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Quantifier handling in SMT



Problem statement

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Quantifier-free solver enumerates assignments E ∪ Q

I E is a set of ground literals {a ≤ b, b ≤ a+ x, x ' 0, f(a) 6' f(b)}

I Q is a set of quantified clauses {∀xyz. f(x) 6' f(z) ∨ g(y) ' h(z)}

Instantiation module generates instances of Q f(a) 6' f(b) ∨ g(a) ' h(b)

Revisiting Enumerative Instantiation 2 / 15



Instantiation strategies: trigger-based [Detlefs et al. J. ACM’05]

Trigger-based instantiation (E-matching): search for relevant
instantiations according to a set of triggers and E-matching

B E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}
B Assume the set of triggers {(P (x))}.
B Since E |= P (x){x 7→ t} ' P (t), for t = a, b, c, this strategy may

return {{x 7→ a}, {x 7→ b}, {x 7→ c}}.
B Formally:

e(E, ∀x̄. ϕ): 1. Select a set of triggers {t̄1, . . . t̄n} for ∀x̄. ϕ.

2. For each i = 1, . . . , n, select a set of substitutions Si s.t.
for each σ ∈ Si, E |= t̄iσ ' ḡi for some tuple ḡi ∈ T(E).

3. Return
⋃n

i=1 Si.
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Instantiation strategies: conflict-based [Reynolds et al. FMCAD’14]

Conflict-based instantiation: search for instantiations of a quantified
formula in Q that make E unsatisfiable

B E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

B Since E, P (b) ∨R(b) |= ⊥, this strategy will return {{x 7→ b}}.

B Formally:

c(E, ∀x̄. ϕ): 1. Either return {σ} where E, ϕσ |= ⊥, or return ∅.
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Instantiation strategies: model-based [Ge and de Moura CAV’09]

Model-based instantiation (MBQI): build a candidate model for E ∪ Q and
instantiate with counter-examples from model checking

B E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

B Assume that PM = λx. ite(x ' c, >, ⊥) and RM = λx.⊥.

B Since M 6|= P (a) ∨R(a), this strategy may return {{x 7→ a}}.

B Formally:

m(E, ∀x̄. ϕ): 1. Construct a model M for E.

2. Return {{x̄ 7→ t̄ }} where t̄ ∈ T(E) and M 6|= ϕ{x̄ 7→ t̄ },
or ∅ if none exists.
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Shortcomings

B Conflict-based instantiation (c):

I Inherently incomplete

B E-matching (e):

I Too many instances
I Butterfly effect

B MBQI (m):

I Complete for many fragments, but slow convergence for UNSAT
I Better suited for model finding

Generally SMT solvers implement complete techniques by applying m as a
last resort after trying c and e
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Strengthening the Herbrand Theorem



Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there
exists a finite unsatisfiable set of its instances.

B The earliest theorem provers relied on Herbrand instantiation

I Instantiate with all possible terms in the language

B Enumerating all instances is unfeasible in practice!

B Enumerative instantiation was then discarded

We make enumerative instantiation beneficial for state-of-the-art SMT

B strengthening of Herbrand theorem

B efficient implementation techniques
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Theorem (Strengthened Herbrand)

If there exists an infinite series of finite satisfiable sets of ground literals Ei

and of finite sets of ground instances Qi of Q such that

B Qi =
{
ϕσ | ∀x̄. ϕ ∈ Q, dom(σ) = {x̄} ∧ ran(σ) ⊆ T(Ei)

}
;

B E0 = E, Ei+1 |= Ei ∪ Qi;

then E ∪ Q is satisfiable in the empty theory with equality.

Direct application at

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

B Quantifier-free solver enumerates assignments E ∪ Q

B Instantiation module generates instances of Q
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Effective enumerative instantiation



Enumerative instantiation

u(E, ∀x̄. ϕ):
1. Choose an ordering � on tuples of quantifier-free terms.
2. Return {{x̄ 7→ t̄}} where t̄ is a minimal tuple of terms w.r.t �,

such that t̄ ∈ T(E) and E 6|= ϕ{x̄ 7→ t̄ }, or ∅ if none exist.

B E = {¬P (a),¬P (b), P (c),¬R(b)} and Q = {∀x. P (x) ∨R(x)}

B u chooses an ordering on tuples of terms, say the lexicographic
extension of � where a ≺ b ≺ c.

B Since E does not entail P (a)∨R(a), this strategy returns {{x 7→ a}}.

