Revisiting Enumerative Instantiation

Andrew Reynolds', Haniel Barbosa'? and Pascal Fontaine!

LUniversity of lowa, lowa City, U.S.A.

2University of Lorraine, CNRS, Inria, LORIA, Nancy, France

TACAS 2018
2018—-05-24, Thessaloniki, Greece

Program
Analysis

Formal
Verification

Automated
Reasoning

Automatic Program
Testing Synthesis

Revisiting Enumerative Instantiation 1/15

Program
Analysis

Formal
Verification

Automatic Program
Testing Synthesis

Revisiting Enumerative Instantiation 1/15

Program
Analysis

Formal
Verification

by
(v SMT V)

Solvers
+ Quant

Automatic Program
Testing Synthesis

Revisiting Enumerative Instantiation 1/15

Outline

> Quantifier handling in SMT solving
> Strengthening the Herbrand Theorem

> Effective enumerative instantiation

» Combination with other instantiation strategies
» Implementation

> Evaluation

Problem statement

SMT solver Instantiation

(module \‘
(sslgn{en) C n‘?ance)

Ground
SMT solver

Quantifier-free solver enumerates assignments E U Q

» E is a set of ground literals {a<bb<a+z z~0, f(a) % f(b)}
» Qis a set of quantified clauses {Vzyz. f(z) £ f(2) V g(y) = h(2)}
Instantiation module generates instances of Q f(a) 2 F(b) V g(a) ~ h(b)

Revisiting Enumerative Instantiation 2/15

Instantiation strategies: trigger-based [Detlefs et al. J. ACM'05]

Trigger-based instantiation (E-matching): search for relevant
instantiations according to a set of triggers and E-matching

Revisiting Enumerative Instantiation 3/15

Instantiation strategies: trigger-based [Detlefs et al. J. ACM'05]

Trigger-based instantiation (E-matching): search for relevant
instantiations according to a set of triggers and E-matching

> E={=P(a),~P(b), P(c),~R(b)} and Q = {Vz. P(z) V R(z)}
> Assume the set of triggers {(P(x))}.

>> Since E = P(z){x — t} ~ P(t), for t = a, b, ¢, this strategy may
return {{x — a}, {x — b}, {x — c}}.

> Formally:

e(E, VZ.p): 1. Select a set of triggers {t1,...¢n} for VZ. p.

2. Foreachi=1,...,n, select a set of substitutions S; s.t.
for each o € S;, E = t;0 ~ g; for some tuple g; € T(E).

3. Return J_,; S..

Revisiting Enumerative Instantiation 3/15

Instantiation strategies: conflict-based [Reynolds et al. FMCAD'14]

Conflict-based instantiation: search for instantiations of a quantified
formula in Q that make E unsatisfiable

Revisiting Enumerative Instantiation 4 /15

Instantiation strategies: conflict-based [Reynolds et al. FMCAD'14]

Conflict-based instantiation: search for instantiations of a quantified
formula in Q that make E unsatisfiable

> E = {=P(a),—P(b), P(c),—R(b)} and Q = {Vz. P(z) V R(z)}

> Since E, P(b) V R(b) |= L, this strategy will return {{z — b}}.

> Formally:

c(E, VZ. p): 1. Either return {o} where E, po |= L, or return (.

Revisiting Enumerative Instantiation 4 /15

Instantiation strategies: model-based [Ge and de Moura CAV'09]

Model-based instantiation (MBQI): build a candidate model for EU Q and
instantiate with counter-examples from model checking

Revisiting Enumerative Instantiation 5/15

Instantiation strategies: model-based [Ge and de Moura CAV'09]

Model-based instantiation (MBQI): build a candidate model for EU Q and
instantiate with counter-examples from model checking

> E={=P(a),~P(b), P(c),~R(b)} and Q = {Vz. P(z) V R(z)}
> Assume that PM = \z.ite(x ~¢, T, L) and RM = \z. L.
> Since M [~ P(a) V R(a), this strategy may return {{z — a}}.

> Formally:

m(E, Vz.¢): 1. Construct a model M for E.

