extensionality
V. f(z) ~g(z) > f~g

Extending SMT solvers to higher-order logic 3/16

Fragments of interest

Features FOL AfHOL HOL
function v v v
quantification on objects v v v
quantification on functions X v v
partial applications X v v
anonymous functions X X v

> Henkin semantics
» Function interpretations restricted to terms expressible in formula’s
signature

> Extensionality
V. f(z) ~g(z) > f~g

Goal: simplicity, practicality, and effectiveness

Extending SMT solvers to higher-order logic 3/ 16

A CDCL(T) SMT solver

SMT solver Instantiation

K_b module ’\ Model
SMT formula (_ Instance
UNSAT
Ground

Rewriter
solver

> Rewriter simplifies terms

z+0— 2z aa— 1 (str.replace = (str.++ z z) y) —> =

> Ground solver enumerates assignments EU Q

» E is a set of ground literals {a<b,b<a+z, x>0, f(a) £f(b)}
» Q is a set of quantified clauses {Vzyz. f(z) % f(2) Vg(y) ~ h(2)}
> Instantiation module generates instances of Q f(a) 2 f(b) V g(a) ~ h(b)

Extending SMT solvers to higher-order logic 4 /16

A pragmatic extension

> Preprocessing
p[1+]

» Totalizing applications of theory symbols ———
o[Az. 1+ z]

o[Az. t]
Plf(t)] AV f(x) ~t

> \lifting

> Ground EUF solver

» Lazy applicative encoding
» Extensionality lemmas
» Polynomial model construction for partial functions

> Instantiation module

» Extending E-matching
» Adding expressivity via axioms

Extending SMT solvers to higher-order logic 5/ 16

Applicative encoding

> Every functional sort converted into an atomic sort
> Every n-ary function symbol converted into a constant

> Every function application converted into @ applications
go[f(tl, ey tn)]
el@Q(... (Q(f, t1),...), tn)]

fla)=g A f(a,a) #g(a) A g(a) = h(a)
{ { {

Q(f,a) g A Q(Q(f, a),a) 2Q(g,a) A Q(g,a)~Q(h,a)

Extending SMT solvers to higher-order logic

6/ 16

Lazy applicative encoding

> Encode partial applications eagerly
> Apply regular congruence closure

>> Lazily encode relevant applications

E={Q(f,a) ~g, f(a,a) ¥ g(a), g(a) = h(a)} is satisfiable

E [~ f(a, a) ~ g(a)

Lazy applicative encoding

> Encode partial applications eagerly
> Apply regular congruence closure

>> Lazily encode relevant applications

E={Q(f,a) ~g, f(a,a) #g(a), g(a) = h(a)} is satisfiable

E [~ f(a, a) ~ g(a)

Applications of f and g need to be encoded

Lazy applicative encoding

> Encode partial applications eagerly
> Apply regular congruence closure

>> Lazily encode relevant applications

E ={Q(f,a) ~g, f(a,a) £ g(a), g(a) ~ h(a)} is satisfiable
E i f(a, 3) ~ g(a)
Applications of f and g need to be encoded
E' = Fu{Q(Q(f,a),a) ~f(a,a), Q(g,a) ~ g(a)} is unsatisfiable

E' Ef(a, a) ~g(a)

Note that h(a) is not encoded!

Extending SMT solvers to higher-order logic

716

Handling extensionality VE. f(Z) ~g(Z) o frg
> “4" handled by lazy encoding and congruence
f~g c
af, t) ~ Qg t1) O
ConaG
Cona

@(o (@(f’ t1)7 s ‘)7 tn) = @(s (@(g7 tl)v s ')7 tn)

> “—=" handled by

feeg
f(skq, ..., sky) % g(sky, ..., sky)

EXTENSIONALITY

Extending SMT solvers to higher-order logic 8 /16

Avoiding exponential model construction

Functions are interpreted as if-then-else:

M(f) = Ax.ite(x ~ t1,81,...ite(z ~tp_1,80-1,5n) - -)

Partial applications can lead to exponentially many cases!

fl(a) ~ fl(b) A\ fl(b) ~ fy
A\ fg(a) >~ fg(b) A f2(b> ~ f3
A fg(a) ~ fg(b) A fg(b) ~C

8 ite entries to model that fi(z,y,2) ~c, for z,y, z € {a, b}

Extending SMT solvers to higher-order logic 9/16

Avoiding exponential model construction

Functions are interpreted as if-then-else:

M(f) = Ax.ite(x ~ t1,81,...ite(z ~tp_1,80-1,5n) - -)

Partial applications can lead to exponentially many cases!

