Revisiting Enumerative Instantiation

Andrew Reynolds¹, Haniel Barbosa^{1,2} and Pascal Fontaine¹

 1 University of Iowa, Iowa City, U.S.A.

²University of Lorraine, CNRS, Inria, LORIA, Nancy, France

TACAS 2018

2018-05-24, Thessaloniki, Greece

Outline

- \triangleright Quantifier handling in SMT solving
- ▷ Strengthening the Herbrand Theorem
- ▷ Effective enumerative instantiation
 - ► Combination with other instantiation strategies
 - Implementation
- \triangleright Evaluation

Quantifier handling in SMT

Problem statement

Quantifier-free solver enumerates assignments $\mathsf{E} \cup \mathsf{Q}$

- ► E is a set of ground literals $\{a \le b, b \le a + x, x \simeq 0, f(a) \neq f(b)\}$
- ▶ Q is a set of quantified clauses $\{\forall xyz. f(x) \neq f(z) \lor g(y) \simeq h(z)\}$

Instantiation module generates instances of Q $f(a) \simeq f(b) \lor g(a) \simeq h(b)$

Instantiation strategies: trigger-based [Detlefs et al. J. ACM'05]

Trigger-based instantiation (E-matching): search for relevant instantiations according to a set of triggers and E-matching

Instantiation strategies: trigger-based [Detlefs et al. J. ACM'05]

Trigger-based instantiation (E-matching): search for relevant instantiations according to a set of triggers and E-matching

 $\vartriangleright \mathsf{E} = \{\neg P(a), \neg P(b), P(c), \neg R(b)\} \text{ and } \mathsf{Q} = \{\forall x. \ P(x) \lor R(x)\}$

- \triangleright Assume the set of triggers $\{(P(x))\}$.
- $\vartriangleright \text{ Since } \mathsf{E} \models P(x)\{x \mapsto t\} \simeq P(t), \text{ for } t = a, b, c, \text{ this strategy may return } \{\{x \mapsto a\}, \{x \mapsto b\}, \{x \mapsto c\}\}.$
- \triangleright Formally:
 - $\mathbf{e}(\mathsf{E},\,\forall \bar{x}.\,\varphi): \ \ 1. \quad \text{Select a set of triggers } \{\bar{t}_1,\ldots \bar{t}_n\} \text{ for } \forall \bar{x}.\,\varphi.$
 - 2. For each i = 1, ..., n, select a set of substitutions S_i s.t. for each $\sigma \in S_i$, $\mathsf{E} \models \bar{t}_i \sigma \simeq \bar{g}_i$ for some tuple $\bar{g}_i \in \mathbf{T}(\mathsf{E})$.
 - 3. Return $\bigcup_{i=1}^{n} S_i$.

Instantiation strategies: conflict-based [Reynolds et al. FMCAD'14]

Conflict-based instantiation: search for instantiations of a quantified formula in Q that make E unsatisfiable

Instantiation strategies: conflict-based [Reynolds et al. FMCAD'14]

Conflict-based instantiation: search for instantiations of a quantified formula in Q that make E unsatisfiable

$$\triangleright \ \mathsf{E} = \{\neg P(a), \neg P(b), P(c), \neg R(b)\} \text{ and } \mathsf{Q} = \{\forall x. \ P(x) \lor R(x)\}$$

 \triangleright Since E, $P(b) \lor R(b) \models \bot$, this strategy will return $\{\{x \mapsto b\}\}$.

 \triangleright Formally:

 $\mathbf{c}(\mathsf{E},\,\forall\bar{x}.\,\varphi){:}\ \ 1. \quad \text{Either return } \{\sigma\} \text{ where } \mathsf{E},\varphi\sigma\models\bot, \text{ or return } \emptyset.$

Instantiation strategies: model-based [Ge and de Moura CAV'09]

Model-based instantiation (MBQI): build a candidate model for $E \cup Q$ and instantiate with counter-examples from model checking

Instantiation strategies: model-based [Ge and de Moura CAV'09]

Model-based instantiation (MBQI): build a candidate model for $E \cup Q$ and instantiate with counter-examples from model checking

$$\rhd \ \mathsf{E} = \{\neg P(a), \neg P(b), P(c), \neg R(b)\} \text{ and } \mathsf{Q} = \{\forall x. \ P(x) \lor R(x)\}$$

 \triangleright Assume that $P^{\mathcal{M}} = \lambda x$. ite $(x \simeq c, \top, \bot)$ and $R^{\mathcal{M}} = \lambda x$. \bot .

