
Revisiting Enumerative Instantiation

Andrew Reynolds1, Haniel Barbosa1,2 and Pascal Fontaine1

1University of Iowa, Iowa City, U.S.A.

2University of Lorraine, CNRS, Inria, LORIA, Nancy, France

TACAS 2018

2018–05–24, Thessaloniki, Greece

Formal
 Verification

Program
Analysis

Automatic
Testing

Program
Synthesis

Automated
Reasoning

Revisiting Enumerative Instantiation 1 / 15

Formal
 Verification

Program
Analysis

Automatic
Testing

Program
Synthesis

SMT
Solvers

Revisiting Enumerative Instantiation 1 / 15

Formal
 Verification

Program
Analysis

Automatic
Testing

Program
Synthesis

SMT
Solvers
+ Quant

Revisiting Enumerative Instantiation 1 / 15

Outline

B Quantifier handling in SMT solving

B Strengthening the Herbrand Theorem

B Effective enumerative instantiation

I Combination with other instantiation strategies
I Implementation

B Evaluation

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 T
A

C
A

S
 *

 A
rtifact * A

E
C

Quantifier handling in SMT

Problem statement

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Quantifier-free solver enumerates assignments E ∪ Q

I E is a set of ground literals {a ≤ b, b ≤ a+ x, x ' 0, f(a) 6' f(b)}

I Q is a set of quantified clauses {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}

Instantiation module generates instances of Q f(a) 6' f(b) ∨ g(a) ' h(b)

Revisiting Enumerative Instantiation 2 / 15

Instantiation strategies: trigger-based [Detlefs et al. J. ACM’05]

Trigger-based instantiation (E-matching): search for relevant
instantiations according to a set of triggers and E-matching

B E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}
B Assume the set of triggers {(P (x))}.
B Since E |= P (x){x 7→ t} ' P (t), for t = a, b, c, this strategy may

return {{x 7→ a}, {x 7→ b}, {x 7→ c}}.
B Formally:

e(E, ∀x̄. ϕ): 1. Select a set of triggers {t̄1, . . . t̄n} for ∀x̄. ϕ.

2. For each i = 1, . . . , n, select a set of substitutions Si s.t.
for each σ ∈ Si, E |= t̄iσ ' ḡi for some tuple ḡi ∈ T(E).

3. Return
⋃n

i=1 Si.

Revisiting Enumerative Instantiation 3 / 15

Instantiation strategies: trigger-based [Detlefs et al. J. ACM’05]

Trigger-based instantiation (E-matching): search for relevant
instantiations according to a set of triggers and E-matching

B E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}
B Assume the set of triggers {(P (x))}.
B Since E |= P (x){x 7→ t} ' P (t), for t = a, b, c, this strategy may

return {{x 7→ a}, {x 7→ b}, {x 7→ c}}.
B Formally:

e(E, ∀x̄. ϕ): 1. Select a set of triggers {t̄1, . . . t̄n} for ∀x̄. ϕ.

2. For each i = 1, . . . , n, select a set of substitutions Si s.t.
for each σ ∈ Si, E |= t̄iσ ' ḡi for some tuple ḡi ∈ T(E).

3. Return
⋃n

i=1 Si.

Revisiting Enumerative Instantiation 3 / 15

Instantiation strategies: conflict-based [Reynolds et al. FMCAD’14]

Conflict-based instantiation: search for instantiations of a quantified
formula in Q that make E unsatisfiable

B E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

B Since E, P (b) ∨R(b) |= ⊥, this strategy will return {{x 7→ b}}.

B Formally:

c(E, ∀x̄. ϕ): 1. Either return {σ} where E, ϕσ |= ⊥, or return ∅.

Revisiting Enumerative Instantiation 4 / 15

Instantiation strategies: conflict-based [Reynolds et al. FMCAD’14]

Conflict-based instantiation: search for instantiations of a quantified
formula in Q that make E unsatisfiable

B E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

B Since E, P (b) ∨R(b) |= ⊥, this strategy will return {{x 7→ b}}.

B Formally:

c(E, ∀x̄. ϕ): 1. Either return {σ} where E, ϕσ |= ⊥, or return ∅.

Revisiting Enumerative Instantiation 4 / 15

Instantiation strategies: model-based [Ge and de Moura CAV’09]

Model-based instantiation (MBQI): build a candidate model for E ∪ Q and
instantiate with counter-examples from model checking

B E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

B Assume that PM = λx. ite(x ' c, >, ⊥) and RM = λx.⊥.

B Since M 6|= P (a) ∨R(a), this strategy may return {{x 7→ a}}.

B Formally:

m(E, ∀x̄. ϕ): 1. Construct a model M for E.

2. Return {{x̄ 7→ t̄ }} where t̄ ∈ T(E) and M 6|= ϕ{x̄ 7→ t̄ },
or ∅ if none exists.

Revisiting Enumerative Instantiation 5 / 15

Instantiation strategies: model-based [Ge and de Moura CAV’09]

Model-based instantiation (MBQI): build a candidate model for E ∪ Q and
instantiate with counter-examples from model checking

B E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

B Assume that PM = λx. ite(x ' c, >, ⊥) and RM = λx.⊥.