fl(a) Nfl()/\fl()Nfg
A fy(a) = fa(b) Afa(b)Nf3
A f3(a) = f3(b) Afs(b) =~

8 ite entries to model that fi(z,y,2) ~c, for z,y, z € {a, b}

Polynomial construction in the “depth” of functions chain
M(f1) = Aayz. ite(x ~ a, M (f2)(y, 2), ite (x ~ b, M (f2)(y, 2), -))

Avoiding exponential model construction

Functions are interpreted as if-then-else:

M(f) = Ax.ite(x ~ t1,81,...ite(z ~tp_1,80-1,5n) - -)

Partial applications can lead to exponentially many cases!

fl(a) Nfl()/\fl()Nfg
A fy(a) = fa(b) Afa(b)Nf3
A f3(a) = f3(b) Afs(b) ~

8 ite entries to model that fi(z,y,2) ~c, for z,y, z € {a, b}

Polynomial construction in the “depth” of functions chain
M(f1) = Aayz. ite(x ~ a, M (f2)(y, 2), ite (x ~ b, M (f2)(y, 2), -))
M (fy) = Azy. ite(z ~a, M(f3)(y),ite(z ~ b, M (f3)(y),-))

Avoiding exponential model construction

Functions are interpreted as if-then-else:

M(f) = Ax.ite(x ~ t1,81,...ite(z ~tp_1,80-1,5n) - -)

Partial applications can lead to exponentially many cases!

fl(a) Nfl()/\fl()Nfg
A fy(a) = fa(b) Afa(b)Nf3
A f3(a) = f3(b) Afs(b) ~

8 ite entries to model that fi(z,y,2) ~c, for z,y, z € {a, b}

Polynomial construction in the “depth” of functions chain
M(f1) = Aayz. ite(x ~ a, M (f2)(y, 2), ite (x ~ b, M (f2)(y, 2), -))

M (fy) = Azy. ite(z ~a, M(f3)(y),ite(z ~ b, M (f3)(y),-))

M(f3) = Az, ite(x ~ a,c,ite(x ~ b,c,)

Extending SMT solvers to higher-order logic

9/16

Extending E-matching

> Since @ is overloaded, matching must account for types of arguments
> Q(z, a) can't match Q(f, a) if z and f of different types

> Indexing robust to mixed partial/total applications
» In HOL applications with different heads can be equal
@(f,a) ~ g allows matching g(z) with f(a,b)

> HO-FE-matching left for future work

Extending SMT solvers to higher-order logic 10 / 16

Using well-chosen axioms

> Store axiom

VEVz,y. 3G. V2. G(2) ~ite(z ~ z, y, F(z))

>> Instances from the larger set of functions representable in the signature

a%bAVF G.F ~ G is unsatisfiable

> Requires F'— (Aw.a), G — (Aw.Db)

> E-matching can’t derive this instantiation

Extending SMT solvers to higher-order logic 11 / 16

Redesigning the SMT solver

> Simpler and more flexible congruence closure

» Graph representation rather than UNION-FIND
» Quadratic instead of O(nlogn)

> Ground solver uses two term representations

» Curried for EUF
» Regular for the rest

> Theory combination and instantiation operate via interface

Extending SMT solvers to higher-order logic 12 / 16

Evaluation

> Pragmatic cvc4 and redesigned VERIT

> Benchmarks

» Monomorphic TPTP-THF
» Benchmarks from Sledghammer, with 32, 512 and 1024 axioms

> Compared against
» Full encoding-based versions of cvc4 and VERIT
» HO-provers Leo-lll and Satallax
» MHO-prover Ehoh

Extending SMT solvers to higher-order logic

13/ 16

Evaluation

10t

100 44

107!

@cvc-sax
Ehoh
cvc-sax
Leo-lll

vt

@vt
Satallax

LEEELEl

<
LR

[EEeasecs]

1400

> Solved problems among 5,543 benchmarks supported by all solvers

1600

> 60s timeout

Extending SMT solvers to higher-order logic

2600

14 / 16

Evaluation

> Extended cvc4 complementary to its encoding-based counterpart

> Both versions of cvc4 on par with Ehoh

> Extended VERIT clearly ahead of its encoding-based counterpart

> Leo-lll and Satallax much ahead on THF, but fail to scale on
Sledghammer problems

> FO-performance of the extensions is not compromised

Extending SMT solvers to higher-order logic 15 / 16

Conclusions

> Successful extensions of SMT solvers to HOL

> On par with encoding-based approach

Future work

> Tackle HO-unification
» Will allow extending conflict-based instantiation

> Implement dedicated simplifications

Extending SMT solvers to higher-order logic 16 / 16