 $\rhd \text{ Since } \mathcal{M} \not\models P(a) \lor R(a), \text{ this strategy may return } \{\{x \mapsto a\}\}.$

 \triangleright Formally:

$$\begin{split} \mathbf{m}(\mathsf{E},\,\forall\bar{x}.\,\varphi) &: 1. \quad \text{Construct a model } \mathcal{M} \text{ for }\mathsf{E}. \\ 2 &: \quad \text{Return } \{\{\bar{x}\mapsto\bar{t}\,\}\} \text{ where } \bar{t}\in\mathbf{T}(\mathsf{E}) \text{ and } \mathcal{M}\not\models\varphi\{\bar{x}\mapsto\bar{t}\,\}, \\ &\quad \text{or }\emptyset \text{ if none exists.} \end{split}$$

Shortcomings

- ▷ Conflict-based instantiation (c):
 - Inherently incomplete
- \triangleright *E*-matching (e):
 - ► Too many instances
 - Butterfly effect
- \triangleright MBQI (m):
 - ► Complete for many fragments, but slow convergence for UNSAT
 - Better suited for model finding

Generally SMT solvers implement complete techniques by applying ${\bf m}$ as a last resort after trying ${\bf c}$ and ${\bf e}$

Strengthening the Herbrand Theorem

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable set of its instances.

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable set of its instances.

- > The earliest theorem provers relied on *Herbrand instantiation*
 - ▶ Instantiate with all possible terms in the language
- > Enumerating all instances is unfeasible in practice!
- > Enumerative instantiation was then discarded

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable set of its instances.

- > The earliest theorem provers relied on *Herbrand instantiation*
 - Instantiate with all possible terms in the language
- > Enumerating all instances is unfeasible in practice!
- ▷ Enumerative instantiation was then discarded

We make enumerative instantiation beneficial for state-of-the-art SMT

- ▷ strengthening of Herbrand theorem
- ▷ efficient implementation techniques

Theorem (Strengthened Herbrand)

If there exists an infinite series of finite satisfiable sets of ground literals E_i and of finite sets of ground instances Q_i of Q such that

$$\triangleright \ \mathsf{Q}_i = \big\{ \varphi \sigma \ \mid \ \forall \bar{x}. \ \varphi \in \mathsf{Q}, \ \mathsf{dom}(\sigma) = \{ \bar{x} \} \land \mathsf{ran}(\sigma) \subseteq \mathbf{T}(\mathsf{E}_i) \big\};$$

$$\triangleright \mathsf{E}_0 = \mathsf{E}_i \mathsf{E}_{i+1} \models \mathsf{E}_i \cup \mathsf{Q}_i;$$

then $\mathsf{E} \cup \mathsf{Q}$ is satisfiable in the empty theory with equality.

Direct application at

ho~ Quantifier-free solver enumerates assignments E \cup Q

 \triangleright Instantiation module generates instances of Q

Effective enumerative instantiation

Enumerative instantiation

 $\mathbf{u}(\mathsf{E},\,\forall \bar{x}.\,\varphi)$:

- 1. Choose an ordering \leq on tuples of quantifier-free terms.
- 2. Return $\{\{\bar{x} \mapsto \bar{t}\}\}$ where \bar{t} is a minimal tuple of terms w.r.t \leq , such that $\bar{t} \in \mathbf{T}(\mathsf{E})$ and $\mathsf{E} \not\models \varphi\{\bar{x} \mapsto \bar{t}\}$, or \emptyset if none exist.

$$\rhd \ \mathsf{E} = \{\neg P(a), \neg P(b), P(c), \neg R(b)\} \text{ and } \mathsf{Q} = \{\forall x. \ P(x) \lor R(x)\}$$

- \triangleright **u** chooses an ordering on tuples of terms, say the lexicographic extension of \leq where $a \prec b \prec c$.
- \triangleright Since E does not entail $P(a) \lor R(a)$, this strategy returns $\{\{x \mapsto a\}\}$.