B Since M 6|= P (a) ∨R(a), this strategy may return {{x 7→ a}}.

B Formally:

m(E, ∀x̄. ϕ): 1. Construct a model M for E.

2. Return {{x̄ 7→ t̄ }} where t̄ ∈ T(E) and M 6|= ϕ{x̄ 7→ t̄ },
or ∅ if none exists.

Revisiting Enumerative Instantiation 5 / 15

Shortcomings

B Conflict-based instantiation (c):

I Inherently incomplete

B E-matching (e):

I Too many instances
I Butterfly effect

B MBQI (m):

I Complete for many fragments, but slow convergence for UNSAT
I Better suited for model finding

Generally SMT solvers implement complete techniques by applying m as a
last resort after trying c and e

Revisiting Enumerative Instantiation 6 / 15

Strengthening the Herbrand Theorem

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there
exists a finite unsatisfiable set of its instances.

B The earliest theorem provers relied on Herbrand instantiation

I Instantiate with all possible terms in the language

B Enumerating all instances is unfeasible in practice!

B Enumerative instantiation was then discarded

We make enumerative instantiation beneficial for state-of-the-art SMT

B strengthening of Herbrand theorem

B efficient implementation techniques

Revisiting Enumerative Instantiation 7 / 15

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there
exists a finite unsatisfiable set of its instances.

B The earliest theorem provers relied on Herbrand instantiation

I Instantiate with all possible terms in the language

B Enumerating all instances is unfeasible in practice!

B Enumerative instantiation was then discarded

We make enumerative instantiation beneficial for state-of-the-art SMT

B strengthening of Herbrand theorem

B efficient implementation techniques

Revisiting Enumerative Instantiation 7 / 15

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there
exists a finite unsatisfiable set of its instances.

B The earliest theorem provers relied on Herbrand instantiation

I Instantiate with all possible terms in the language

B Enumerating all instances is unfeasible in practice!

B Enumerative instantiation was then discarded

We make enumerative instantiation beneficial for state-of-the-art SMT

B strengthening of Herbrand theorem

B efficient implementation techniques

Revisiting Enumerative Instantiation 7 / 15

Theorem (Strengthened Herbrand)

If there exists an infinite series of finite satisfiable sets of ground literals Ei

and of finite sets of ground instances Qi of Q such that

B Qi =
{
ϕσ | ∀x̄. ϕ ∈ Q, dom(σ) = {x̄} ∧ ran(σ) ⊆ T(Ei)

}
;

B E0 = E, Ei+1 |= Ei ∪ Qi;

then E ∪ Q is satisfiable in the empty theory with equality.

Direct application at

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

B Quantifier-free solver enumerates assignments E ∪ Q

B Instantiation module generates instances of Q

Revisiting Enumerative Instantiation 8 / 15

Effective enumerative instantiation

Enumerative instantiation

u(E, ∀x̄. ϕ):
1. Choose an ordering � on tuples of quantifier-free terms.
2. Return {{x̄ 7→ t̄}} where t̄ is a minimal tuple of terms w.r.t �,

such that t̄ ∈ T(E) and E 6|= ϕ{x̄ 7→ t̄ }, or ∅ if none exist.

B E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

B u chooses an ordering on tuples of terms, say the lexicographic
extension of � where a ≺ b ≺ c.

B Since E does not entail P (a)∨R(a), this strategy returns {{x 7→ a}}.

Revisiting Enumerative Instantiation 9 / 15

u as an alternative for m

B Enumerative instantiation plays a similar role to MBQI

B It can also serve as a “completeness fallback” to c and e

B However, u has advantages over m for UNSAT problems

B Moreover it is significantly simpler to implement

I No model building
I No model checking

Revisiting Enumerative Instantiation 10 / 15

Example

E = {¬P (a), R(b), S(c)}
Q = {∀x. R(x) ∨ S(x), ∀x. ¬R(x) ∨ P (x), ∀x. ¬S(x) ∨ P (x)}

M =

PM = λx.⊥,
RM = λx. ite(x ' b, >, ⊥),

SM = λx. ite(x ' c, >, ⊥)

 , a ≺ b ≺ c

ϕ x s.t. M 6|= ϕ x s.t. E 6|= ϕ m(E,∀x. ϕ) u(E,∀x. ϕ)
R(x) ∨ S(x) a a {{x 7→ a}} {{x 7→ a}}
¬R(x) ∨ P (x) b a, b, c {{x 7→ b}} {{x 7→ a}}
¬S(x) ∨ P (x) c a, b, c {{x 7→ c}} {{x 7→ a}}

B u instantiates uniformly so that new terms are introduced less often

B m instantiates depending on how model was built

B Moreover, u leads to E ∧ Q{x 7→ a} |= ⊥
B m requires considering E′ which satisfies E along the new instances