2. Return {{z — t}} wheret € T(E) and M }£ p{Z — 1},
or () if none exists.

Revisiting Enumerative Instantiation 5/15

Shortcomings

> Conflict-based instantiation (c):
» Inherently incomplete

> E-matching (e):
» Too many instances
» Butterfly effect

> MBQI (m):
» Complete for many fragments, but slow convergence for UNSAT
» Better suited for model finding

Generally SMT solvers implement complete techniques by applying m as a
last resort after trying c and e

Revisiting Enumerative Instantiation 6 /15

Strengthening the Herbrand Theorem

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there
exists a finite unsatisfiable set of its instances.

Revisiting Enumerative Instantiation 7/15

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there
exists a finite unsatisfiable set of its instances.

> The earliest theorem provers relied on Herbrand instantiation
» Instantiate with all possible terms in the language

> Enumerating all instances is unfeasible in practice!

> Enumerative instantiation was then discarded

Revisiting Enumerative Instantiation 7/15

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there
exists a finite unsatisfiable set of its instances.

> The earliest theorem provers relied on Herbrand instantiation
» Instantiate with all possible terms in the language

> Enumerating all instances is unfeasible in practice!

> Enumerative instantiation was then discarded

We make enumerative instantiation beneficial for state-of-the-art SMT
> strengthening of Herbrand theorem

> efficient implementation techniques

Revisiting Enumerative Instantiation 7/15

Theorem (Strengthened Herbrand)

If there exists an infinite series of finite satisfiable sets of ground literals E;
and of finite sets of ground instances Q; of Q such that

> Q= {po | VZ.p € Q, dom(c) = {z} Aran(c) C T(E;)};
> EO = E, E'i+1): E; U Qi,'
then E U Q is satisfiable in the empty theory with equality.

Direct application at

SMT solver Instantiation

(module \‘

C Assignment) (Instance)
UNSAT
(S N grons W (UnsAT)

SMT solver

> Quantifier-free solver enumerates assignments E U Q

> Instantiation module generates instances of Q

Revisiting Enumerative Instantiation 8/15

Enumerative instantiation

u(E, Vz. ¢):
1. Choose an ordering < on tuples of quantifier-free terms.
2. Return {{Z > t}} where t is a minimal tuple of terms w.r.t <,
such that ¢ € T(E) and E £ o{Z — t }, or () if none exist.

> E={=P(a),~P(b), P(c),~R(b)} and Q = {Vz. P(z) V R(z)}

> u chooses an ordering on tuples of terms, say the lexicographic
extension of < where a < b < c.

> Since E does not entail P(a) V R(a), this strategy returns {{z — a}}.

Revisiting Enumerative Instantiation 9/15

u as an alternative for m

> Enumerative instantiation plays a similar role to MBQI

D> It can also serve as a “completeness fallback” to c and e

> However, u has advantages over m for UNSAT problems

> Moreover it is significantly simpler to implement

» No model building
» No model checking

Revisiting Enumerative Instantiation 10 / 15

Example

E = {=P(a), R(b), 5(c)}
Q = {Vz.R(z)V S(z), Vz. -R(z) V P(z), Vx. =S(z) V P(x)}
PM =)z L,
Mz{RM =)\w.ite(be,T,J_),}, a<b=<c
SM = rite(z~c T, 1)
® rst. MEe zst. EfEe m(EVe.p) u(E V. o)
R(z) Vv S(z a a Hz—a}} {{z—a}}
—R(x) V P(x) b a,b,c {H{z—0b}} {{z—a}}
-S(x) vV P(x) c a,b,c {H{z—c}} {{z—a}}

> u instantiates uniformly so that new terms are introduced less often
> m instantiates depending on how model was built

> Moreover, u leads to EA Q{z — a} = L

> m requires considering E’ which satisfies E along the new instances

Revisiting Enumerative Instantiation 11 /15

Implementation

Implementing enumerative instantiation efficiently depends on:

D> Restricting enumeration space

> Avoiding entailed instantiations

> Term ordering to introduce new terms less often

Revisiting Enumerative Instantiation 12 / 15

CVC4 configurations on unsatisfiable benchmarks

CPU time (s)

102 .|

10] .|

100

10-1 I ; :
6000 8000 10000 12000 14000 16000 18000 20000

1

> 42065 benchmarks, being 14731 from TPTP and 27334 from SMT-LIB
> e+u stands for “interleave e and u”, while e;u for “apply e first, then u if it fails’