> Enumerative instantiation plays a similar role to MBQI

- $\,\vartriangleright\,$ It can also serve as a "completeness fallback" to c and e
- \triangleright However, **u** has advantages over **m** for UNSAT problems
- $\,\vartriangleright\,$ Moreover it is significantly simpler to implement
 - No model building
 - No model checking

Example

$$\begin{split} \mathsf{E} &= \left\{ \neg P(a), \, R(b), \, S(c) \right\} \\ \mathsf{Q} &= \left\{ \forall x. \, R(x) \lor S(x), \, \forall x. \, \neg R(x) \lor P(x), \, \forall x. \, \neg S(x) \lor P(x) \right\} \\ \mathsf{M} &= \left\{ \begin{array}{ll} P^{\mathcal{M}} &= \lambda x. \, \bot, \\ R^{\mathcal{M}} &= \lambda x. \, \operatorname{ite}(x \simeq b, \, \top, \, \bot), \\ S^{\mathcal{M}} &= \lambda x. \, \operatorname{ite}(x \simeq c, \, \top, \, \bot) \end{array} \right\}, \qquad a \prec b \prec c \end{split}$$

φ	$x \text{ s.t. } \mathcal{M} \not\models \varphi$	$x \text{ s.t. } E \not\models \varphi$	$\mathbf{m}(E, \forall x. \varphi)$	$\mathbf{u}(E, \forall x. \varphi)$
$R(x) \lor S(x)$	a	a	$\{\{x \mapsto a\}\}$	$\{\{x \mapsto a\}\}$
$\neg R(x) \lor P(x)$	b	a,b,c	$\{\{x \mapsto b\}\}$	$\{\{x \mapsto a\}\}$
$\neg S(x) \lor P(x)$	c	a,b,c	$\{\{x \mapsto c\}\}$	$\{\{x \mapsto a\}\}$

- \triangleright **u** instantiates uniformly so that new terms are introduced less often
- m instantiates depending on how model was built
- \vartriangleright Moreover, **u** leads to $\mathsf{E} \land \mathsf{Q}\{x \mapsto a\} \models \bot$
- $\,\vartriangleright\,$ m requires considering E' which satisfies E along the new instances

Implementing enumerative instantiation efficiently depends on:

 \triangleright Restricting enumeration space

▷ Avoiding entailed instantiations

> Term ordering to introduce new terms less often

Evaluation

CVC4 configurations on unsatisfiable benchmarks

- $\vartriangleright~42\,065$ benchmarks, being $14\,731$ from TPTP and $27\,334$ from SMT-LIB
- $\triangleright e+u$ stands for "interleave e and u", while e;u for "apply e first, then u if it fails"
- ▷ All CVC4 configurations have "c;" as prefix

Impact of **u** on satisfiable benchmarks

Library	#	u	e;u	e+u	е	m	e;m	e+m
TPTP	14731	471	492	464	17	930	808	829
UF Theories	7293 20041	39 3	42 3	42 3	0 3	70 350	69 267	65 267
Total	42065	513	537	509	20	1350	1144	1161

- \triangleright As expected, **m** greatly outperforms **u**
- \triangleright Nevertheless **u** answers SAT half as often as **m** in empty theory
- ▷ Moreover, **u** solves 13 problems **m** does not

- We have introduced an efficient way of applying enumerative instantiation in SMT solving
- \triangleright New technique is based on an strengthening of the Herbrand Theorem
- ▷ Implementation in SMT solver CVC4
 - ► Significantly increases success rate
 - Outperforms existing implementations of MBQI for UNSAT
 - ► Can be used for SAT in the empty theory