Revisiting Enumerative Instantiation 11 / 15

Implementation

Implementing enumerative instantiation efficiently depends on:

B Restricting enumeration space

B Avoiding entailed instantiations

B Term ordering to introduce new terms less often

Revisiting Enumerative Instantiation 12 / 15

Evaluation

CVC4 configurations on unsatisfiable benchmarks

6000 8000 10000 12000 14000 16000 18000 20000
10−1

100

101

102

C
PU

tim
e

(s
)

e+u
e;u
e+m
e;m
e
u
m

B 42 065 benchmarks, being 14 731 from TPTP and 27 334 from SMT-LIB

B e+u stands for “interleave e and u”, while e;u for “apply e first, then u if it fails”

B All CVC4 configurations have “c;” as prefix

Revisiting Enumerative Instantiation 13 / 15

Impact of u on satisfiable benchmarks

Library # u e;u e+u e m e;m e+m

TPTP 14731 471 492 464 17 930 808 829

UF 7293 39 42 42 0 70 69 65
Theories 20041 3 3 3 3 350 267 267

Total 42065 513 537 509 20 1350 1144 1161

B As expected, m greatly outperforms u

B Nevertheless u answers SAT half as often as m in empty theory

B Moreover, u solves 13 problems m does not

Revisiting Enumerative Instantiation 14 / 15

Conclusions

B We have introduced an efficient way of applying enumerative
instantiation in SMT solving

B New technique is based on an strengthening of the Herbrand Theorem

B Implementation in SMT solver CVC4

I Significantly increases success rate

I Outperforms existing implementations of MBQI for UNSAT

I Can be used for SAT in the empty theory

Revisiting Enumerative Instantiation 15 / 15

Appendix

Restricting Enumeration Space

B Strengthened Herbrand Theorem allows restriction to T(E)

B Sort inference reduces instantiation space by computing more precise
sort information

I E ∪ Q = {a 6' b, f(a) ' c} ∪ {P (f(x))}
• a, b, c, x : τ
• f : τ → τ and P : τ → Bool.

I This is equivalent to
Es ∪ Qs = {a1 6' b1, f12(a1) ' c2} ∪ {P2(f12(x1))}
• a1, b1, x1 : τ1
• c2 : τ2
• f12 : τ1 → τ2 and P : τ2 → Bool

I u would derive e.g. {x 7→ c} for E ∪ Q, while for Es ∪ Qs the
instantiation {x1 7→ c2} is not well-sorted.

Entailment Checks

Two-layered method for checking whether E |= ϕ{x̄ 7→ t̄ } holds

B Cache of instantiations already derived

B Incomplete but fast method for checking E |= `

Repeat until a fix point:

1. Replace each leaf term t in ` with [t].
2. Replace each term f(t1, . . . , tn) in ` with s if (t1, . . . , tn)→ s ∈ If .
3. Replace each term f(t1, . . . , tn) in ` where f is an interpreted function

with the result of the evaluation f(t1, . . . , tn)↓.
Then, if the resultant ` is >, then the entailment holds.

I Extension to incorporate Boolean structure

I Extension to other theories through theory-specific rewriting

Term Ordering

Instantiations are enumerated according to the order

(t1, . . . , tn) ≺ (s1, . . . , sn) if

maxn

i=1 ti ≺ maxn
i=1 si, or

maxn
i=1 ti = maxn

i=1 si and

(t1, . . . , tn) ≺lex (s1, . . . , sn)

for a given order � on ground terms.

If a ≺ b ≺ c, then

(a, a) ≺ (a, b) ≺ (b, a) ≺ (b, b) ≺ (a, c) ≺ (c, b) ≺ (c, c)

B We consider instantiations with c only after considering all cases with
a and b

B Goal is to introduce new terms less often

B Order on T(E) fixed for finite set of terms t1 ≺ . . . ≺ tn
I Instantiate in order with t1, . . . , tn
I Then choose new non-congruent term t ∈ T(E) and have tn ≺ t

Impact of u on unsatisfiable benchmarks

B u solves 3 043 more benchmarks than m

B u solves 1 737 problems not solvable by e

B Combinations of e with u or m lead to significant gains

B e+u is best configuration, solving 253 more problems than e+m and
1 295 more than e

B Some benchmark families only solvable due to enumeration

B Overall the enumerative strategies lead to a virtual portfolio of CVC4
solving 712 more problems

Comparison against other instantiation-based SMT solvers

6000 8000 10000 12000 14000 16000 18000 20000 22000
10−1

100

101

102

C
PU

tim
e

(s
)

uport-i
mport-i
z3 mport-i
e
z3 e

B Portfolios run without interleaving strategies (not supported by Z3)

B Z3 uses several optimizations for e not implemented in CVC4

B Z3 does not implement c

	Quantifier handling in SMT
	Strengthening the Herbrand Theorem
	Effective enumerative instantiation
	Evaluation