> All CVC4 configurations have “c;" as prefix
13/ 15

Revisiting Enumerative Instantiation

Impact of u on satisfiable benchmarks

Library # u euetu e m em e+m
TPTP 14731 471 492 464 17 930 808 829
UF 7293 30 42 42 0 70 69 65

Theories 20041 3 3 3 3 350 267 267
Total 42065 513 537 509 20 1350 1144 1161

> As expected, m greatly outperforms u
> Nevertheless u answers SAT half as often as m in empty theory

> Moreover, u solves 13 problems m does not

Revisiting Enumerative Instantiation 14 / 15

Conclusions

> We have introduced an efficient way of applying enumerative
instantiation in SMT solving

> New technique is based on an strengthening of the Herbrand Theorem

> Implementation in SMT solver CVC4
» Significantly increases success rate

» Outperforms existing implementations of MBQI for UNSAT
» Can be used for SAT in the empty theory

Revisiting Enumerative Instantiation 15 / 15

Restricting Enumeration Space

> Strengthened Herbrand Theorem allows restriction to T'(E)

D> Sort inference reduces instantiation space by computing more precise
sort information

» EUQ={a#b, f(a) =ctU{P(f(z))}
e a,bc,x: T
e f:7— 71and P: 71 — Bool.
» This is equivalent to
E°UQ® = {a1 2 b1, fi2(a1) = co} U{Pa(f12(21))}
e ai,bi,z1: 1M
® Co I T9
e fio:7 — 1 and P : 79 — Bool

» u would derive e.g. {x — ¢} for EU Q, while for E* U Q® the
instantiation {1 — ca2} is not well-sorted.

Entailment Checks

Two-layered method for checking whether E = o{Z — t } holds
> Cache of instantiations already derived

> Incomplete but fast method for checking E = ¢

Repeat until a fix point:

1. Replace each leaf term ¢ in £ with [¢].

2. Replace each term f(t1,...,t,) in £ with s if (t1,...,t,) = s € Z;.

3. Replace each term f(t1,...,t,) in £ where f is an interpreted function
with the result of the evaluation f(t1,...,t,)].

Then, if the resultant ¢ is T, then the entailment holds.

» Extension to incorporate Boolean structure

» Extension to other theories through theory-specific rewriting

Term Ordering

Instantiations are enumerated according to the order

max;_; t; < max;_; s;, or
(t1, . tn) < (S1y...,8,) if max}- ; t; = max}; s; and
(t17- .. ,tn) =<lex (51,. . .,Sn)
for a given order < on ground terms.

If a < b < c, then

(a,a) < (a,b) < (b,a) < (b,b) < (a,c) < (¢,b) < (c,c)

> We consider instantiations with ¢ only after considering all cases with
a and b

> Goal is to introduce new terms less often
> Order on T(E) fixed for finite set of terms ¢t < ... < t,
» Instantiate in order with ¢1,...,t,
» Then choose new non-congruent term ¢t € T(E) and have t,, <t

Impact of u on unsatisfiable benchmarks

>

>

>

u solves 3 043 more benchmarks than m
u solves 1737 problems not solvable by e
Combinations of e with u or m lead to significant gains

e-+u is best configuration, solving 253 more problems than e+m and
1295 more than e

Some benchmark families only solvable due to enumeration

Overall the enumerative strategies lead to a virtual portfolio of CVC4
solving 712 more problems

Comparison against other instantiation-based SMT solvers

CPU time (s)

22000

. 7
5 uport-i /)Z [4
1071 mport-i)
—<— z3 mport-i / /
. Ve
10] .| 3e : /
Wil
Vs
/////
A
10° ; : #
By s
/4-%#4%1(222??(
il :'mwd;‘)
10! it ' :
6000 8000 10000 12000 14000 16000 18000 20000

> Portfolios run without interleaving strategies (not supported by Z3)

D> Z3 uses several optimizations for e not implemented in CVC4

> Z3 does not implement c

	Quantifier handling in SMT
	Strengthening the Herbrand Theorem
	Effective enumerative instantiation
	Evaluation