Appendix

Restricting Enumeration Space

- $\,\vartriangleright\,$ Strengthened Herbrand Theorem allows restriction to ${\bf T}({\sf E})$
- Sort inference reduces instantiation space by computing more precise sort information
 - ► $\mathsf{E} \cup \mathsf{Q} = \{a \not\simeq b, f(a) \simeq c\} \cup \{P(f(x))\}$ • $a, b, c, x : \tau$ • $f : \tau \to \tau$ and $P : \tau \to \mathsf{Bool}$. ► This is equivalent to $\mathsf{E}^s \cup \mathsf{Q}^s = \{a_1 \not\simeq b_1, f_{12}(a_1) \simeq c_2\} \cup \{P_2(f_{12}(x_1))\}$ • $a_1, b_1, x_1 : \tau_1$ • $c_2 : \tau_2$
 - $f_{12}: \tau_1 \to \tau_2$ and $P: \tau_2 \to \mathsf{Bool}$
 - ▶ **u** would derive e.g. $\{x \mapsto c\}$ for $E \cup Q$, while for $E^s \cup Q^s$ the instantiation $\{x_1 \mapsto c_2\}$ is not well-sorted.

Entailment Checks

Two-layered method for checking whether $E \models \varphi\{\bar{x} \mapsto \bar{t}\}$ holds

▷ Cache of instantiations already derived

 $\,\vartriangleright\,$ Incomplete but fast method for checking E $\models \ell$

Repeat until a fix point:

- 1. Replace each leaf term t in ℓ with [t].
- 2. Replace each term $f(t_1, \ldots, t_n)$ in ℓ with s if $(t_1, \ldots, t_n) \to s \in \mathcal{I}_f$.
- 3. Replace each term $f(t_1, \ldots, t_n)$ in ℓ where f is an interpreted function with the result of the evaluation $f(t_1, \ldots, t_n)\downarrow$.

Then, if the resultant ℓ is \top , then the entailment holds.

- ► Extension to incorporate Boolean structure
- Extension to other theories through theory-specific rewriting

Term Ordering

Instantiations are enumerated according to the order

$$(t_1, \dots, t_n) \prec (s_1, \dots, s_n) \quad \text{ if } \quad \begin{cases} \max_{i=1}^n t_i \prec \max_{i=1}^n s_i, \text{ or} \\ \max_{i=1}^n t_i = \max_{i=1}^n s_i \text{ and} \\ (t_1, \dots, t_n) \prec_{\mathsf{lex}} (s_1, \dots, s_n) \end{cases}$$

for a given order \preceq on ground terms.

If $a \prec b \prec c$, then

$$(a,a)\prec (a,b)\prec (b,a)\prec (b,b)\prec (a,c)\prec (c,b)\prec (c,c)$$

- $\vartriangleright\,$ We consider instantiations with c only after considering all cases with a and b
- ▷ Goal is to introduce new terms less often
- \triangleright Order on $\mathbf{T}(\mathsf{E})$ fixed for finite set of terms $t_1 \prec \ldots \prec t_n$
 - ▶ Instantiate in order with t_1, \ldots, t_n
 - \blacktriangleright Then choose new non-congruent term $t\in {\bf T}({\sf E})$ and have $t_n\prec t$

Impact of \mathbf{u} on unsatisfiable benchmarks

- hinspace **u** solves $3\,043$ more benchmarks than **m**
- \triangleright **u** solves 1737 problems not solvable by **e**
- \triangleright Combinations of **e** with **u** or **m** lead to significant gains
- $\rhd~{\bf e+u}$ is best configuration, solving 253 more problems than ${\bf e+m}$ and $1\,295$ more than ${\bf e}$
- \triangleright Some benchmark families only solvable due to enumeration
- Overall the enumerative strategies lead to a virtual portfolio of CVC4 solving 712 more problems

Comparison against other instantiation-based SMT solvers

- \triangleright Portfolios run without interleaving strategies (not supported by Z3)
- $\,\vartriangleright\,$ Z3 uses several optimizations for e not implemented in CVC4
- \triangleright Z3 does not implement c