Revisiting Enumerative Instantiation 9 / 15



u as an alternative for m

B Enumerative instantiation plays a similar role to MBQI

B It can also serve as a “completeness fallback” to c and e

B However, u has advantages over m for UNSAT problems

B Moreover it is significantly simpler to implement

I No model building
I No model checking
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Example

E = {¬P (a), R(b), S(c)}
Q = {∀x. R(x) ∨ S(x), ∀x. ¬R(x) ∨ P (x), ∀x. ¬S(x) ∨ P (x)}

M =


PM = λx.⊥,
RM = λx. ite(x ' b, >, ⊥),

SM = λx. ite(x ' c, >, ⊥)

 , a ≺ b ≺ c

ϕ x s.t. M 6|= ϕ x s.t. E 6|= ϕ m(E,∀x. ϕ) u(E,∀x. ϕ)
R(x) ∨ S(x) a a {{x 7→ a}} {{x 7→ a}}
¬R(x) ∨ P (x) b a, b, c {{x 7→ b}} {{x 7→ a}}
¬S(x) ∨ P (x) c a, b, c {{x 7→ c}} {{x 7→ a}}

B u instantiates uniformly so that new terms are introduced less often

B m instantiates depending on how model was built

B Moreover, u leads to E ∧ Q{x 7→ a} |= ⊥
B m requires considering E′ which satisfies E along the new instances
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Implementation

Implementing enumerative instantiation efficiently depends on:

B Restricting enumeration space

B Avoiding entailed instantiations

B Term ordering to introduce new terms less often
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Evaluation



CVC4 configurations on unsatisfiable benchmarks

6000 8000 10000 12000 14000 16000 18000 20000
10−1

100

101

102

C
PU

tim
e

(s
)

e+u
e;u
e+m
e;m
e
u
m

B 42 065 benchmarks, being 14 731 from TPTP and 27 334 from SMT-LIB

B e+u stands for “interleave e and u”, while e;u for “apply e first, then u if it fails”

B All CVC4 configurations have “c;” as prefix
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Impact of u on satisfiable benchmarks

Library # u e;u e+u e m e;m e+m

TPTP 14731 471 492 464 17 930 808 829

UF 7293 39 42 42 0 70 69 65
Theories 20041 3 3 3 3 350 267 267

Total 42065 513 537 509 20 1350 1144 1161

B As expected, m greatly outperforms u

B Nevertheless u answers SAT half as often as m in empty theory

B Moreover, u solves 13 problems m does not
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Conclusions

B We have introduced an efficient way of applying enumerative
instantiation in SMT solving

B New technique is based on an strengthening of the Herbrand Theorem

B Implementation in SMT solver CVC4

I Significantly increases success rate

I Outperforms existing implementations of MBQI for UNSAT

I Can be used for SAT in the empty theory
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Appendix



Restricting Enumeration Space

B Strengthened Herbrand Theorem allows restriction to T(E)

B Sort inference reduces instantiation space by computing more precise
sort information

I E ∪ Q = {a 6' b, f(a) ' c} ∪ {P (f(x))}
• a, b, c, x : τ
• f : τ → τ and P : τ → Bool.

I This is equivalent to
Es ∪ Qs = {a1 6' b1, f12(a1) ' c2} ∪ {P2(f12(x1))}
• a1, b1, x1 : τ1
• c2 : τ2
• f12 : τ1 → τ2 and P : τ2 → Bool

I u would derive e.g. {x 7→ c} for E ∪ Q, while for Es ∪ Qs the
instantiation {x1 7→ c2} is not well-sorted.



Entailment Checks

Two-layered method for checking whether E |= ϕ{x̄ 7→ t̄ } holds

B Cache of instantiations already derived

B Incomplete but fast method for checking E |= `

Repeat until a fix point:

1. Replace each leaf term t in ` with [t].
2. Replace each term f(t1, . . . , tn) in ` with s if (t1, . . . , tn)→ s ∈ If .
3. Replace each term f(t1, . . . , tn) in ` where f is an interpreted function

with the result of the evaluation f(t1, . . . , tn)↓.
Then, if the resultant ` is >, then the entailment holds.

I Extension to incorporate Boolean structure

I Extension to other theories through theory-specific rewriting



Term Ordering

Instantiations are enumerated according to the order

(t1, . . . , tn) ≺ (s1, . . . , sn) if


maxn

i=1 ti ≺ maxn
i=1 si, or

maxn
i=1 ti = maxn

i=1 si and

(t1, . . . , tn) ≺lex (s1, . . . , sn)

for a given order � on ground terms.

If a ≺ b ≺ c, then

(a, a) ≺ (a, b) ≺ (b, a) ≺ (b, b) ≺ (a, c) ≺ (c, b) ≺ (c, c)

B We consider instantiations with c only after considering all cases with
a and b

B Goal is to introduce new terms less often

B Order on T(E) fixed for finite set of terms t1 ≺ . . . ≺ tn
I Instantiate in order with t1, . . . , tn
I Then choose new non-congruent term t ∈ T(E) and have tn ≺ t



Impact of u on unsatisfiable benchmarks

B u solves 3 043 more benchmarks than m

B u solves 1 737 problems not solvable by e

B Combinations of e with u or m lead to significant gains

B e+u is best configuration, solving 253 more problems than e+m and
1 295 more than e

B Some benchmark families only solvable due to enumeration

B Overall the enumerative strategies lead to a virtual portfolio of CVC4
solving 712 more problems



Comparison against other instantiation-based SMT solvers

6000 8000 10000 12000 14000 16000 18000 20000 22000
10−1

100

101

102

C
PU

tim
e

(s
)

uport-i
mport-i
z3 mport-i
e
z3 e

B Portfolios run without interleaving strategies (not supported by Z3)

B Z3 uses several optimizations for e not implemented in CVC4

B Z3 does not implement c
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